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4 METHODS OF STOCHASTIC MECHANICS 
Probability theory is the most widespread description means of uncertainty, 
although not the only one. The alternatives are fuzzy and rough set theory, 
convex models or interval arithmetic. The format of results determines the 
applied approach, which may be:  
• Perturbation Method – computing the first two statistic moments of the 

response quantities, i.e. mean, variance and correlation coefficient, 
• Stochastic Finite Element Methods (SFEM) – evaluating the global 

response quantities in terms of random processes,  
• Reliability Methods – estimating the probability of failure of the system.  
 
Dominant approaches have been detected to estimate the structural reliability: 
a) Monte Carlo methods, 
b) First- and Second-order Reliability Methods (FORM and SORM methods), 
c) Response Surface method, 
d) Neural-network based reliability. 
 
Most approaches to stochastic mechanics represent the spatial variability of 
the input parameters. Thus random field discretization is taken first. 
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4.1. Random fields discretization methods 
Discretization of a random field ( )H ⋅  by ˆ ( )H ⋅  means its approximation to a 
finite set of random variables { , 1,... }i i nχ =  forming a random vector χ   

( ) ( ) [ ]Discretization ˆ ,H H→ =x x x χ  (4.1) 

The best approximation uses the minimum number of random variables.  
The discretization methods are: 
–  point discretization methods, 
– average discretization methods, 
– series expansion methods. 
In the following the Finite Element Method application will be pointed out. 
The review work by Surdet and Der Kiureghian (2000) is a description basis.  
 
 
4.2. Point discretization methods 
The midpoint method approximates the random field in each element eΩ  by a 
single random variable – a random field value at the element centre cx   

( ) ( )ˆ ,c eH H= ∈Ωx x x  (4.2) 
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The approximated field ˆ ( )H ⋅  is entirely defined by the random vector 
1{ ( ),... ( )}eN
c cH H= x xχ  ( eN  is the number of elements in the mesh). This 

method over-represents the random field variability within each element. 
The shape function method approximates ˆ ( )H ⋅  in each element using the 
nodal values ix  and the shape function as follows  

( ) ( ) ( )
1

ˆ ,
q

i i e
i

H N H
=

= ∈Ω∑x x x x  (4.3) 

where q is the number of element nodes, ix  the coordinates of the i-th node 
and iN  polynomial shape functions associated with the element.  
The approximated field ˆ ( )H ⋅  is 1{ ( ),... ( )}NH H= x xχ , where { , 1,... }i i N=x  
is the set of the nodal coordinate of the mesh. Each realization of ˆ ( )H ⋅  is a 
continuous function over Ω  - this is an advantage over the midpoint method. 
 
The integration point method discretizes the random field by associating a 
single random variable with each of the Gauss points. This gives accurate 
results for a short correlation length. However, the total number of random 
variables involved increases enormously with the size of the problem.  



J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •  12-Stochastics_Mechanics 4 

 
The optimal linear estimation method defines the field ˆ ( )H ⋅ by a linear 
function of nodal values 1{ ( ),... ( )}qH H= x xχ  in the following way 

( ) ( ) ( )ˆ TH a b= + ⋅x x x χ  (4.4) 

where q is the number of nodes in the approximation. The functions ( )a x  and 
( )b x  minimize the error variance ˆVar{ ( ) ( )}H H−x x  at each point x. 

 
4.3. Average discretization methods 
The spatial average method  approximates the field in each element eΩ  by a 
constant computed as the average of the original field over the element  

( ) ( )1ˆ ˆ
e

e e
e

H H d H
Ω

= Ω ≡
Ω ∫x x  (4.5) 

Vector χ  consists of the random variables ˆ{ , 1,... }T
e eH e N= =χ . Fig. 2.1 

shows that the randomness of the average process ˆ ( )H x  is less than for ( )H x .  
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Fig. 2.1. Local averages of random field 

The weighted integral method  does not discretize the random field. In the 
linear elastic case the element stiffness matrices are basic random data  

e

e T
ek d

Ω

= ⋅ ⋅ Ω∫ B D B  (4.6) 

where a matrix B relates strain components to the nodal displacements, D is 
the elasticity matrix - a product of a deterministic matrix by a univariate field 

( ) ( ), 1 ,o Hθ θ= +  D x D x  (4.7) 
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where oD  is the mean value and ( , )H θx  is a zero mean process.  
The weighted integral method is mesh-dependent. 
 
