Bisection method:

The goal of the exercise is to apply the bisection method to find the root of a function $f(x)$, that is to say find the x_{0} value for which $f\left(x_{0}\right)=0$.
It is assumed that the function has a root $\left(x_{0}\right)$ between the left boundary $\left(x_{L}\right)$ and the right boundary $\left(x_{R}\right)$.

The algorithm is as follows:

1. Specify the values for x_{L}, x_{R} and Tolerance.
2. Calculate the middle value $\left(x_{M}\right): x_{M}=\frac{x_{R}+x_{L}}{2}$
3. Find in which interval is the root $\left(x_{0}\right): x_{L} \leq x_{0}<x_{M}$ or $x_{M} \leq x_{0} \leq x_{R}$?
4. Modify the initial interval:

- If $x_{L} \leq x_{0}<x_{M}$ then x_{R} is replaced by x_{M}.
- If $x_{M} \leq x_{0} \leq x_{R}$ then x_{L} is replaced by x_{M}.

5. Iterate the steps 3, 4 and 5 until the Error is below a given Tolerance:

$$
\text { Error } \equiv\left|\frac{x_{R}-x_{L}}{x_{M}}\right| \leq \text { Tolerance }
$$

6 . Print the root value $\left(x_{0}\right)$.

Exercise:

- Find the root of the function $f(x)=\cos x-x$ starting with the initial interval $x_{L}=0, x_{R}=1$.

Calculate the root (x_{0}) with 8 digits of accuracy.
Give the number of necessary iterations.

