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INTERPRETATION OF TEST DATA USING STATISTICS 
 
Nowak, A.S., Collins K.R. Reliability of structures. 
McGraw-Hill Higher Education 2000 
 
PROBABILITY PAPER 
Probability paper can be used to graphically determine whether a set 
of experimental data can be described by the normal distribution.  
Probability paper for the normal distribution is the most common, 
however, it is possible to construct probability paper for other 
distributions. 
The basic idea behind normal probability paper is to redefine the 
vertical scale so that the normal CDF will plot as a straight line. 
Conversely, if a set of data plotted on normal probability paper plots 
as a straight line, then it is reasonable to model the data using a 
normal CDF. The slope and y intercept of the graph can be used to 
determine the mean and standard deviation of the distribution. 
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Consider a normal random variable X with mean value Xµ  and 
standard deviation Xσ .  
Today, with the availability of spreadsheet programs and computers, 
it is very easy to achieve the same effect of commercial normal 
probability paper by performing a simple mathematical 
transformation and plotting a standard linear (xy) graph.  
For any realization x of the normal random variable X, the 
corresponding standardized value is 

1X X

X X X

Xz zµ µ
σ σ σ

   − −
= = +   

   
 

The corresponding probability based on the normal CDF 
would be 

( ) X
X

X

XF x p µ
σ

 −
= = Φ 

 
 

If we take the inverse of the above equation, we get 
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( )1 1 X

X X

p z z µ
σ σ

−    −
Φ = = +   

   
 

The equation represents a linear relationship between ( )1z p−= Φ  
and x, and this provides the rationale behind normal probability 
paper.  
The vertical axis on the right side of Figure 2.21 was obtained by 
transforming the probability values on the left scale using Eq. 2.78. 
Observe that the values on this scale are evenly spaced.  
If ( )1 p−Φ  versus x is plotted on standard (linear) graph paper, a 
straight-line plot will result. 
The relationship expressed in Eq. 2.78 is further illustrated in Figure 
2.22.  
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FIGURE 2.22 Interpretation of a straight-line plot on normal 
probability paper in terms of the mean and standard deviation of the 
normal random variable. 
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The procedure is as follows: . 
1. Arrange the data values {x} in increasing order.  
The first (lowest) value of x will be denoted as 1x  the next value as 

2x , and so on, up to the last (largest) value Nx . Do not discard 
repeated values. 
2. Associate with each ix  a cumulative probability ip  equal to  

1
1ip

N
=

+
 

3. If commercial normal probability paper is being used, then plot 
the ( ),i ix z  and go to Step 6. Otherwise, go to Step 4. 
4. For each ip  determine ( )1

i iz p−= Φ . Equation 2.43 can be useful 
in this step. 
5. Plot the coordinates ( ),i ix z  on standard linear graph paper by 
hand or using a computer. 
6. If the plot appears to follow a straight line, then it is reasonable to 
conclude that the data can be modeled using a normal distribution.  
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Sketch a "best-fit" line for the data.  
The slope of the line will be equal to 1/ Xσ , and the value of x at 
which the probability is 0.5 (or z = 0) will be equal to Xµ . 
Alternatively, you can plot a reference line using the sample mean 
x  and sample standard deviation Xs  obtained using Eqs. 2.25 and 
2.26. 
If the data do not appear to follow a straight line, then a normal 
distribution is probably not appropriate.  
However, the plot can still provide some useful information. 
 
 
 
 
 
EXAMPLE 1.7. Consider the following set of 9 data points:  
{x} = {6.5, 5.3, 5.5, 5.9, 6.5, 6.8,7.2,5.9, 6.4}. Plot the data on 
normal probability paper. 
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Solution. 
It is convenient to carry out Steps 1 and 2 by setting up a table as 
seen in Table 2.1.  

 
The values of ( ),i ix p  are plotted on probability paper in Figure 
2.23.  
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Fig. 2.23 Data from Example 2.7 plotted on normal probability 
paper. 
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We would obtain the same graph if we plotted ( ),i ix z  and use the 
linear scale shown on the right side of Figure 2.23.  
The data plotted in Figure 2.23 appear to follow (at least 
approximately) a straight line and thus we might conclude that the 
data follow a normal distribution. 
 For comparison, a "reference" straight line is plotted based on the 
sample statistics 6.2x =  and 0.62Xs = . 
 
