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2. FUNDAMENTALS OF PROBABILITY THEORY 
P. Thoft-Christensen, M. J. Baker  
Structural reliability theory and its applications, 1982 

1.1 SAMPLE SPACE 
A standard way to determining e.g. the yield stress of steel is to 
perform a number of simple tensile specimen tests. 
Each test records a steel yield stress value, we expect values varying 
from test to test.  
Thus the yield stress is considered uncertain   
- it is a random parameter.  
The set of all possible outcomes of such tests is called sample space, 
each individual outcome is a sample point.  
The yield stress sample space is the set of all positive real numbers, 
the number of sample points is infinite – a continuous sample space.  
A sample space may also be discrete, when the number of sample 
points is finite of countable. 
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Example 2.1 
A simply supported beam AB is loaded by point forces P1 and P2. 

 
Let the possible values of P1 and P2 be 4, 5, 6 and 3, 4 [kN], 
respectively. The sample space for the loading will then be the set 
Ω = {(4, 3), (4, 4), (5, 3), (5, 4), (6, 3), (6, 4)} 
This is a discrete sample space. For its finite number of sample 
points we it a finite sample space.  
 
A sample space with the countable infinite number of sample points 
is called discrete infinite sample space. 
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The sample spaces for the loads P1 and P2 are  
Ω1 = {4, 5, 6} and Ω2 = {3, 4}, respectively. Note that Ω = Ω1×Ω2.  
Show as an exercise that the sample space for the reaction RA in 
point A is ΩA = {11/3, 12/3, 13/3, 14/3, 15/3, 16/3}. 
 
An event (zdarzenie) is any sample space subset (podzbiór), being 
therefore a set of sample points.  
An event of no sample points is an impossible event (zdarzenie 
niemożliwe). An event of all sample points is a certain event 
(zdarzenie pewne), being a sample space itself.  
Example 2.2 
The beam in Fig. 2.1 revisited. The sample space for the reaction RA 
is ΩA = {11/3, 12/3,13/3, 14/3, 15/3, 16/3}.  
The subset {15/3, 16/3} is the event that RA is equal to 15/3 or 16/3. 
Let E1 and E2 be two events.  
The union (suma, alternatywa) E1∪E2 of E1 and E2 is subset of 
sample points that belong to E1 and/or E2.  
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The intersection (iloczyn lub koniunkcja) E1∩E2 of E1 and E2 is a 
subset of sample points belonging to both E1 and E2. 

 

A Venn diagram showing the difference 
between the intersection and the union 
of events 

Two events E1 and E2 are mutually exclusive (rozłączne, wyklucza-
jące się) if they are disjoint (have no common sample points).  
In this case E1∩E2 = ∅,where ∅ is an impossible event (an empty 
set) (zdarzenie niemożliwe). 
Let Ω be a sample space and E an event.  
The event containing all sample points of Ω not included in E is 
called the complementary event to E (zdarzenie przeciwne), denoted 
by E . Obviously, E E∪ =Ω  and E E∩ =∅ . 
 
Intersection and union operations follow the commutative 
(przemienność), associative (łączność), and distributive 
(rozdzielność) laws: 
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1 2 2 1E E E E∩ = ∩      and     1 2 2 1E E E E∪ = ∪    commutative 

1 2 3 1 2 3( ) ( )E E E E E E∩ ∩ = ∩ ∩                           associative 

1 2 3 1 2 3( ) ( )E E E E E E∪ ∪ = ∪ ∪  

1 2 3 1 2 1 3( ) ( ) ( )E E E E E E E∩ ∪ = ∩ ∪ ∩               distributive 

1 2 3 1 2 1 3( ) ( ) ( )E E E E E E E∪ ∩ = ∪ ∩ ∪  

Due to these laws intersection or union of a set of events  
E1, E2, ... , En may be stated, as follows: 

1 2 3
1

...
n

i
i

E E E E
=

= ∩ ∩ ∩


,       1 2 3
1

...
n

i
i

E E E E
=

= ∪ ∪ ∪


 

De Morgan's laws: 1 2 1 2

1 2 1 2

E E E E
E E E E
∩ = ∪

∪ = ∩
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1.2 Axioms and theorems of probability theory 
Axiom 1 
For any event E 

