2.7 Random vectors
P. Thoft-Christensen, M. J. Baker
Structural reliability theory and its applications, 1982

The concept of a random variable is basically used in a one-
dimensional sense.

A random variable is a real-valued function X : 2 — R mapping the
sample space Q into the real line R. It can easily be extended to a

vector-valued random variable X : Q — R" called a random vector
(random n-tuple),where R" = RxRx...xR.

An n-dimensional random vector X : Q — R" is an ordered set
X =(Xy, X,,..., X, )of one-dimensional random variables

X, :Q->R,i=1..,n. All X,,X,,..., X, are defined on the same

sample space Q.
Let X, and X, be two random variables. The range of the random

vector X =(X,, X, ) is then a subset of R? as shown in figure 2.11.
The range of an n-dimensional random vector is a subset of R".
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Consider again two random variables X, and X,and their
corresponding distribution functions F, and F, .

The latter give no information on the joint behaviour of X and X,.
Thus joint probability distribution function (Zgczna dystrybuanta)
Fy. x, : R® > Ris defined: F, , (%,%,)=P((X; <x)N(X,<X,))
We useFy for F, , ,where X =(X,,X,). The definition can be
generalized to the n-dimensional case
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Fy (X) = P(ﬂ(xi <X, )jwhere X =(X,..,X,)and X =(x%,,...,X,)
i=1

Discrete or continuous random vectors exist, the latter of our

concern only. Our analysis is restricted to two-dimensional random

vectors only, to be generalized easily.
The joint probability density function (fgczna funkcja gestosci

prawdopodobiernstwa) for the random vector X =(X,, X,) is given
82
fo (X)= F, (X
X( ) axlaxz X( )
The inverse formula is
Fe ()= [ [ £ (x5 dxgel;
The following functions exist
o ()= fe(ox)d, i () =] f (%% )dx,

They are marginal density functions (gestosci rozktadow brzego-
wych)of a random vector X — one-dimensional functions.
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Example 2.13.
Consider again example 2.1 and let a 2-dimensional discrete random
vector X =(X,, X,) be defined on Q2 by

P(4,3) =0.1
P(4,4)=0.1
P(5,3)=0.3
P(5, 4) = 0.2
P(6,3) = 0.2
P(6,4)=0.1

The joint mass function py, and the marginal mass functions p,.
and p, are illustrated in Figures below.

Note that py (%, %,) # Py, (%) Py, (X,)-
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2.8 CONDITIONAL DISTRIBUTIONS
Probability of occurrence of event E, conditional upon

P(E,NE,)

P(E,)
The conditional probability mass function for two jointly distributed
discrete random variables X, and X, is defined

P X, X
Py, (%]%) = p((x))

Continuous cases define the conditional probability density function

f X, X
o (s = 0

where f, (x,)>0 and where f, isa marginal PDF.
Mind the discrete / continuous diversity: p, , is a conditional mass

the occurrence of event E, was defined by P(E, |E, ) =

function, f, , aconditional density function.

X
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Two random variables X, and X, are independent if

Fx,ix, (x[%)=fx, (%)

Chich implies

fxl\x2 (Xl‘XZ) = 1:xl (Xl)' fx2 (Xz)

Integrating with respect to x, gives conditional distribution function

Fe (%)= j_c: Fy,x, (%% ) T, (%) dx, , similarly the x, case.

Example 2.14.
Consider two jointly distributed discrete random variables X, and

X, again. Note that

Px, x, (5'3) = Py, (5) Px, (3)

but for example

Px, x, (6,4)= Px, (6) Px, (4)
Therefore, X, and X,aredependent.
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2.9 Functions of random variables
A continuous random variable Y which is a function f (X ) of a

continuous random variable X is defined, the density function f,
may determined given the density function f, as follows

fy (y): fx (X)

Expanding the problem we have a random vector Y =(Y,,Y,,...,Y,) -
function f =(f,, f,,..., f,) of arandom vector X =(X,, X,,..., X,),
thatis Y, = f,(X,,..., X, ), wherei=1,2, .. n.

Each function f.i =1, 2, ... ,n is a one-to-one mapping, so inverse
relations exist: X; =g;(Y,,....Y,)

dx _
= where x= f(vy).
dy‘ ¥)

It can then be shown that
fv(y): fX (7)“”
where X =(x,%,,...,X,) and y=(y,, ¥,,..., ¥,)
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x
Y, Y,

J=|.. .. .. is the Jacobian determinant.
OX, OX,
Y, 9,

Let the random variable, Y be a function f of the random vector
X =(Xy, Xpes X,)
It can be shown that
j j X)dx, ...dx,
Where X _(xl,xz,..., n)and f. (X)is the probability density

function for the random vector X .
Let X, and X,be two random variables with the expected values

E[X,]=uyand E[X,]=
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The mixed central momentdefined by
COV[Xl’ Xz] = EI:(XI _ﬂxl)(xz — Hy, )]
is called the covariance of X,and X,.

The ratio

Cov| X,, X
Px,x, = [ : 2]

Oy, Ox,
Is called the correlation coefficient (wspotczynnikkorelacji),
where o, and o, are the standard deviations of random variables

X, and X,.
It measures a linear dependence between a pair of random variables.
The inequalities hold-1< p, , <1.

Two random variables X, and X, are uncorrelated if p, , =0.
The following identity

J. Gorski, M. Skowronek e Gdansk University of Technology e Reliability of Structures e 07_Distributions-multivariate 10



Cov[ Xy, X,]=E| (X, = s, )( X, =1, ) | = E[X;- X, ]-E[ X, ]E[X, ]
is specified in the case of uncorrelated random variables X, and X,
E[X,-X,]=E[X,]E[X,]

It isimportant that independent random variables are uncorrelated,
but uncorrelated variables may be dependent.

Note thatCov[ X;, X;] = Var[ X, ]. Total correlation between random
variables X, X,,..., X, may have thecovariance matrix C form

Var[X,]  Cov[X,X,] .. Cov[X,X,]
c_ Cov[X,,X,] Var[X,] .. Cov[X,,X,]
Cov[X,,X;] Cov[X,,X,] .. Var[X,]
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2.10 MULTIVARIATE DISTRIBUTIONS.
Animportant joint density function of two continuous random
variables X, and X,is the bivariate normal density function

2

1 -1 X —
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Xl‘XZ( 11%) 2%0102\/1—7 [2(1_'02){ 91

o SA) sk |

where —o < x, <00, —0<X, <o, and g, u, are the means o, o,
the standard deviations and p the coefficient of X , X,.
The multivariate normal density functionis defined

ho= L, _ﬂexp{—giu -, (5 )|

(27)2 ‘62

X =(%,%,,...,% ), M =C™, and where C is the covariance matrix.
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