 
HISTOGRAM 
 
Another graphical technique, known as the histogram, is sometimes 
useful.  
The basic idea is to count the number of data points that fall into 
predefined intervals and then make a bar graph.  
By looking at the bar graph, you can observe trends in the data and 
visually determine the "distribution" of the data.  
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EXAMPLE:2.9. Suppose we test 100 concrete cylinders and 
experimentally determine the compressive strength for each 
specimen. We then establish intervals of values and count the 
number of observed values that fall in each interval. This is shown 
in Table 2.3. 
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Then, for each interval, we calculate the relative "frequency of 
occurrence," which is the total number of observations for the 
interval divided by the total number of all observations.  
This corresponds to the percentage of all observations that fall in a 
particular interval.  
This has been calculated in the third column of Table 2.3.  
If, for each interval, we add up the frequency value for that interval 
and all intervals below it, we get a cumulative frequency value as 
shown in the last column of Table 2.3.  
If we plot the values in column 3 of Table 2.3 versus the interval 
values in column 1, we get a relative frequency histogram plot as 
seen in Figure 2.27.  
If we plot the values in column 4 versus the interval values in 
column I, we get a cumulative frequency histogram as seen in 
Figure 2.28. 
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a)       b) 
FIGURE 2.27 Relative (a) and cumulative (b) frequency histogram 
for concrete strength. 
 
Figure 2.29 (see page 41) shows how the interval size can 
drastically influence the overall appearance of relative frequency 
and cumulative frequency histograms. 
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FIGURE 2.29 Influence of interval size on appearance of histogram 
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EXAMPLE 2.10. Consider the set of values of vehicle weight 
recorded in Table 2.4.  

 

Figures 2.30 and 2.31 can be plotted from calculations of relative 
and cumulative frequency values for the intervals defined in the 
table. 
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Relative and cumulative frequency histogram for data in Table 2.4 
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2.8 RANDOM VECTORS 
A random vector is defined as a vector (or set) of random variables 
{ }1 2, ,..., nX X X .  
When we deal with multiple random variables in a random vector 
we can define distribution functions and density functions similar to 
those defined for single random variables.  
The joint cumulative distribution function, is defined as 

( ) ( )
1 2, ,..., 1 2 1 1 2 2, ,..., , ,...,

nX X X n n nF x x x P X x X x X x= < < <  
In Eq. 2.82, the right-hand side of the equation should be read as the 
probability of the intersection of the events 1 1X x<  and 2 2X x<  and 
... and n nX x< .  

( ) ( ) ( )( )
1 2, 1 2 1 1 2 2,X XF x x P X x X x= ≤ ≤  

This function is defined for both discrete and continuous random 
variables. 
 For continuous random variables, the joint probability density 
function is defined as 
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( ) ( )
1 2, ,..., 1 2 1 2

1

, ,..., , ,...,
...n

n

X X X n n
n

Ff x x x x x x
x x
∂

=
∂ ∂

 

For discrete random variables, the joint probability mass function is 
defined as 

( ) ( )
1 2, ,..., 1 2 1 1 2 2, ,..., , ,...,

nX X X n n np x x x P X x X x X x= = = =  
For continuous random variables, we can define a marginal density 
function for each iX  as 

( ) ( )
1 2, ,..., 1 2 1 2 1 1, ,..., ... ...

i nX i X X X n i i nf x f x x x dx dx dx dx dx
∞

− +−∞
= ∫  

In Eq. 2.85, it is important to note that there are n − 1 integrations 
involved. The integrals are formulated for all variables except iX .  
The preceding formulas are completely general, but they can be 
confusing.  
To help illustrate the definitions of joint cumulative distribution 
function, joint density function, and marginal density functions, 
consider the case of two continuous random variables X and Y.  
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The joint cumulative distribution function for X and Y is defined as 
( ) ( ),XY iF x P X x Y y= ≤ ≤  

