INTERPRETATION OF TEST DATA USING STATISTICS

Nowak, A.S., Collins K.R. Reliability of structures.
McGraw-Hill Higher Education 2000

PROBABILITY PAPER

Probability paper can be used to graphically determine whether a set
of experimental data can be described by the normal distribution.
Probability paper for the normal distribution is the most common,
however, it is possible to construct probability paper for other
distributions.

The basic idea behind normal probability paper is to redefine the
vertical scale so that the normal CDF will plot as a straight line.
Conversely, if a set of data plotted on normal probability paper plots
as a straight line, then it is reasonable to model the data using a
normal CDF. The slope and y intercept of the graph can be used to
determine the mean and standard deviation of the distribution.
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Consider a normal random variable X with mean value x, and
standard deviation o, .

Today, with the availability of spreadsheet programs and computers,
it is very easy to achieve the same effect of commercial normal
probability paper by performing a simple mathematical
transformation and plotting a standard linear (xy) graph.

For any realization x of the normal random variable X, the
corresponding standardized value is

2o
Ox Ox Ox

The corresponding probability based on the normal CDF

would be

Fy (X)= p=®(%}

X
If we take the inverse of the above equation, we get
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The equation represents a linear relationship between z = @™ (p)
and x, and this provides the rationale behind normal probability

paper.
The vertical axis on the right side of Figure 2.21 was obtained by
transforming the probability values on the left scale using Eq. 2.78.
Observe that the values on this scale are evenly spaced.

If @~ (p) versus x is plotted on standard (linear) graph paper, a

straight-line plot will result.
The relationship expressed in Eq. 2.78 is further illustrated in Figure

2.22.
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FIGURE 2.22 Interpretation of a straight-line plot on normal
probability paper in terms of the mean and standard deviation of the
normal random variable.
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The procedure is as follows: .

1. Arrange the data values {x} in increasing order.

The first (lowest) value of x will be denoted as x, the next value as
X,, and so on, up to the last (largest) value x,. Do not discard

repeated values.
2. Associate with each x, a cumulative probability p. equal to
1
PN+
3. If commercial normal probability paper is being used, then plot
the (x;,z;) and go to Step 6. Otherwise, go to Step 4.

4. For each p; determine z; =®™(p;). Equation 2.43 can be useful

in this step.
5. Plot the coordinates (x;,z;) on standard linear graph paper by

hand or using a computer.
6. If the plot appears to follow a straight line, then it is reasonable to
conclude that the data can be modeled using a normal distribution.
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Sketch a "best-fit" line for the data.

The slope of the line will be equal to 1/ o, , and the value of x at
which the probability is 0.5 (or z = 0) will be equal to 4, .
Alternatively, you can plot a reference line using the sample mean
X and sample standard deviation s, obtained using Egs. 2.25 and
2.26.

If the data do not appear to follow a straight line, then a normal
distribution is probably not appropriate.

However, the plot can still provide some useful information.

EXAMPLE 1.7. Consider the following set of 9 data points:
{x}={6.5,5.3,55,5.9 6.5, 6.8,7.2,5.9, 6.4}. Plot the data on
normal probability paper.
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Solution.

It is convenient to carry out Steps 1 and 2 by setting up a table as
seen in Table 2.1.

TABLE 2.1 Data table for Example 2.7
Index value,i  x (in increasing order) Probability, p=VN+1) z= &(p)

1 5.3 0.1 -1.282
) 5.5 0.2 —0.842
3 59 0.3 —-0.524
5 64 0.5 0
i 6.5 0.6 0.253
7 6.5 0.7 0.524
g 6.8 0.8 0.842
- - AN 1227

The values of (x;, p,) are plotted on probability paper in Figure
2.23.

J. Gorski, M. Skowronek e Gdansk University of Technology e Reliability of Structures e 08-Statistics



Probability

FNCUEA [PULION PIEPURIS

Fig. 2.23 Data from Example 2.7 plotted on normal probability
paper.
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We would obtain the same graph if we plotted (x;,z ) and use the

linear scale shown on the right side of Figure 2.23.

The data plotted in Figure 2.23 appear to follow (at least
approximately) a straight line and thus we might conclude that the
data follow a normal distribution.

For comparison, a "reference" straight line is plotted based on the
sample statistics X =6.2 and s, =0.62.

HISTOGRAM

Another graphical technique, known as the histogram, is sometimes
useful.

The basic idea is to count the number of data points that fall into
predefined intervals and then make a bar graph.

