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1.1 STRUCTURAL RELIABILITY ANALYSIS AND 
SAFETY CHECKING 

Nowak, A.S., Collins K.R. Reliability of structures. 
McGraw-Hill Higher Education 2000 
P. Thoft-Christensen, M. J. Baker  
Structural reliability theory and its applications, 1982 
 
The term structural reliability should be considered as having two 
meanings - a general one and a mathematical one. 
 

• In the most general sense, the reliability of a structure is its 
ability to fulfill its design purpose for some specified time. 

• In a narrow sense it is the probability that a structure will 
not attain each specified limit state (ultimate or 
serviceability) during a specified reference period. 
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Here we shall be concerned with structural reliability in the narrow 
sense and shall generally be treating each limit state or failure mode 
separately and explicitly.  
 
Most structures and structural elements have a number of possible 
failure modes, and in determining the overall reliability of a 
structural system this must be taken into account making due 
allowance for the correlations arising from common sources of 
loading and common material properties. 
 
Reference period – in general, structural reliability is dependent on 
time of exposure to the loading environment.  
It is also affected if material properties change with time. 
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Example 1.2. Assume that an offshore structure is idealised as a 
uniform vertical cantilever rigidly connected to the sea bed.  
The structure will fail when the moment S induced at the root of the 
cantilever exceeds the flexural strength R.  
Assume further that R and S are random variables whose statistical 
distributions are known very precisely as a result of a very long 
series of measurements.  
R is a variable representing the variations in strength between 
nominally identical structures, whereas S represents the maximum 
load effects in successive T year periods.  
The distributions of R and S are both assumed to be stationary with 
time.  
Under these assumptions, the probability that the structure  will 
collapse during any reference period of duration T years is given by 

( ) ( ) ( )0f R SP P M F x f x dx+∞
−∞= ≤ = ∫  
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where 
M R S= −  

and RF  is the probability distribution function of R and SF  the 
probability density function of S.  
 
The reliability R is defined as 

R = 1 − Pf 
may be interpreted as a long-run survival frequency or long-run 
reliability and is the percentage of a notionally infinite set of 
nominally identical structures which survive for the duration of the 
reference period T. 
R may therefore be called a frequencies reliability.  
 
If, however, we are forced to focus our attention on one particular 
structure (and this is generally the case for civil engineering 
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structures), R may also be interpreted as a measure of the reliability 
of that particular structure. 
 
The associated reliability can be called a subjective or Bayesian 
reliability.  
 
For a particular structure, the numerical value of this reliability 
changes as the state of knowledge about the structure changes, for 
example, if non-destructive tests were to be carried out on the 
structure to estimate the magnitude of r.  
 
In the limit when r becomes known exactly, the probability of 
failure given changes 

 
( ) ( )0 1f SP P r S F r= − ≤ = −  
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This special case may also be interpreted as a conditional failure 
probability with a relative frequency interpretation, i.e. 
 

( )0fP P R S R r= − ≤ =  
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Methods of Safety Checking 
 
Methods of structural reliability analysis can be divided into two 
broad classes. These are: 
 
Level 3: Methods in which calculations are made to determine the 
“exact” probability of failure for a structure or structural 
component, making use of a full probabilistic description of the 
joint occurrence of the various quantities which affect the response 
of the structure and taking into account the true nature of the failure 
domain. 
 
Level 2: Methods involving certain approximate iterative calculation 
procedures to obtain an approximation to the failure probability of a 
structure or structural system, generally requiring an idealisation of 
failure domain and often associated with a simplified representation 
of the joint probability distribution of the variables. 
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For the sake of completeness, some mention should also be made of 
level 1 methods at this stage.  
These are not methods of reliability analysis, but are methods of 
design or safety checking. 
 
Level 1: Design methods in which appropriate degrees of structural 
reliability are provided on a structural element basis (occasionally 
on a structural basis) by the use of a number of partial safety factors, 
or partial coefficients, related to pre-defined characteristic or 
nominal values of the major structural and loading variables. 
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1.2 STRUCTURAL SAFETY ANALYSIS) 
 
Limit states - Definition of Failure 
Although it may seem obvious, the term "failure" means different 
things to different people. We could say that a structure fails if it 
cannot perform its intended function. However, this is a vague 
definition because we haven't specified the function of the structure. 
To illustrate this point, consider a simply supported steel hot-rolled 
beam such as the one shown in the Figure.  
 