The joint probability density function is defined as 

( ) ( ), ,
n

XY
XY

Ff x y x y
x y

∂
=
∂ ∂

 

The marginal density functions are 

( ) ( ),X XYf x f x y dy
∞

−∞
= ∫  

( ) ( ),Y XYf y f x y dx
∞

−∞
= ∫  

In Section 2.7, we introduced the concept of conditional probability. 
This concept can be extended to define a conditional distribution 
function for a random vector.  
Consider the case of two continuous random variables X and Y.  
The conditional distribution function is defined as 

( ) ( )
( )

, joint density
marginaldensity

XY
X Y

Y

f x y
f x y

f y
= =  
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If the random variables X and Y are statistically independent, then 
( ) ( )XX Yf x y f x=  

and 
( ) ( )YY Xf y x f y=  

which implies, based on Eq. 2.90, that 
( ) ( ) ( ),YX X Yf x y f x f y=  

 
 
 
EXAMPLE 2.12. Consider a set of tests in which two quantities are 
measured: modulus of elasticity, 1X , and compressive strength, 2X . 
Since the values of these variables vary from test to test, as seen in 
Table 2.5, it is appropriate to treat them as random variables.  
 
TABLE 2.5 Values of modulus of elasticity and compressive 
strength 
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Using the concept of histograms discussed in Section 2.6, we can 
get an idea of the general shape of the probability density function 
(PDF) for each individual variable and the joint probability density 
function and joint probability distribution function.  
For each individual variable, we define appropriate intervals of 
values and then count the number of observations within each 
interval. The resulting relative frequency histogram for each 
variable is shown in Figure 2.33.  

   
FIGURE 2.33 Relative frequency histograms for XI and X2 
considered independently. 
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To consider the joint histogram, we need to define "two-
dimensional intervals”. 
 For example, one "interval" would be for values of ( )1X E  between 

63.0 10×  psi and 63.25 10×  psi and values of ( )2 cX f ′  between 
62.5 10×  psi and 33.0 10×  psi.  

Looking at Table 2.5, we see that there are 15 samples that satisfy 
both requirements simultaneously; these samples are highlighted in 
the table.  
Therefore, we have 15 observations in this interval out of 100 total 
observations, and the relative frequency value is 15/100 = 0.15.  
This value is indicated as the shaded block in Figure 2.34, the 
relative frequency histogram.  
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FIGURE 2.34 Relative frequency histogram for both 1X  and 2X  
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A cumulative frequency histogram can also be constructed as shown 
in Figure 2.35.  

 
FIGURE 2.35 Cumulative frequency histogram for both 1X  and 2X  
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For example, to find the cumulative value of the number of times 
that 1X  is less than or equal to 63.0 10×  psi and 2X  is less than or 
equal to 32.35 10×  psi, we add all the relative frequency values in 
Figure 2.34 that satisfy this requirement. The result would be 0 + 
0.04 + 0.01 + 0 + 0.02 + 0.04 + 0.09 + 0.12 = 0.32. This is reflected 
in Figure 2.35. 
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2.9 CORRELATION 
2.9.1 Basic Definitions 
Let 1X  and 2X  be two random variables with means 

1Xµ  and 
2Xµ  

and standard deviations 
1Xσ  and 

2Xσ .  
The covariance of 1X  and 2X  is defined as 

[ ] ( )( )1 2

1 2 1 2

1 2 1 2

1 2 1 2

Cov , X X

X X X X

X X E X X

E X X X X

µ µ

µ µ µ µ

 = − − = 
 = − − + 

 

where E[ ] denotes expected value.  
Note that [ ] [ ]1 2 2 1Cov , Cov ,X X X X= .  
If X and Yare continuous random variables then this formula 
becomes 

( ) ( )( ) ( )
1 21 2 1 2CoV , ,X X XYX X x x f x y dxdyµ µ

∞ ∞

−∞ −∞
= − −∫ ∫  

 



J. Górski, M. Skowronek  •  Gdansk University of Technology •  Reliability of Structures  •  08-Statistics 27 

The coefficient of correlation (also called the correlation 
coefficient) between two random variables 1X  and 2X  is defined as 

[ ]
1 2

1 2

1 2Cov ,
=X X

X X

X X
ρ

σ σ
 

It can be proven that the coefficient of correlation is limited to 
values between −1 and 1 inclusive, that is, 

1 2
1 1X Xρ− ≤ ≤ .  