( )0 1P E≤ ≤  (0.1) 
where the function P is the probability measure (miara 
prawdopodobieństwa). ( )P E  is the probability of the event E. 
Axiom 2 
Let the sample space be Ω. Then 

( ) 1P Ω =  (0.2) 
Axiom 3 
If 1E , 2E , ... , nE  are mutually exclusive events (wydarzenia 
wzajemnie wykluczające się) then 

( )
11

n n

i i
ii

P E P E
==

  = 
 

∑

 (0.3) 
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The following theorems can be proved 

( ) ( )
( )
( ) ( ) ( ) ( )1 2 1 2 1 2

1

0

P E P E

P
P E E P E P E P E E

= −

∅ =

∪ = + − ∩

 

Example 2.3 
Consider the statically determinate structural system (a truss) 
with 7 elements shown in Figure.  
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Let the event that element “i” fails be denoted by iF  
and let the probability of failure of element “i” be ( )iP F .  
Further assume that failures of the individual members are 
statistically independent, that is ( ) ( ) ( )i j i jP F F P F P F∩ = ⋅ for any 
pair of ( , )i j . The failure of any member will result in system 
failure for a statically determinate structure. Thus  

( ) ( )
7

1 7
1

7 7

1 1

failure of structure ...

1 1

i
i

i i
i i

P P F F P F

P F P F

=

= =

 
= ∪ ∪ = = 

 
   

= − = −   
  



 

 

according to De Morgan's law.  
Statistical independence assumption leads to the following 
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( ) ( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( )

1 2 3 7

1 2 7

failure of structure 1 ...

1 1 1 ... 1

P P F P F P F P F

P F P F P F

= − ⋅ ⋅ =

= − − − −
 

Let ( ) ( ) ( ) ( ) ( ) ( )1 3 5 7 2 60.02, 0.01,P F P F P F P F P F P F= = = = = =  
and ( )4 0.03.P F = Then 
( ) 4 2failure of structure 1 0.98 0.99 0.97 1 0.8769 0.1231P = − ⋅ ⋅ = − =  

 
In practical applications the probability of occurrence of event 1E  
conditional upon the occurrence of event 2E , is of great interest. 
This probability, called the conditional probability, is denoted 
( )1 2P E E  and defined by 

( ) ( )
( )
1 2

1 2
2

P E E
P E E

P E
∩

=  (0.4) 

if ( )2 0P E >  
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Conditional probability is not defined for ( )2 0P E = .  
 
Event 1E  is statistically independent of event 1E  if 
( ) ( )1 2 1P E E P E=  

that is, if occurrence of 2E  does not affect the probability of 1E . 
The probability of the event ( )1 2P E E∩ is expressed by 

( ) ( ) ( ) ( ) ( )1 2 1 2 2 2 1 1P E E P E E P E P E E P E∩ = =  (0.5) 

If 1E  and 2E , are statistically independent,(0.5) becomes 

( ) ( ) ( )1 2 1 2P E E P E P E∩ =  (0.6) 

The rule (0.6) is called multiplication rule and has already been used 
in example 2.3 
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Example 2.4.  
Consider again the structure in Figure 2.2.  
 

 
 
To simplify we assumeonly elements 2 and 6 failure-prone. 
Therefore 
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

2 6

2 6 2 6

2 6 2 6 6

failure of structureP P F F
P F P F P F F

P F P F P F F P F

= ∪ =

= + − ∩ =

= + −

 (0.7) 

If 2F  and 6F  are statistically independent, as in example 2.3, 
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 and if ( ) ( )2 6 0.01P F P F= =  then 
( )failure of structure 0.01 0.01 0.01 0.01 0.0199P = + − ⋅ =  

 
If 2F  and 6F  are not independent then the ( )2 6P F F  is required.  
If a pair of elements is fabricated from the same steel bar it is 
reasonable to assume the same strength for both. Further, they are 
equally loaded, so in this special case, ( )2 6P F F  is close to 1.  
Having ( )2 6 1P F F =  the(0.7) yields 
( )failure of structure 0.01 0.01 1 0.01 0.0100P = + − ⋅ =  
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EXAMPLE 2.11.(A.S. Nowak, K.R. Collins, Reliability of 
structures). 
Consider tests of concrete beams. Two parameters are observed: 
cracking moment and ultimate moment. Let uM  and crM  denote the 
ultimate bending moment and the cracking moment, respectively.  
Define event 1E  by 150uM ≥  kip-feet (k-ft)  
and the event 2E by 100crM ≥  k-ft.  
A conditional probability that the ultimate moment will be reached 
given the cracking moment is reached is expressed by: 

( ) ( ) ( )
( )

( )

1 2
1 2

2

150 given 100

150 AND 100
100

u cr

u cr

cr

P E E
P E E p M M

P E
P M M

M

∩
= ≥ ≥ = =

≥ ≥
=

≥
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Bayes' theorem 
Let the sample space Ω  be divided into n mutually exclusive events 

1 2, ,..., nE E E (see figure, where n = 4).  