By looking at the bar graph, you can observe trends in the data and
visually determine the "distribution” of the data.
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EXAMPLE:2.9. Suppose we test 100 concrete cylinders and
experimentally determine the compressive strength for each
specimen. We then establish intervals of values and count the

number of observed values that fall in each interval. This is shown
in Table 2.3.

Concrete strength, Numberof Frequency

A observations of Cumulative
(150 psl interval) ininterval  occurrence  frequency
Below 1500 psi 0 000 000
1500-1650 1 0.01 0.01
1650-1800 1 0.01 0.02
1800-1950 3 ©0.03 0.05
1950-2100 3 0.03 0.08
2100-2250 8 0.08 0.16
2250-2400 12 0.12 0.28
2400-2550 11 0.11 0.39
2550-2700 10 0.10 0.49
2700-2850 13 0.13 0.62
2850-3000 9 0.09 0.71
3000-3150 8 0.08 0.79
3150-3300 6 0.06 0.85
3300-3450 3 0.03 0.88
3450-3600 4 0.04 0.92
3600-3750 4 0.04 0.96
3750-3900 2 0.02 098
3900-4050 1 0.01 099
40504200 1 0.01 1.00
42004350 0 0.00 1.00
43504500 0 0.00 1.00
Above 4500 psi 0 0.00 1.00
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Then, for each interval, we calculate the relative "frequency of
occurrence," which is the total number of observations for the
interval divided by the total number of all observations.

This corresponds to the percentage of all observations that fall in a
particular interval.

This has been calculated in the third column of Table 2.3,

If, for each interval, we add up the frequency value for that interval
and all intervals below it, we get a cumulative frequency value as
shown in the last column of Table 2.3.

If we plot the values in column 3 of Table 2.3 versus the interval
values in column 1, we get a relative frequency histogram plot as
seen in Figure 2.27.

If we plot the values in column 4 versus the interval values in
column I, we get a cumulative frequency histogram as seen in
Figure 2.28.
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FIGURE 2.27 Relative (a) and cumulative (b) frequency histogram
for concrete strength.

Figure 2.29 (see page 41) shows how the interval size can

drastically influence the overall appearance of relative frequency
and cumulative frequency histograms.
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FIGURE 2.29 Influence of interval size on appearance of histogram
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EXAMPLE 2.10. Consider the set of values of vehicle weight
recorded in Table 2.4.

Gross vehicle Frequency
weight Number of of Cumulative

(15 kips interval) observations occurrence frequency
Below 15 kips : 25 0.08 0.08
15.0-30.0 101 0.32 0.40
30.045.0 94 0.30 0.70
45.0-60.0 - 40 0.13 0.83
60.0-75.0 21 0.07 0.90
75.0-90.0 17 0.05 0.95
90.0-105.0 4 0.01 0.96
105.0-120.0 6 0.02 0.98
120.0-135.0 0 0.00 098
135.0-150.0 2 0.01 0.99
150.0-165.0 2 001 1.00
165.0-180.0 1 0.00 1.00
Above 180.0 kips 0 0.00 1.00

Figures 2.30 and 2.31 can be plotted from calculations of relative

and cumulative frequency values for the intervals defined in the
table.

J. Gorski, M. Skowronek e Gdansk University of Technology e Reliability of Structures e 08-Statistics



Relative frequency (%)
Cumulative frequency (%)

50 100 150
Gross vehicle weight (kips)

50 100 150
Gross vehicle weight (kips)

Relative and cumulative frequency histogram for data in Table 2.4
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2.8 RANDOM VECTORS

A random vector is defined as a vector (or set) of random variables
(X0 Xy, X}

When we deal with multiple random variables in a random vector
we can define distribution functions and density functions similar to
those defined for single random variables.

The joint cumulative distribution function, is defined as

Fu x,x. (X, Xg e X ) = P (X, <%, X, <X, X, < X))

In Eq. 2.82, the right-hand side of the equation should be read as the
probability of the intersection of the events X, < x, and X, <X, and
.oand X, <X, .

Fe.x, (X0 %)= P((X,<x)N(X,<x,))

This function is defined for both discrete and continuous random
variables.

For continuous random variables, the joint probability density
function is defined as
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0"F
Py (X Xareen Xy ) ZW(Xsz’---’Xn)
1" n

For discrete random variables, the joint probability mass function is
defined as

Px, x,...x, (X11X2!---’Xn)= P(Xl =X, Xy =Xy, X = Xn)

For continuous random variables, we can define a marginal density
function for each X, as

fy (%)= Jjo Fu s (X0 Xo0ees X ) AX AX, XXy OX

In Eq. 2.85, it is important to note that there are n — 1 integrations
involved. The integrals are formulated for all variables except X..