 
Figure. A simple supported beam. 

 
We could state that the beam fails when the maximum deflection 
exceeds criticalδ .  
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However, a steel beam may "fail" by developing a plastic hinge, 
losing overall stability, or by local buckling of the compression 
flange or web.  

   
Development of a plastic hinge in a beam 

 

 
Local buckling in a steel beam. 
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It is obvious that the term ''failure'' can have different - meanings. 
Before attempting a structural reliability analysis, failure must be 
clearly defined. 
 
The concept of a limit state is used to help define failure in the 
context of structural reliability analyses.  
A limit state is a boundary between desired and undesired 
performance of a structure.  
This boundary is often represented mathematically by a limit state 
function or performance function.  
 
For example, in bridge structures, failure could be defined as the 
inability to carry traffic.  
This undesired performance can occur by many modes of failure: 
cracking, corrosion, excessive deformations, exceeding load-
carrying capacity for shear or bending moment, or local or overall 
buckling.  
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Some members may fail in a brittle manner, whereas others may fail 
in a ductile fashion.  
In the traditional approach, each mode of failure is considered 
separately, and each mode can be defined using the concept of a 
limit state. 
 
In structural reliability analyses three types of limit states are 
considered: 
 
1. Ultimate limit states (ULSs) are mostly related to the loss of 
load-carrying capacity.  
Examples of modes of failure in this category include: 
Exceeding the moment carrying capacity 
Formation of a plastic hinge. 
Crushing of concrete in compression 
Shear failure of the web in a steel beam 
Loss of the overall stability 
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Buckling of Lange 
Buckling of web 
Weld rupture. 
 
2. Serviceability limit states (SLSs) are related to gradual 
deterioration, user's comfort, or maintenance costs.  
They may or may not be directly related to structural integrity. 
Examples of modes of failure include: 
 
Excess deflection.  
Deflection is a rather controversial limit state.  
The acceptable limits are subjective, and they may depend on 
human perception.  
A building with visible deflections (horizontal or vertical) is not 
acceptable by the public, even though it may be structurally safe.  
Excessive deflections may interfere with the operation of precise 
instruments sensitive to movement.  
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For example, for bridge girders, the current practice is to limit 
deflections to a fraction of the span length; for example, L/800, 
where L = span length.  
The deflection limit often governs the design. 
 
Excess vibration.  
Vibration is another serviceability limit state that is difficult to 
quantify.  
The acceptability criteria are also highly subjective and often 
depend on human perception.  
In a building, the occupants may not tolerate excessive vibration; a 
vibrating bridge, however, may be acceptable if pedestrians are not 
involved.  
The design for vibration may require a complicated dynamic 
analysis. In many current design codes, vibration is not considered 
in a direct form. Indirectly, the codes impose a limit on static 
deflection, and this is also intended to serve as a limit for vibration. 
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Permanent deformations.  
Each time the load exceeds the elastic limit, a permanent 
deformation may result.  
Accumulation of these permanent deformations can lead to 
serviceability problems.  
Therefore, in some design codes, a limit is imposed on permanent 
deformations.  
For example, consider a multispan bridge with continuous girders as 
shown in Figure.  
Each time the strain exceeds the yield strain, there is some 
permanent strain left in the section.  
This strain accumulates and eventually causes the formation of a 
"kink," as shown in the next Figure. 
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Cracking.  
Cracks, such as those shown in Figure, by themselves do not 
necessarily affect the structural performance of concrete structures.  
 

 
 
However, they lead to steel corrosion, spalled concrete, salt (deicing 
agent) penetration, and irreversible loss of concrete tensile strength. 



J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •  11-Strucural_safety 17 

To define acceptable cracking standards, many questions must be 
answered.  
What is acceptable with regard to cracking?  
Are acceptable cracks limited by size?  
Width?  
Length?  
How frequently can the cracks open? 
 
 
3. Fatigue limit states (FLSs) are related to loss of strength under 
repeated loads.  
Fatigue limit states are related to the accumulation of damage and 
eventual failure under repeated loads.  
It has been observed that a structural component can fail under 
repeated loads at a level lower than the ultimate load.  
The failure mechanism involves the formation and propagation of 
cracks until their rupture.  
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This may result in structural collapse.  
Fatigue limit states occur in steel components and reinforcement 
bars in concrete, particularly those in tension.  
 
Welding affects the fatigue resistance of components and 
connections.  
 