 
Let A be an event in the same sample space. Then 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2

1 1 2 2

1

...

...
n

n n

n

i i
i

P A P A E P A E P A E

P A E P E P A E P E P A E P E

P A E P E
=

= ∩ + ∩ + + ∩ =

= + + +

=∑

 (0.8) 
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From the definition (0.4) ( ) ( )
( )
1 2

1 2
2

P E E
P E E

P E
∩

= follows 

( ) ( ) ( ) ( )i i iP A E P E P E A P A=  
 
so that 

( ) ( ) ( )
( )
i i

i

P A E P E
P E A

P A
=  

 
or using (0.8) 
 

( ) ( ) ( )

( ) ( )
1

i i
i n

j j
j

P A E P E
P E A

P A E P E
=

=

∑
 

 
This is the Bayes' theorem of high importance. 
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Example 2.5.  
Assume that a steel girder is tested before application. Experience 
shows that 95% of all girders pass the test, but the test is only 90% 
reliable, so there is margin of 0.1 for this test of being erroneous. 
How probable is that a perfect girder will pass the test? Let E denote 
that the girder is perfect and let A be the event that it passes the test. 
( ) 0.90P E A =  and ( ) ( ) 1P E A P E A+ =  

so that ( ) 1 0.90 0.10P E A = − =  

Experience gives ( ) 0.95P A = . The problem is to find ( )P A E . The 
events A  and A  are mutually exclusive, so according to (0.8) 
( ) ( ) ( ) ( ) ( ) 0.90 0.95 0.10 0.05 0.860P E P E A P A P E A P A= + = ⋅ + ⋅ =

Finally, ( ) ( ) ( )
( )

0.90 0.95 0.994
0.86

P E A P A
P A E

P E
⋅ ⋅

= = =  
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Example 2.6.  
Consider a number of tensile specimens  supporting a load of2 kN. 
Estimate the probability that a specimen supports aload of 2.5 kN. 
Based on previous experiments the probability of 0.80 is estimated 
that a specimen can carry 2.5 kN. 
Further we know that 50% ofspecimens not able to support 2.5 kN 
fail at loads less than 2.3 kN. 
The probability of 0.80 mentioned above can now be updated if the 
following test issuccessful.  
A single specimen is loaded to 2.3 kN. 
Let E be the event that the specimen can support 2.5 kN and A the 
event that the test is successful (the specimen can support 2.3 kN). 
Then ( ) 0.50P E A = , and ( ) 0.80P E = .Further ( ) 1.0P A E =  so 
that Bayes' theorem gives 
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( ) ( ) ( )
( ) ( ) ( ) ( )

1.0 0.80 0.89
1.0 0.80 0.5 0.20

P A E P E
P E A

P A E P E P A E P E
⋅ ⋅

= = =
⋅ + ⋅⋅ + ⋅

The previous value of 0.80 of the probability that a specimen can 
carry 2.5 kN is updated to 0.89, by means of Bayes’ theorem. 
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1.3 Random variables 
 
The outcomes of experiments are numerical values in most cases. 
Of course, there are exceptions. Checking a structure to carry a 
given load the outcome may be yes or no.  
In such a case it is possible to present the outcome, e.g. 1 forthe 
event of carrying the load and 0 to the event of collapse.  
The numbers 0 and 1 are virtually assigned, to be easily replacedby 
other values. Generally, it is possible to identify possible outcomes 
of a random phenomenon by numerical values.  
In most cases the values will simply be outcomes of a phenomenon 
but it may be necessary to state the numerical values artificially. 
An outcome or event is denoted by a value of a function  
called a random variable (zmienna losowa).  
A random variable is a function which maps events of the sample 
space Ω  into the real line R.  
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A random variable is denoted by a capital letter, e.g.X. Pointing out 
the domain of X the random variable we write :X RΩ→ .  
A concept of continuous random variable is presented in  Figure 

 
The function X is a mapping(odwzorowanie) of a sample space 
into the interval [ ],a b R⊂  
 
If the sample space is discrete we enter a discrete random variable.  
In the previous section the probability of an event E is denoted 
by a probability measure P.  