The preceding formulas are completely general, but they can be
confusing.

To help illustrate the definitions of joint cumulative distribution
function, joint density function, and marginal density functions,
consider the case of two continuous random variables X and Y.
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The joint cumulative distribution function for X and Y is defined as
Foo (X )=P(X <xY <y)
The joint probability density function is defined as

n

o0'F
frr (X,Y) :8X—8X):(X’ y)

The marginal density functions are
fx (X) - IZ Fav (X’ y)dy

fY (Y) = J._w fxv (X’ y)dX
In Section 2.7, we introduced the concept of conditional probability.
This concept can be extended to define a conditional distribution
function for a random vector.
Consider the case of two continuous random variables X and Y.
The conditional distribution function is defined as

£ (x . :
£ (X]y) = xfy (xy) _ joint densﬂy

v (y)  marginal density
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If the random variables X and Y are statistically independent, then

Fxy (x]y)= (%)
and
Y\x (Y‘X)— f, ()
which implies, based on Eq. 2.90, that

fyx (X’ y): fx (X) fy (y)

EXAMPLE 2.12. Consider a set of tests in which two quantities are
measured: modulus of elasticity, X,, and compressive strength, X,.

Since the values of these variables vary from test to test, as seen in
Table 2.5, it is appropriate to treat them as random variables.

TABLE 2.5 Values of modulus of elasticity and compressive
strength
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Sample  f;, E,  Sample f, E,  Sample f,
number  psi psi number  psi psi number  psi

E'
psi

1 3050 3335000 34 2266 2,797,000 %% 7 iﬁs’@;ﬁm
68

2 3,397 3 280 000 35 3,414 3.03? 000

69 3 062
70 2,336
71 2,325
IS 72 2,600

T7 0 3187 3252,000 40 3154 2,390,000 73 2,197
8 2804 2,814,000 41 2,063 2,421,000 74 3,635
e, 000 75 1,938

76 2,557

44 4,072 3,814,000 77 3,566
45 2,249 2,920,000 78 2432
46 3,107 3,485,000 79 2903
47 3,009 2,942,000 80 2776
48 2,452 2,901,000 81 3,239
49 2361 2,917,000 82 2393

2,877
2, 192

2083

2,725,000
3,317,000
2,995,000
2,512,000
2,840,000
2,636,000
3,304,000
2,483,000
2,618,000
3,990,000
3,112,000
3,408,000

3,014,000,
3,308,000

2,965,000
2,553,000
20
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Using the concept of histograms discussed in Section 2.6, we can
get an idea of the general shape of the probability density function
(PDF) for each individual variable and the joint probability density
function and joint probability distribution function.

For each individual variable, we define appropriate intervals of
values and then count the number of observations within each
interval. The resulting relative frequency histogram for each
variable is shown in Figure 2.33.
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2.00 225 250 275 300 325 350 375 400 .
Random variable X, = Compressive strength (10° psi)

Random variable X, = Modulus of elasticity (10° psi)

FIGURE 2.33 Relative frequency histograms for XI and X2
considered independently.

J. Gorski, M. Skowronek e Gdansk University of Technology e Reliability of Structures e 08-Statistics

21



To consider the joint histogram, we need to define "two-
dimensional intervals”.
For example, one "interval" would be for values of X, (E) between

3.0x10° psi and 3.25x10° psi and values of X, ( f.) between

2.5%10° psi and 3.0x10° psi.

Looking at Table 2.5, we see that there are 15 samples that satisfy
both requirements simultaneously; these samples are highlighted in
the table.

Therefore, we have 15 observations in this interval out of 100 total
observations, and the relative frequency value is 15/100 = 0.15.
This value is indicated as the shaded block in Figure 2.34, the
relative frequency histogram.
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A cumulative frequency histogram can also be constructed as shown
in Figure 2.35.

T I I T T 1 1
2g0 225 250 275 300 325 350 375 400
X, , modulus of elasticity (10 psi)

+’\|‘

FIGURE 2.35 Cumulative frequency histogram for both X, and X,
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For example, to find the cumulative value of the number of times
that X, is less than or equal to 3.0x10° psi and X, is less than or
equal to 2.35x10° psi, we add all the relative frequency values in

Figure 2.34 that satisfy this requirement. The result would be 0 +
0.04+0.01+0+0.02+0.04 +0.09 +0.12 = 0.32. This is reflected

in Figure 2.35.
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2.9 CORRELATION
2.9.1 Basic Definitions

Let X, and X, be two random variables with means s, and u,
and standard deviations o, and o, .
The covariance of X, and X, is defined as

COV[Xl, XZ]: E[(Xl_ﬂxl)(xz — Hy, )} =

=E |:X1X2 = Xyfy, = Ko hy, +:Ux1/ux2]
where E[ ] denotes expected value.
Note that Cov|[ X,, X,]=Cov[X,, X,].