Fatigue failures have also been reported in the prestressing strands 
of posttensioned concrete bridges.  
 
In any fatigue analysis, the critical factors are both the magnitude 
and frequency of load. 
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Limit State Functions (performance functions) 
A traditional notion of the "safety margin" or "margin of safety" is 
associated with the ultimate limit states.  
For example, a mode of beam failure could be when the moment 
due to loads exceeds the moment-carrying capacity.  
Let R represent the resistance (moment-carrying capacity) and Q 
represent the load effect (total moment applied to the considered 
beam).  
It is sometimes helpful to think of R as the "capacity" and Q as the 
"demand."  
A performance function, or limit state function, can be defined for 
this mode of failure as 

( ),g R Q R Q= −  (0.1) 

The limit state, corresponding to the boundary between desired and 
undesired performance, would be when 0g = .  
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If 0g ≥ , the structure is safe (desired performance); if g < 0, the 
structure is not safe (undesired performance).  
The probability of failure, fP , is equal to the probability that the 
undesired performance will occur.  
Mathematically, this can be expressed in terms of the performance 
function as 

( ) ( )0 0fP P R Q P g= − < = <  (0.2) 

If both R and Q are continuous random variables, then each has a 
probability density function (pDF) such as shown in Figure. 
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Furthermore, the quantity R Q−  is also a random variable with its 
own PDF.  
 
This is also shown in Figure. The probability of failure corresponds 
to the shaded area in Figure. 
 
Now let's generalize the concepts just introduced.  
All realizations of a structure can be put into one of two categories: 
Safe (load effect ≤  resistance) 
Failure (load effect > resistance) 
 
The state of the structure can be described using various parameters 
Xl, X2, ... ,Xn, which are load and resistance parameters such as dead 
load, live load, length, depth, compressive strength, yield strength, 
and moment or inertia.  
 



J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •  11-Strucural_safety 22 

A limit state function, or performance function, is a function  
g(Xl, X2, ... , Xn) of these parameters such that 
 
g(Xl, X2, ... , Xn) > for a safe structure 
g(Xl, X2, ... ,Xn) = border or boundary between safe and unsafe 
g(Xl, X2, ... ,Xn) < for failure 
 
Each limit state function is associated with a particular limit state. 
Different limit states may have different limit state functions.  
Here are some examples of limit state functions: 
 
l. Let Q = total load effect (total demand) and R = resistance (or 
capacity). Then the limit state function can be defined as 

( , )g R Q R Q= −  (0.3) 

or 
( , ) / 1g R Q R Q= −  (0.4) 
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2. Consider case 1 above for the moment capacity of a compact steel 
beam.  
The moment capacity is yR F Z=  where yF  is the yield stress and  
Z is the plastic section modulus.  
Substituting into Eq. (0.3), we get 

( , , )y yg F Z Q F Z Q= −  (0.5) 

3. Consider case 2 with a more definitive description of the demand. 
Assume that the total demand or load effect on the beam is made up 
of contributions from dead load (D), live load (L), wind load (W), 
and earthquake load (E).  
If Q = D + L + W + E, 
then Eq. (0.5) is 

( , , , , , )y yg F Z D L W E F Z D L W E= − − − −  (0.6) 
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In general, the performance function (limit state function) can be a 
function of many variables: load components, influence factors, 
resistance parameters, material properties, dimensions, analysis 
factors, and so on.  
A direct calculation of Pf using Eq. (0.2) is often very difficult, if 
not impossible.  
Therefore, it is convenient to measure structural safety in terms of a 
reliability index.  
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FUNDAMENTAL CASE 
Probability or Failure 
We now examine how to determine the probability of failure for the 
relatively simple performance function given earlier by 

( , )g R Q R Q= −  (0.7) 

The probability of failure, fP , can be derived by considering the 
PDFs of the random variables R and Q as shown in Figure. 

 
PDFs of load (Q) and resistance (R). 