J. Górski, M. Skowronek    •   Gdansk University of Technology •  Reliability of Structures    •    03-Fundamentals 21 

In this section it is shown how a numerical value is associated with 
any event by the random variable. This leads a convenient analytical 
and graphical description of events and associated probabilities.  
The argument ω in ( )X ω is usually dropped. Similarly, the 
abbreviation ( )P X x≤ is used for ( ){ }( ):P X xω ω ≤ .  
 
Discrete random variable X 
 
Discrete random variableisa function whose set of values is finite  
or countable infinite.  
A discrete random variable is described by a probability mass 
function (PMF) (funkcja rozkładu prawdopodobieństwa) Xp : 

( ) ( )Xp x P X x= =  (0.9) 

X is the random variable, 1 2, , ...., nx x x x= , 
n can be finite or countable infinite.  
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( )Xp x  - probability that a discrete random variable X is equal  
to a specific value x,where x is a real number. 
Different symbols are used for the random variable and its values, 
namely X and x, respectively.  
It is a direct consequence of the axioms (0.1) - (0.3) that 

( )

( )

( ) ( ) ( )
1

1

0 1

1

i

X

n

X
i

X i X i
x b x a

p x

p x

P a X b p x p x
=

≤ ≤=

≤ ≤

=

≤ ≤ = −

∑

∑ ∑

 

The probability distribution function or cumulative distribution 
function CDF(dystrybuanta) :XP R R→ is related to Xp  by 

( ) ( ) ( )
i

X X i
x x

P x P X x p x
≤

= ≤ = ∑  (0.10) 

The definition (0.10)expresses ( )XP x  the probability of the event 
that the random variable X takes on values equal to or less than x. 
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Example 2.7. 
Consider again example 2.1 and let ( )1 4 0.3P P = = , ( )1 5 0.5P P = =  
and ( )1 6 0.2P P = = . Both probability mass functions

1Pp  and the 
probability distribution function 

1PP  for the random variable 1P  
are shown in Fig.  
 

 
 
Note that the circled points are not included in ( )

1PP x . 
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Continuous random variable X 
A continuous random variableis a function of any possible value 
within one or several intervals, the sample space is infinite. 
The probability of a specific value of a continuous random variable 
is zero. Thus the probability mass function defined in (0.9) for 
discrete random variables is no longer valid.  
However, the probability distribution function, called cumulative 
distribution function (CDF) (dystrybuanta) :XF R R→  can still be 
defined by 
 

( ) ( ) ,XF x P X x x R= ≤ ∈  
 
The derivative probability function is used for continuous random 
variables. This function is called probability density 
function(PDF)(funkcja gęstości prawdopodobieństwa) :Xf R R→ , 
defined by 
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( ) ( )X
X

dF x
f x

dx
=  (0.11) 

assuming that the derivative exists.  
 
Note that the symbol ( )Xp x  is used for the probability mass 
function (discrete variables only) and the symbol ( )Xf x  for the 
probability density function (continuous variables only). 
 
Inversion of the equation (0.11) gives 

( ) ( )
x

X XF x f t dt
−∞

= ∫  
for continuous random variables.  
 
Figure shows the probability density function ( )Xf x  and the 
probability distribution function XF  for a continuous random 
variable X. 
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Example of a PDF and example of a CDF 

 
Graphical relation between PDF and CDF (Fig.):  
for a given x PDF value is an ordinate, CDF is the shaded area. 
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Properties of probability functions (CDF, PDF and PMF) 
Here are several important properties of the CDF, sny function  
satisfying these six conditions may be considered a CDF. 
1. The CDF definition is the same for both discrete and continuous 
randomvariables, 
2. The CDF is a positive, nondecreasing function whose value lies 
between 0 and 1, including boundaries, ( )0 1XF x≤ ≤ , 
3. XF  is non-decreasing, thus  if 1 2x x<  then ( ) ( )1 2F x F x≤  
4. the limit ( ) 0XF −∞ =  

