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Imperfections of axes and middle planes of elements 
Antoni Biegus Probabilistyczna analiza konstrukcji 
(Probabilisticanalysis of structures) PWN 1999 

The following geometric imperfections of steel bar structures 
occur: 
• initial cross-sectional distortions– w0 
• initial deflections of axes of bar elements– y0,  
• deflected principal axes of a load-carrying system– 0∆ .  
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Two-dimensional structures exhibit geometric imperfections of 
middle surfaces of shell elements and deflections of axes of  
structural systems. 
 
Random imperfections of a cross-sectional shape w0 act on the 
random parameters of a cross section: A, Jx, Jy, Jw.  
 
Imperfections of axes of bar elements and middle surfaces of shell 
structures decrease their limit load-carrying capacity. 
 
The random geometric imperfections lead to the variation  
of nodal coordinates: xi, yi, zi and to the rotation iϕ  of structural 
nodes.  
 
The consequence of imperfections is a cross-sectional force 
variation with respect to the assumed perfect model. 
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Statistically analysed geometric imperfections make up a basis for  
a standard calibration of a group of factors, e.g. of global  
and local instability, lateral torsional buckling. 
 
Geometric imperfections, related to ideal geometry, may come 
from different sources: 
– random cross-sectional geometry of a bar element – effect of 
hot-rolling or cold-forming of thin-walled members, 
– thermal processes imposed on members (while welding in order 
to form a substructure) and mechanical processes at a production 
plant, 
– transport and assembly actions at a building site. 
 
Fig. 4.12a-g shows examples of initial deflection of axes of 
structural bar elements. 
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The solid line in Figs. 4.12 a-g refer to bending related either to 
strong or to weak axis of inertia of the cross-section. 
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Local geometric imperfection may also occur – e.g. bulging or 
distortion of plate components of a section (web, flange). 
 
Fig. 4.13 shows both global imperfection (deflection of the element 
axis) and local imperfections (initial distortion of flanges and initial 
bulging of web). 
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Steel two-dimensional structures are subjected to local geometric 
imperfections, usually in the form of initial deflections (convexities 
and concavities) of a theoretical middle surface. 

 
 
Random imperfections are crucial for the limit load assessment 
of compressed structural members – bar elements or their parts 
– webs and flanges, also plates and shells, prone to buckling.  
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The impact of axis or middle plane imperfections may be negligible 
only for elements at tension or at flexure with a sufficient bracing 
against local or lateral torsional buckling. 
 
In each case of compression of imperfect structures (both at element 
and structure level) the following imperfections: 0x , 0y , 0ϕ  and 0w
produce both bending and compression. 
 
The limit load-carrying capacities of initially imperfect 
structures are less than their estimations for perfect structures. 
 
The decisive imperfections for the limit load converge with the 
buckling modes (modes of stability loss) of elements or entire 
structures. 
 
The acceptance standards of civil engineering structures employ the 
initial structural imperfections by means of their limitation. 
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Fig. 4.15 shows the histogram of random deflections of elements, 
according to 
Sertler H., Vican J., Slavik J., Compression Resistance oj Steel 
Structure Members, International Colloquium European Session 
"Stability of Steel Structures", Preliminary Report, vol. 1, s. 71-78, 
Budapest 1995. 
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The abscissas in Fig. 4.15 show the measured values of 0e , scaled 
by the allowable standard value 0.dope . 
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The majority of random realizations of initial deflections was less 
than the allowable value, but the histogram shows that  excessive 
values exist in engineering structures. 
 
The histogram of initial geometric imperfections of element axes 
may be considered a nonsymmetric distribution estimation. 
 
Fig. 4.16 shows a histogram of initial random bulges (defects of the 
ideal middle plane) of 270 I-beam webs (plate elements) 
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All the investigated population exhibits initial imperfections of a 
middle plane not exceeding allowable values. 



J. Górski, M. Skowronek   •  Gdansk University of Technology  •  Reliability of Structures  •  10-Imperfections-elements 12 

Allowable geometric imperfections in standards 
 
Probabilistic analysis of limit loads of structural elements does not 
employ geometric imperfections of axes of bars, assuming 
stochastic homogeneity (full autocorrelation of cross-sectional 
geometry) along the length of elements. 
The initial deflections of axes of bars or concavities of plate and 
shell elements are significantly higher.  
Transport of elements, their assembly into substructures are their 
possible causes.  
The fabrication and acceptance standards of steel structures limit the 
initial imperfections related to the axis or a middle plane of an 
element, stating an upper boundary value or the distinct procedure 
in the case of exceedance. 
 