 
The structure "fails" when the load exceeds the resistance.  
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If R is equal to a specific value ir , then the probability of failure is 
equal to the probability that the load is greater than the resistance, or 

( )iP Q r> .  
However, since R is a random variable, there is a probability 
associated with each ir  value.  
Therefore, the probability of failure is composed of all possible 
combinations of iR r=  and iQ r> , which can be written as 

( ) ( ) ( )f i i i i iP P R r Q r P Q r R r P R r= = ∩ > = > = =∑ ∑  (0.8) 

where the properties of conditional probability have been used in.  
For the continuous case, the summation becomes an integral.  
The probability ( )iP Q R R r> =  is simply 
1 ( ) 1 ( )i Q iP Q R R r F r− ≤ = = −   
In the limit, the probability ( ) ( )i R i iP R r f r dr= ≈ .  
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Combining all these modifications into Eq. (0.8) leads to 

[1 ( )] ( ) 1 ( )] ( )f Q i R i i Q i R iP F r f r dr F r f r dr
∞ ∞

−∞ −∞

= − = −∫ ∫  (0.9) 

There is an alternative formulation that we can use.  
If the load Q is equal to a specific value qi, then the probability of 
failure is equal to the probability that the resistance is less than the 
load, or P(R < qi).  
However, since Q is a random variable, there is a probability 
associated with each qi value.  
Therefore, the probability of failure is composed of all possible 
combinations of Q = qi and R < qi, which can be written as 

( ) ( ) ( )f i i i iP P Q q R q P R Q Q q P Q q= = ∩ < = < = =∑ ∑  (0.10) 
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Following the same logic as earlier, this can be written in integral 
form as 

( ) ( )f R i Q i iP F q f q dq
∞

−∞

= ∫  (0.11) 

Although Eqs. (0.9) and (0.11) appear rather straightforward, it is 
difficult to evaluate these integrals in general.  
The integration requires special numerical techniques, and the 
accuracy of these techniques may not be adequate.  
Therefore, in practice, the probability of failure is calculated 
indirectly using other procedures. 
 
Space of State Variables 
To begin our analysis, we need to define the state variables of the 
problem.  
The state variables are the basic load and resistance parameters 
used to formulate the performance function.  
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For n state variables, the limit stale function is a function of n 
parameters. 
If all loads (or load effects) are represented by the variable Q and 
total resistance (or capacity) by R then the space of stale variables is 
a two-dimensional space as shown in Figure.  

 
Safe domain and failure domain in a two-dimensional state space. 
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Within this space, we can separate the "safe domain" from the 
"failure domain"; the boundary between the two domains is 
described by the limit state function g(R, Q) =0. 
Since both R and Q are random variables, we can define a joint 
density function fRQ(r, q). A general joint density function is plotted 
in Figure.  

 
Three-dimensiona1 representation of a possible joint density 
function fRQ. 
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The limit state function separates the safe and failure domains.  
The probability of failure is calculated by integration of the joint 
density function over the failure domain i.e., the region in which 
g(R, Q) < O.  
As noted earlier, this probability is often very difficult to evaluate, 
so the concept of a reliability index is used to quantify structural 
reliability. 
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RELIABILITY INDEX 
Reduced Variabies 
It will prove convenient in our analysis to convert all random 
variables to their "standard form," which is a nondimensional form 
of the variables.  
For the basic variables R and Q, the standard forms can be 
expressed as 

R
R

R

Q
Q

Q

RZ

Q
Z

µ
σ
µ

σ

−
=

−
=

 (0.12) 

The variables ZR

R R R

Q Q Q

R Z
Q Z

µ σ
µ σ

= +
= +

 and ZQ are sometimes called reduced variables. By 
rearranging Eqs. (0.12), the resistance R and the load Q can be 
expressed in terms of the reduced variables as follows: 

 (0.13) 
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The limit state function g(R, Q) = R − Q can be expressed in terms 
of the reduced variables by using Eqs. 5.12.  
The result is 

( , ) ( )R Q R R R Q Q Q R Q R R Q Qg Z Z Z Z Z Zµ σ µ σ µ µ σ σ= + − − = − + −
 (0.14) 

For any specific value of g(ZR, ZQ), Eq. (0.14) represents a straight 
line in the space of reduced variables ZR and ZQ.  
The line of interest to us in reliability analysis is the line 
corresponding to g(ZR, ZQ) = 0 because this line separates the safe 
and failure domains in the space of reduced variables. 
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General Definition of the Reliability Index 
The reliability index is defined as the shortest distance from the 
origin of reduced variables to the line g(ZR, ZQ) = 0.  
This definition, which was introduced by Hasofer and Lind (1974), 
is illustrated in Figure. 