If X and Yare continuous random variables then this formula
becomes

CoV(X,,X,) I _[ — 1y )(X, = 11y, ) Ty (X, y)dxdy

J. Gorski, M. Skowronek e Gdansk University of Technology e Reliability of Structures e 08-Statistics 26



The coefficient of correlation (also called the correlation
coefficient) between two random variables X, and X, is defined as

Cov| X,, X
Pxx, = X X ]

Oy Ox,

It can be proven that the coefficient of correlation is limited to
values between —1 and 1 inclusive, thatis, -1< p, , <1.

The value of p, , Indicates the degree of linear dependence

between the two random variables X and Y.
If pyx, isclosetol,then X and Y are linearly correlated.

If pyx, Is close to zero, then the two variables are not linearly

related to each other. Note the emphasis on the word "linearly."
When p, , is close to zero, it does not mean that there is no

dependence at all; there may be some nonlinear relationship
between the two variables. Figure 2.36 illustrates the concept of
correlation.
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Uncorrelated random variables

Linearly perfectly correlated random variables, p = 1

Linearly correlated random variables, p<0

— X,

Linearly correlated random variablcs', p=0

'xl

X

Linearly correlated random variables, p = -1

Nonlinearly comrelated random variables

FIGURE 2.36 Examples of correlated and uncorrelated random

variables.
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It is interesting to note what happens when two variables are
uncorrelated (i.e., py x =0).

By Eq. 2.95, this implies that the covariance is equal to zero. By
manipulating Eq. 2.93, you can show that when CoV[X,, X, =0,

E (XX, )= uy sy, (the expected value of the product X, X, is the

product of the expected values.

It is important to emphasize that the terms "statistically
independent™ and "uncorrelated™ are not always synonymous.
Statistically independent is a much stronger statement than
uncorrelated.

If two variables are statistically independent, then they must also be
uncorrelated.

However, the converse is not, in general, true.

If two variables are uncorrelated, they are not necessarily
statistically independent.

J. Gorski, M. Skowronek e Gdansk University of Technology e Reliability of Structures e 08-Statistics 29



The foregoing comments on correlation pertain to two random
variables.

When dealing with a random vector, a covariance matrix is used to
describe the correlation between all possible pairs of the random
variables in the vector.

For a random vector with n random variables, the covariance
matrix, [C], is defined as

[ Cov[X,,X,] Cov[X.,X,] .. Cov[X,X,]
Cov[X,,X,] Cov[X,,X,] .. Cov[X,,X,]

[C]=

| Cov[X,,X,] Cov[X,X,] .. Cov[X,X,]]
In some cases, it is more convenient to work with a matrix of
coefficients of correlation [p] defined as
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Pu P - Pun
[p]= P P -+ P

_pnl pn2 pnn_
Note two things about the matrices [C] and [p].

First, they are symmetric matrices.

Second, the terms on the main diagonal of the [C] matrix can be
simplified using the fact that Cov(X;, X;) = Var(X;)=oy .
The diagonal terms in [p] are equal to 1.

If all n random variables are uncorrelated, then the off-diagonal
terms in EQ. 2.96 are equal to zero and the covariance matrix
becomes a diagonal matrix of the form
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o} O 0 |
0 o} 0
S
0 0 .. 6)2(”

The matrix [p] in Eq. 2.97 becomes a diagonal matrix with 1's on
the diagonal

Statistical Estimate of the Correlation Coefficient

In practice we often do not know the underlying distributions of the
variables we are observing, and thus we have to rely on test data and
observations to estimate parameters.

When we have observed data for two random variables X and Y, we
can estimate the correlation coefficient as follows.

Assume that there are n observations {x1 Xy yeen s xn} of variable X and

n observations {y,,Y,,...,y,} of variable Y.
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The sample mean and standard deviation for each variable can be
calculated using Egs. 2.25 and 2.26.

Once the sample means X and y and sample standard deviations s,

and s, are determined, the sample estimate of the correlation
coefficient can be calculated using

n

1 Z(Xi_x)(Yi_V) 1 inyi_n77
N — i=1 — i=1
P n-1 Sy Sy n-1 Sy Sy
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