5. the limit ( ) 1XF ∞ = ,       or         ( ) ( ) 1X Xf t dt F
∞

−∞
= ∞ =∫  

6. For a continuous random variable it holds 

( ) ( ) ( ) ( )
b

X X Xa
P a x b F b F a f t dt≤ ≤ = − = ∫  (0.12) 
The Figure below provides a graphical interpretation of Eq. (0.12) 
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Graphical representation of ( ) ( )X XF b F a− in Eq. (0.12) 
 
Sometimes a mixed continuous-discrete random variableis used, i.e. 
a continuous random variable added a countable number of non-
zero probability as shown in Figure below. 
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In this case the area under the curve is equal to 1 – 0.2 – 0.1 = 0.7. 
 

1.4 Parameters of random variables - moments 
Let X be a continuous random variable of a CDF function XF . 
However, in many cases the analytical form of XF  is not known.  
An approximate description of a random variable is 
derived,capturing its most important features. Having XF or Xf   
known,  
it is also convenient to have a simplified random description.  
The so-called random variablemomentsare introduced. 
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Assuming Xa random variable kY X=  is a random variable too  
(k is a positive integer ) for { }( ): kP X yω ≤  exists for every y.  
The expected value (wartość oczekiwana) is defined 
for a continuous random variable X – integral form 

[ ] ( )XE X xf x dx
∞

−∞
= ∫  (0.13) 

and for a discrete random variable X – summation form 
[ ] ( )

i

i X i
x

E X x p x=∑  (0.14) 

The expected value is also called the mean value (wartość średnia, 
ensemble average) or the first moment of X, denoted by Xµ : 
[ ] XE X µ=  

 
The n-th moment of X is called nE X   and is defined below 

( )n n
XE X x f x dx

∞

−∞
  =  ∫  (0.15) 
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( )
i

n n
i X i

x

E X x p x  =  ∑              for both types of random variables 

The variance (wariancja) of X, denoted 2
Xσ , is the expected value of 

( )XX µ− , equal to 

( ) ( )22
X X Xx f x dxσ µ

∞

−∞
= −∫  (0.16) 

( ) ( )22

i

X i X X i
x

x p xσ µ= −∑ for both types of random variables 

 
Note that the first moment of X in (0.13) corresponds  to the 
location of the centroid of a unit mass. Likewise, the second 
moment can be compared with the unit mass moment of inertia. 
 
An important relationship exists among the mean, variance, and 
second moment of a random variable X: 

( )2 2 2
X XE Xσ µ= −  
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The standard deviation of X (odchylenie standardowe) 
is a positive square root of the variance: 

2
X Xσ σ=  

The standard deviation Xσ  is a measure of scatter  of the variable 
Xvalues around the expected value [ ]E X . It is difficult to call the 
dispersion high or low on the basis of Xσ only. 
A non-dimensional coefficient of variation, XV (współczynnik 
zmienności) of X is its standard deviation in the units of its mean: 

X
X

X

V σ
µ

=  

This parameter (often denoted c.o.v.) is always taken positive  
even though the mean may be negative. 

1.5 Sample parameters 
Parameters defined in the previous section are theoretical properties 
of random variables, based on theirknown probability distributions. 
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Many practical applications do not state these distributions, so the 
need arises to  estimate parameters using test data.  
 
If a set of n observations { }1 2, , ...., nx x x represents a random variable 
X, then its mean Xµ  may be estimated by a sample mean x standard 
deviation Xµ - by the sample standard deviation Xs . 
 
The sample mean  

1

1 n

i
i

x x
n =

= ∑                  ( ( )
i

X i X i
x

x p xµ =∑ ( ) 1
X ip x

n
= ) 

 
The sample standard deviation  

( ) ( ) ( )2 22

1 1

1 1

n n

i i
i i

X

x x x n x
s

n n
= =

− −
= =

− −

∑ ∑
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Sample variance is defined too 

( )22

1

1
1

n

X i
i

s x x
n =

= −
− ∑         ( ( ) ( )22

i

X i X X i
x

x p xσ µ= −∑ ,  ( ) 1
X ip x

n
= ) 

 
 

( ) ( ) ( ) ( )
1 1

1 1 1n n

n i i
i i

E X E X E X nE X E X
n n n= =

 = = = = 
 
∑ ∑  

n estimator (estimator) 