 
 

Reliability index defined as the shortest distance in the space of 
reduced variables. 
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Using geometry, we can calculate the reliability index (shortest 
distance) from the following formula: 

2 2

R Q

R Q

µ µ
β

σ σ

−
=

−
 (0.15) 

where β  is the inverse of the coefficient of variation of the 
function g(R, Q) = R – Q when R and Q are uncorrelated.  
For normally distributed random variables R and Q, it can be shown 
that the reliability index is related to the probability of failure by 

1( ) ( )f fP or Pβ β−= −Φ = Φ −  (0.16) 

Table 5.1 provides an indication of how β  varies with Pf and vice 
versa based on Eq. 5.15. 
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The definition for a two-variable case can be generalized for n 
variables as follows.  
 
 
Consider a limit state function g(Xl, X2 ... Xn) where the Xi variables 
are all uncorrelated. The Hasofer-Lind reliability index is defined as 
follows: 
1. Define the set of reduced variables {Zl, Z2 ... Zn} using 

i

i

i X
i

X

X
Z

µ
σ
−

=  (0.17) 

2. Redefine the limit state function by expressing it in terms of the 
reduced variables {Zl, Z2 ... Zn} 
3. The reliability index is the shortest distance from the origin in the 
n-dimensional space of reduced variables to the curve described by  
g(Zl, Z2 ... Zn) = 0. 
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First-Order Second-Moment Reliability Index 
Linear limit state functions 
Consider a linear limit state function of the form 

1 2 0 1 1 2 2 0
1

( , , ... , ) ...
n

n n n i i
i

g X X X a a X a X a X a a X
=

= + + + + = +∑
 (0.18) 

where the ai terms (i = 0, 1, 2 ... n) are constants and the Xi terms are 
uncorrelated random variables.  
If we apply the three-step procedure outlined above for determining 
the Hasofer-Lind reliability index. we would obtain the following 
expression for β : 

0
1

2

1

( )

i

i

n

i X
i

n

i X
i

a a

a

µ
β

σ

=

=

+
=

∑

∑
 (0.19) 
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Observe that the reliability index, β , in Eq. (0.19) depends only on 
the means and standard deviations of the random variables.  
Therefore, this p is called a second-moment measure of structural 
safety because only the first two moments (mean and variance) are 
required to calculate β .  
There is no explicit relationship between β  and the type of 
probability distributions of the random variables.  
If the random variables are all normally distributed and 
uncorrelated, then this formula is exact in the sense that p and Pf are 
related by Eq. (0.16).  
Otherwise, Eq. (0.16) provides only an approximate means of 
relating β  to a probability of failure. 
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EXAMPLE  
Consider the simply supported beam shown in Figure.  
 

 
 
The beam is subjected to a concentrated live load P and a uniformly 
distributed dead load w.  
The loads are random variables.  
Assume that P, w, and the yield stress, Fy, are random quantities; the 
length L and the plastic section modulus Z are assumed to be 
precisely known (deterministic). 
 
The distribution parameters for P, w, and Fy are given below.  
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A quantity known as the "bias factor" (denoted by λ ) is specified 
for each of the random variables.  
It is defined as the ratio of the mean value of a variable to its 
nominal value (i.e., the value specified in a standard or code).  
The length L is 18 ft, and the plastic section modulus is 80 in3. 
 
Nominal (design) value of w = wn = 3.0 k/ft = 0.25 k/in 
Bias factor for w = Wλ  = 1.0 

Wµ  = W nwλ  = 3.0 k/ft = 0.25 k/in 
Vw = 10%     =>     Wσ  = Vw Wµ  = 0.3 k/ft = 0.025 k/in 
 
Nominal (design) value of P = pn = 12.0 k 
Bias factor for P = Pλ  = 0.85 

Pµ  = Pλ Pn = 10.2 k 
VP = 11%    =>    Pσ  = VP Pµ  = 1.12k 
 



J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •  11-Strucural_safety 42 

Nominal (design) value of Fy = fy = 36 ksi 
Bias factor for Fy = Fλ  = 1.12 

Fµ  = Fλ fy = 40.3 ksi 
VF = 11.5%       =>      Fσ  = VF Fµ  = 4.64 ksi 
Calculate the reliability index. 
 