The value of 
1 2X Xρ  indicates the degree of linear dependence 

between the two random variables X and Y.  
If 

1 2X Xρ  is close to 1, then X and Y are linearly correlated.  
If 

1 2X Xρ  is close to zero, then the two variables are not linearly 
related to each other. Note the emphasis on the word "linearly." 
When 

1 2X Xρ  is close to zero, it does not mean that there is no 
dependence at all; there may be some nonlinear relationship 
between the two variables. Figure 2.36 illustrates the concept of 
correlation. 
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FIGURE 2.36 Examples of correlated and uncorrelated random 
variables. 
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It is interesting to note what happens when two variables are 
uncorrelated (i.e., 

1 2
0X Xρ = ).  

By Eq. 2.95, this implies that the covariance is equal to zero. By 
manipulating Eq. 2.93, you can show that when [ ]1 2CoV , =0X X , 
( )

1 21 2 X XE X X µ µ=  (the expected value of the product 1 2X X  is the 
product of the expected values. 
It is important to emphasize that the terms "statistically 
independent" and ''uncorrelated" are not always synonymous. 
Statistically independent is a much stronger statement than 
uncorrelated.  
If two variables are statistically independent, then they must also be 
uncorrelated.  
However, the converse is not, in general, true.  
If two variables are uncorrelated, they are not necessarily 
statistically independent. 
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The foregoing comments on correlation pertain to two random 
variables.  
When dealing with a random vector, a covariance matrix is used to 
describe the correlation between all possible pairs of the random 
variables in the vector.  
For a random vector with n random variables, the covariance 
matrix, [C], is defined as 

[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 1 2 1

2 1 2 2 2

1 2

Cov , Cov , ... Cov ,
Cov , Cov , ... Cov ,

... ... ... ...
Cov , Cov , ... Cov ,

n

n

n n n n

X X X X X X
X X X X X X

C

X X X X X X

 
 
 =
 
 
 

 

In some cases, it is more convenient to work with a matrix of 
coefficients of correlation [p] defined as 
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[ ]

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

p

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

 
 
 =
 
 
 

 

Note two things about the matrices [C] and [p].  
First, they are symmetric matrices.  
Second, the terms on the main diagonal of the [C] matrix can be 
simplified using the fact that ( ) ( ) 2Cov , Var

ii i i XX X X σ= = .  
The diagonal terms in [p] are equal to 1. 
If all n random variables are uncorrelated, then the off-diagonal 
terms in Eq. 2.96 are equal to zero and the covariance matrix 
becomes a diagonal matrix of the form 
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[ ]
1

2

2

2

2

0 ... 0
0 ... 0
... ... ... ...
0 0 ...

n

X

X

X

C

σ
σ

σ

 
 
 =
 
 
 

 

The matrix [p] in Eq. 2.97 becomes a diagonal matrix with 1's on 
the diagonal 
 
Statistical Estimate of the Correlation Coefficient 
In practice we often do not know the underlying distributions of the 
variables we are observing, and thus we have to rely on test data and 
observations to estimate parameters.  
When we have observed data for two random variables X and Y, we 
can estimate the correlation coefficient as follows. 
Assume that there are n observations { }1 2, ,..., nx x x  of variable X and 
n observations { }1 2, ,..., ny y y  of variable Y.  
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The sample mean and standard deviation for each variable can be 
calculated using Eqs. 2.25 and 2.26.  
Once the sample means x  and y  and sample standard deviations Xs  
and ys  are determined, the sample estimate of the correlation 
coefficient can be calculated using 

( )( )
1 11 1ˆ

1 1

n n

i i i i
i i

X Y X Y

x x y y x y nx y

n s s n s s
ρ = =

− − −
= =

− −

∑ ∑
 

 
 