( ) ( ) ( )22 2 2 2 2

1 1 1

1 1 12
n n n

n i n i n i n i n
i i i

S X X X X X X X X
n n n= = =

= − = − + = −∑ ∑ ∑  

( ) ( ) ( ) ( ) ( )2 2 2 2 2

1

1 n

n i n n
i

E S E X E X E X E X
n =

= − = −∑  
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( )

( ) ( )( )

2
2 2

2
1 1

22

1 1

1 1

n n n

n i i i j
i i i j

E X E X E X X X
n n

nE X E X
n n

= = ≠

  = = + =  
   

−
= +

∑ ∑ ∑
 

( ) ( ) ( ) ( )( )

( ) ( )( )( )

22 2 2

22 2

1 1

1 1

n
nE S E X E X E X

n n
n nE X E X

n n
σ

−
= − − =

− −
= − =

 

 
Standard for of a random variable 
The standard form of a random variable X, denoted Z, is defined by 

X

X

XZ µ
σ
−

=  . Let us compute the mean value and variance ofZ. 

 
The  mathematical expectation (mean value) of an arbitrary 
function, g(X), of the random variable X is defined as 
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( ) ( ) ( ) ( )Xg X E g X g x f x dxµ
∞

−∞
= =   ∫  

Using this definition with Z = g(X) we derive 

( ) ( ) ( )1 1] 0X
Z X X X

X X X

XE E X Eµµ µ µ µ
σ σ σ

 −
= = − = − =   

 
 

and 

( ) ( )
2 2

22 2 2
2 2

10 1X X
Z Z X

X X X

XE Z E E Xµ σσ µ µ
σ σ σ

  −  = − = − = − = =       
 

Thus the mean of the standard form of a random variable is 0, 
its variance is 1. 
 
 
 
 
 
 



J. Górski, M. Skowronek    •   Gdansk University of Technology •  Reliability of Structures    •    03-Fundamentals 37 

Example 2.9.  
Consider the discrete random variable X defined in example 2.7. 
The discrete version (0.14) gives 
[ ] 4 0.3 5 0.5 6 0.2 4.9E X = ⋅ + ⋅ + ⋅ =  

The most probable value is called the mode, in this case equal to 5.0 
(see Figure).  
 

 
 
Further 

2 16 0.3 25 0.5 36 0.2 24.5E X  = ⋅ + ⋅ + ⋅ =   
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A new random variable kY X= was considered above. 
It is a function of a random variable whose distribution is known. 
Let ( )Y f X= , f is a function with only finite discontinuities.  
We derive thatY is a random variable too.  
If the f is monotonic the distribution function YF  is given by 

( ) ( ) ( )( ) ( )( )1 1
Y XF y P Y y P X f y F f y− −= ≤ = ≤ =  

and its density function Yf  by 

( ) ( ) ( )( ) ( )( ) ( )1
1 1

Y Y X X
df yd df y F y F f y f f y

dy dy dy

−
− −= = =  

or simply 

( ) ( )Y X
dxf y f x
dy

=  
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Example 2.10.  

Let Y aX b= + . It yields, Y bX
a
−

= , so ( ) 1
Y X

y bf y f
a a
− =  

 
 

 
Expected value of ( )Y f X= is computed without the Yf  function. 

[ ] ( ) ( ) ( ) ( )Y XE Y yf y dy f x f x dx E f X
∞ ∞

−∞ −∞
= = =   ∫ ∫  

 
It holds 

( ) ( )
1 1

n n

i i
i i

E f X E f X
= =

  =     
∑ ∑  

for the expectation and summation operators commute. 
The nthcentral moment of X is ( )n

XE X µ −  , where [ ]X E Xµ = .  
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Example 2.11.  
Consider the same discrete random variable X as in example 2.9, 
where [ ] 4.9E X =  and 2 24.5E X  =  .  
The variance is 

2 224.5 4.9Xσ = −  
and the standard deviation 

0.49 0.7Xσ = =  
Thus the coefficient of variation  

0.7 0.14
4.9

X
X

X

V σ
µ

= = =  

 
The third central moment is a measure of the asymmetry (asymetria) 
or skewness (skośność) of the distribution of a random variable. For 
a continuous random variable it is defined by 

( ) ( ) ( )3 3
X X XE X x f x dxµ µ

∞

−∞
 − = −  ∫  
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