The chosen geometric imperfections of tanks, according to a 
structural acceptance standard, are shown in Table 4.9 
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The inspection procedure(check) of geometric imperfections of shell 
steel structures (tanks, chimneys, pipelines) is shown in Fig. 4.21 
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The standard allows for a number of vertical local distortions much 
less than a number of horizontal ones. 
The standard rule presented above is easy to explain by means of 
static and strength criteria – the possibility of stability loss of a 
cylindrical shell. 
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Impact of geometric imperfections on structural strength 
 
The theoretical static equilibrium paths (load-contraction 
relations) of perfect, ideally compressed bars, plates and shells are 
shown in Fig. 4.22 by thin lines. Solid lines in the same figures 
depict the real, geometrically imperfect structures. 
 
The static equilibrium paths (in Polish  – ŚRS) of both perfect and 
real structures, shown in Fig. 4.22 diverge significantly, especially 
in the post-critical region (after the stability loss). 
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The Euler’s model of a bar at compression is not fully applicable. 
The load-carrying capacity of a real element, Nlim is less than 
itstheoretical critical force, Ncr. 
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The main reason is the non-straight initial form ofreal compressive 
members (the so-called flexural factor). 
 
The axes of real elements at compression may be imperfect, 
additionally, the load may be randomly eccentric. 
The impact of deflected element axis and eccentric load on the load-
carrying capacity is shown in Fig. 4.23. 
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The static equilibrium paths in Fig. 4.23 are all curvilinear, similarly 
shaped. 
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The differences between Ncr and Nlim for compressive members 
increase nonlinearly with the element axis imperfections and 
eccentricity of the axial load.  
 
Fig. 4.24 presents the decrement of limit load-carrying capacity of 
elements at compression.  
 
Slender elements are more sensitive to the impact of initial 
imperfections than the thick ones. The limit load decrement (from 
Ncr to Nlim) for slender elements is shown in Fig. 4.24b. 
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Analysis of static equilibrium path of a compressed bar makes us 
conclude that achieving the limit load Nlim means that the member is 
no longer load-resistant.  
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The equilibrium paths of plates at compression with initial 
geometric imperfections w0 are shown in Fig. 4.25 
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The diagrams in Fig. 4.25 show that the plate imperfection value   
w0 does not affect its limit load Nlim, which may be several times 
higher than the critical load Ncr.  
 
The Euler model of a perfect plate loaded in its middle plane allows 
to determine its compressive (shear) critical load Ncr, similarly to 
the one-dimensional cases. 
 
Contrary to bar analysis, supercritical load (often called post-
critical) of a plate is higher than its critical load. 
Limit load in the subcritical (pre-critical) loading phase – equivalent 
to elastic allowable load – is a partial application only of a full limit 
load-carrying capacity of the element, the local stability loss (bulge 
of a plate at compression or shear) is not a structural failure mode. 
 
Thus application is done of the fact that plates may carry 
significant loads in the supercritical region.  
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The supercritical state is marked by a nonlinear stress distribution 
along the plate width. Limit state is reached by means of yielding of 
the supporting edges, parallel to load. 
 
Such strength model of a plate incorporates the so-called effective 
width of compressive flanges, employed in the supercritical limit 
load theory.  
 
It assumes that a quantitatively distinct supercritical equilibrium  
of a plate is possible, in the range of finite deflections. 
 
The static equilibrium path of a real both-side supported plate at 
compression is shown in Fig. 4.26  
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The unavoided geometric imperfections w0 make both equilibrium 
paths diverge: the first related to the real steel member (web, 
flange), the second – theoretical Euler’s solution. 
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The critical load of a plate is not identical to its maximum load 
carrying capacity. The plate transfers to its supercritical phase,  
accompanying deflection increment is easily observed, stress re-
distribution in the cross-section occurs. 
 
Load-carrying capacity loss at the limit state produces negative 
increment – resistance reduction at w>wlim. It is the result of a 
nonlinear, flexural failure mode, corresponding to the altered 
equilibrium pattern. 
 
A failure mode of a thin-walled element may be plastic buckling  
of a boundary supporting the compressive plate. 
 
The conclusion of limit state analysis of plate strips at compression 
(thin-walled section elements), both sides supported (webs of I-
sections, flanges and webs of box girders) is a significant safety 
reserve after the onset of local buckling.  
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Their limit load-carrying capacity is much higher than the critical 
load, Nlim>Ncr.  
 
The initial geometric imperfections do not affect the limit load of 
plates,Nlim, as strongly as in the case of bars at compression. 
 
The supercritical limit load of plates supported along the load 
direction (compressed plate elements of steel structures) is valid for 
the assessment of a limit load of thin-walled bar elements. 
 