Solution. The limit state function for beam bending can be 
expressed as 

2

( , , )
4 8y y

PL wLg P w F F Z= − −  

Substituting for L and Z (and converting all units to inches), the 
limit state function can be rewritten as 

( , , ) 80 54 5832 [ , ]y yg P w F F P w k in= − −  

Since the limit state function is linear, Eq. (0.19) can be used to 
determine the reliability index β : 
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0
1

2

1

2 2 2

( )

80(40.3) 54(10.2) 5832(0.25)
[(80)(4.640] [( 54)(1.12))] [( 5832)(0.025)]

1215.2 3.01
403.37

i

i

n

i X
i

n

i X
i

a a

a

µ
β

σ

=

=

+
= =

− −
= =

+ − + −

= =

∑

∑

 

 
 
 
Nonlinear limit state functions 
Now consider the case of a nonlinear limit state function.  
When the function is nonlinear, we can obtain an approximate 
answer by linearizing the nonlinear function using a Taylor series 
expansion.  
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The result is 

* * *
1 2

1 2

* * * *
1 2 ( , , ... , )

1

( , , ... , )

( , , ... , ) ( )
n

n
n

n i i evaluated at x x x
i i

g X X X
gg x x x X x
X=

=

∂
≈ + −

∂∑
 (0.20) 

where * * *
1 2( , , ... , )nx x x  is the point about which the expansion is 

performed.  
One choice for this linearization point is the point corresponding to 
the mean values of the random variables. Thus Eq. (0.20) becomes 

1 2

1 2

1

( , , ... , )

( , , ... , ) ( )
n i

n
n

i evaluated at mean valuesX X X X
i i

g X X X
gg X
X

µ µ µ µ
=

=

∂
≈ + −

∂∑
 (0.21) 

Since Eq. (0.21) is a linear function of the Xi variables, it can be 
rewritten to look exactly like Eq. (0.18).  
Thus Eq. (0.19) can be used as an approximate solution for the 
reliability index β .  
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After some algebraic manipulations, the following expression for β  
results: 

1 2

2

1

( , , ... , )
where

( )

n

i

X X X
i evaluated at mean valuesn

i
i X

i

g ga
X

a

µ µ µ
β

σ
=

∂
= =

∂
∑

 (0.22) 

The reliability index defined in Eq. (0.22) is called a first-order 
second-moment mean value reliability index.  
It is a long name, but the underlying meaning of each part of the 
name is very important:  
First order because we use first-order terms in the Taylor series 
expansion.  
Second moment because only means and variances are needed. 
Mean value because the Taylor series expansion is about the mean 
values. 
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EXAMPLE  
Consider the reinforced concrete beam shown in Figure.  
 

 
 
The moment-carrying capacity of the section is calculated using 

2( )
0.59 0.59s y s y

s y s y
c c

A f A f
M A f d A f d

f b f b
 

= − = − ′ ′ 
 

where sA  is the area of steel, yf  is the yield strength of the steel, cf ′  
is the compressive strength of the concrete, b is the width of the 
section, and d is the depth of the section. 
We want to examine the limit state of exceeding the beam capacity 
in bending.  
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The limit state function would be 

( ), , , 0.59 s y
s y c s y

c

A f
g A f f Q A f d Q

f b
′ = − −

′
 

where Q is the moment (load effect) due to the applied load.  
The random variables in the problem are Q, yf , cf ′ , and sA .  
The distribution parameters and design parameters are given in 
Table 5.2, where λ  is the bias factor (ratio of mean value to 
nominal value).  

 
The values of d and b are assumed to be deterministic constants.  
Calculate the reliability index, β . 
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Solution. For this problem, the limit state function is nonlinear, so 
we need to apply Eq.(0.20) or (0.21). The Taylor expansion about 
the mean values yields the following linear function: 

2( )
( , , , ) 0.59

( )

( ) ( )

( )

s y

s y

c

s

y c

A f
s y c A f Q

f

s A evaluated at mean values
s

y f evaluated at mean values c f evaluated at mean values
y c

Q evaluated at mean values

g A f f Q d
b

gA
A
g gf f
f f

gQ
Q

µ µ
µ µ µ

µ

µ

µ µ

µ

′

′

 
′ ≈ − − + 

  
∂

+ − +
∂
∂ ∂′+ − + − +

′∂ ∂

∂
−

∂

 

To calculate β , the partial derivatives must be determined and the 
limit state function must be evaluated at the mean values of the 
random variables: 
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( )
2( )

, , , 0.59 851.0s y

s y c s y

c

A f
A f f Q A f d Q

f

g kin
b

µ µ
µ µ µ µ µ µ µ µ

µ′
′

= − − =  

( )2

1

2
0.59 587.1 /s y

mean values y mean values
s c

A fga f d k in
A f b

 ∂
= = − = 

′∂   
 

( )2
3

2

2
0.59 54.44y s

mean values s mean values
y c

f Aga A d in
f f b

 ∂
= = − = 

′∂   
 

( )2

3
3 20.59 162.8

( )
s y

mean values mean values
c c

A fga in
f f b

 ∂  = = =
′ ′∂   

 

4 1 1mean values mean values
ga
Q
∂

= = − = −
∂
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Substituting these resu1ts into Eq. (0.22), we get 
( )

2 2 2 2

2 2 2 2

, , ,

[(587.1)( )] [(54.44)( )] [(162.8)( )] [( 1)( )]

851.0
[(587.1)(0.08)] [(54.44)(4.62)] [(162.8)(0.44)] [( 1)(246)]

851.0 2.35
362.1

s y c

s y c

A f f Q

A f f Q

g µ µ µ µ
β

σ σ σ σ

′

′

=
+ + + −

=
+ + + −

= =
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Comments on the First-Order Second-Moment Mean Value 
Index 
The first-order second-moment mean value method is based on 
approximating nonnormal CDFs of the state variables by normal 
variables, as shown in Figure for the simple case in which  
g(R, Q) = R – Q. 
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Mean value second-moment formu1ation 

The method has both advantages and disadvantages in structural 
reliability analysis.  
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Among its advantages, 
l. It is easy to use. 
2. It does not require knowledge of the distributions of the random 
variables 
 
Among its disadvantages 
l. Results are inaccurate if the tails of the distribution functions 
cannot be approximated by a normal distribution. 
2. There is an invariance problem: the value of the reliability index 
depends on the specific form of the limit state function. 
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EXAMPLE. Consider the steel beam shown in Figure.  

 
The steel beam is assumed to be compact with parameters Z (plastic 
modu1us) and yield stress yf . 
There are four random variables to consider: P, L, Z, yF .  
It is assumed that the four variables are uncorrelated.  
The means and covariance matrix are given as 

{ } 6 3

3 2

100
8

100 10
600 10 /y

P

L
X

Z

F

kN
m

m
kN m

µ
µ

µ µ
µ

−

   
      = =   ×   
   ×  
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{ }
6 2

12 6

9 2 2

4 0 0 0
0 100 10 0 0
0 0 400 10 0
0 0 0 10 10 ( / )

X

kN
m

C
m

kN m

−

−

 
 × ==  × 
 × 

To begin, consider a limit state function in terms of moments. We 
can write 

( )1 , , ,
4y y

PLg Z F P L ZF= −  

Now recall that the purpose of the limit state function is to define 
the boundary between the safe and unsafe domains, and the 
boundary corresponds to g = 0.  
So if we divide gl by a positive quantity (e.g., Z), then we are not 
changing the boundary or the regions in which the limit state 
function is positive or negative.  
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Thus an alternative limit state function (with units of stress) would 
be 

( ) ( )1
2

, , ,
, , ,

4
y

y y

g Z F P LPLg Z F P L F
Z Z

= − =  

 
Since both functions satisfy the requirements for a limit state 
function, both are valid, and we want to calculate the reliability 
index for both functions. 
 
Solution. For the function g1, which is nonlinear, the calculation of 
the reliability index is given by Eq. (0.22).  
The limit state function is linearized about the means.  
The results are 
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( ) ( ) ( )

( )

1 4 4

4

y y y

P L L
Z F F Z Z y F P

P
L

g Z F P

L

µ µ µµ µ µ µ µ µ µ

µ µ

 ≈ − + − + − − −  

− −
 

2.48β =  
 
For g2, which is also nonlinear, we use Eq. (0.22)and again linearize 
about the mean values.  
The results are 

( ) ( ) ( )

( )

1 2 (1)
4 4( ) 4

4

y y

P L P L L
F Z y F P

Z Z Z

P
L

Z

g Z F P

L

µ µ µ µ µµ µ µ µ
µ µ µ

µ µ
µ

 
≈ − + − + − − − 
 

− −

 

3.48β =  
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This example clearly demonstrates the "invariance" in the mean 
value second-moment reliability index.  
In this example, the same fundamental limit state forms the basis for 
both limit state functions.  
Therefore, the probability of failure (as reflected by the reliability 
index) should be the same. 
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