The static equilibrium path of an ideal compressed shell (thin 
line) and a real shell (solid lines) are shown in Fig. 4.27 
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Analytical assessment of critical limit load-carrying capacity due to 
linear theory is very erroneous (up to several times). Thus in 
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practice experimental results may be applied or the limit loads for 
imperfect shells may be investigated. 
Imperfections amplify structural deflections and reduce the limit 
load to the so-called lower critical value d

crN .  
 
Static equilibrium paths of real shells exhibiting random initial 
geometric imperfections (concavities) are shown in Fig. 4.27 
 
The results show reduction of limit load of a shell with the 
geometric imperfection and deflection increment. 
After reaching the limit load-carrying capacity of a shell  
its resistance is reduced.  
 
The real limit load of a shell, Nlim, is much smaller than the 
theoretical estimation of its critical load, g

crN >Nlim 
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The static equilibrium paths of real, imperfect compressed shells 
and bars are qualitatively similar, but the impact of imperfections on 
the limit load is much greater for shells. This comes from different 
sources of physical and geometric nonlinearities and the initial 
imperfections of the theoretical shape of a shell (geometric 
imperfections of shells). 
 
This computational model is valid for cylindrical and spherical 
tanks, chimneys, pipelines, cylindrical framed shells and framed 
domes. 
Fig. 4.28 shows numerical differences between theoretical limit load 
of a perfect shell, ,t g

crσ (upper estimation of theoretical value), ,t d
crσ

(lower estimation of theoretical value)and a real imperfect shell, 
real
crσ . 

The analysis of limit loads of shells makes us predict that the 
resistances of real structures may be much smaller than their upper 
theoretical estimations. 
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Limit load estimation considering geometric 
imperfections 
 
Theoretical and experimental research on metal civil engineering 
structures brought about the impact of structural, technological and 
geometric imperfections to the standards of design of bars, plates 
and shells, thus considering their real limit loads. 
 
Calibrating the instability coefficients for steel compression 
members used in the standards incorporates technological and 
geometric imperfections in real structures (e.g. in the form of initial 
axial load eccentricities). 
 
Limit loads estimation of an axially compressed bar element 
assumes sinusoidal shape of initial imperfection of its axis, 
the maximum deflection equal to 

02 0,002y l=  (1) 
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or 02 min0,05 0,002y i l= +  (2) 
where 
l – length of a bar, 
imin –minimum radius of inertia of its cross-section 
 
A database of identified random imperfections of the element axis 
or the plate middle plane allows for the probabilistic analysis of the 
limit state in the case of compression and bending interaction 
(second order theory due to bars, plates, shells), assuming the value 
of geometric defect of an axis or a middle plane. 
 
This sort of analysis of compressed bars is illustrated in Fig. 4.29. 
The initial sinusoidal curvatures are determined by a maximum 
deflection y0at the midspan, of the following values: l/500, l/1000 
andl/2000(l – length of a compression member). 
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This figure shows upper and lower limit load curves for imperfect 
bar elements.  
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The increment of initial deflectiony0of a compression element axis 
reduces the mean limit load of considered elements and the lower 
limit load curve, reducing the confidence interval for a prescribed 
failure probability f. 
Geometric imperfections of bar element axes may be described by 
nonsymmetric probability distributions. Geometry of axis – its 
random maximum deflection may be linked with the Gumbel 
(Extreme type I) distribution of a given probability density function 

( )0
0( )

0( )
y qy q ef y e

ννν
−− − −=  (3) 

The central value 0y and characteristic deviationsy0of the random 
deflection are estimated as follows 

0
0,577y g
ν

≈ −  (4) 

0
1,282

ys
ν

≈  (5) 
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where 
q – the modal value (mode) of initial deflection, 
v –scatter measure of the initial deflection. 
 
Fig. 4.30 shows the limit load estimation due to the global 
instability check of members at compression and bending (no lateral 
torsional bracing) of imperfect elements, by means of probabilistic 
methods. 
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Buckling curves in Fig. 4.30 define the limit load: axial N or 
flexural M on ordinates, slendernessλ on abscissas. 
 
The solid line in Fig. 4.30 indicates a mean limit load curve, 
experimentally or theoretically derived for an assumed initial 
curvature of an axis given a deflection y0. 
The dashed line shows the design limit load elements at 
compression or bending of an assumed safety level. 
 
The impact of geometric imperfection on a load-carrying capacity is 
crucial for compressed cylindrical shells (e.g. tanks, silos, 
chimneys) and spherical shells (e,.g. tanks, domes). In these cases 
theoretical limit loads are several times greater than the limit loads 
of geometrically imperfect real structures. 
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