4.4. Series expansion methods 
The Karhunen-Loève expansion of a random field ( )H ⋅  is based on the 
spectral decomposition of its autocovariance function 

( , ) ( ) ( ) ( , )HHC σ σ ρ′ ′ ′=x x x x x x . The set of the deterministic functions over 
which any realization of the field ( , )oH x θ  is expanded is defined by the 
eigenvalue problem (Fredholm integral equation) 

( ) ( ) ( )1,... ,HH i x i ii C dϕ λϕ′
Ω

′ ′∀ = Ω =∫ x x x x  (4.8) 

The set of { }iϕ  forms a complete orthogonal basis.  
Any realization of ( )H ⋅  can be expanded over this basis as follows 

( ) ( ) ( ) ( )
1

, i i i
i

H θ µ λ ξ θ ϕ
∞

=

= + ∑x x x  (4.9) 

where { ( ), 1,...}i iξ θ =  denotes the coordinates of the realizations of the 
random field with respect to the set of deterministic functions { }iϕ .  
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All possible realizations of the field { , 1,...}i iξ =  result in a numerable set of 
random variables. No analytical solution for the integral eigenvalue problem 
(4.8) exists, so orthogonal functions { , 1,...}i iϕ =  are computed numerically. 
The orthogonal series expansion method avoids solving the eigenvalue 
problem (4.8) by selecting a complete set of orthogonal functions 1{ ( )}i ih ∞

=x , 
forming an orthonormal basis 

( ) ( )i j ijh h d δ
Ω

′ Ω =∫ x x  (4.10) 

where ijδ  is a Kronecker symbol.  
Any realization of the random field ( , )H θx  is a function, which can be 
expanded by means of orthogonal function 1{ ( )}i ih ∞

=x  

( ) ( ) ( ) ( )
1

, i i
i

H hθ µ χ θ
∞

=

= + ∑x x x  (4.11) 

where ( )µ x  is mean function, ( )iχ θ  are zero-mean random variables. It holds 

( ) ( ) ( ) ( ),i iH h dχ θ θ µ
Ω

= − Ω  ∫ x x x  (4.12) 
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[ ] ( ) ( ) ( ),k l HH k l x xE C h h d dχ χ ′
Ω Ω

′ ′= Ω Ω∫ ∫ x x x x  (4.13) 

where ( , )HHC ′x x  is the autocovariance function of the random field ( , )H x θ .  
The expansion optimal linear estimation method is an extension of the 
optimal linear estimation using a spectral representation of the random nodal 
variables χ . Assuming that ( )H ⋅  is Gaussian, the spectral decomposition of 
the covariance matrix χχΣ  of 1{ ( ),... ( )}NH H= x xχ  is 

( ) ( )
1

N

i i i
i

χθ λ ξ θ
=

= + ∑χ µ φ  (4.14) 

where { , 1,... }i i Nξ =  are independent standard normal variables, ( , )i iλ φ  are 
eigenvalues and eigenvectors of the covariance matrix χχΣ  fulfilling 

i i iχχ λ=Σ φ φ . The (4.14), (4.4) and the optimal linear estimation lead to 

( ) ( ) ( )
( )

1

ˆ ,
N

Ti
i H

i i

H χ

ξ θ
θ µ

λ=

= + ∑ xx x φ Σ  (4.15) 

 
 



J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •  12-Stochastics_Mechanics 9 

4.5. Selection of the random field mesh 
The finite element mesh and the random field mesh have to be stated properly 
–  the design of the FE mesh is governed by stress gradients of the response,  
– the typical element size RFL  in random field mesh is related to the 

correlation length of the autocorrelation function. 
Depending on the discretization method different recommendations relating to 
the element size and mesh construction can be found in the literature.  
For example: 

to
4 2RF
a aL ≈  (4.16) 

– if RFL  is too small the random variables appearing in the discretization are 
highly correlated leading to numerical instabilities. 

– As the correlation length is usually constant over Ω  the associated mesh 
can be constructed on a regular pattern.  

– Several elements of the FE mesh grouped in a single one may produce the 
random field mesh. Thus the random vector χ  may reduce its size. 

– Reliability analysis shows that the refinement of the random field mesh 
should be linked with the gradient of the limit state function. 
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4.6.  Generation of random variates 
Generation of random numbers is operated by computer programs. In fact the 
“pseudo numbers” are produced this way, repeating after a long cycle 
interval, but the practical problems do not distinguish this.  
Basic variables are seldom uniformly distributed and only such set can be 
obtained by the “pseudo-generators”. A sample value for a basic variable with 
a given nonuniform distribution is called a “random variate”. Two techniques 
for generating random variables exist: inversion and rejection method. 
The inversion method starts with generation of uniformly distributed random 
numbers ir  (0 1)ir≤ ≤ , next come the corresponding variables by inversion of 
the cumulative distribution function ( )

iX iF x  (see Fig. 2.2). 
1( ) ( )

i iX i i i X iF x r x F r−= ⇒ =  (4.17) 

This uniquely fixes the sample value ˆi ix x=  when an analytic expression for 
the inverse 1( )

iX iF r−  exists (for example, the normal, Weibull, exponential, 
Gumbel and other distributions). The technique can also be applied to basic 
variables with CDF taken from observation. 
 



J. Górski,M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •  12-Stochastics_Mechanics 11 

1.0

0

Uniformly
distributed 
random
numbers

x

Cumulative distribution function 
of random variable F x( )

Density function f x( )

Realization of 
artificial sample1x̂

F x( )

 
Fig. 2.2. Inversion method of generating random variates 

 
The rejection method is illustrated in Fig. 2.3. A random variate ix  is 
generated using a fictitious probability density ( )if x  that envelopes the target 
one ( )ip x . The generated variable ix  is accepted with a specified probability 
that depends on the ratio of the true and fictitious densities.  
A useful technique to estimate the required joint density is the Nataf’s method 
making use of the multidimensional Gaussian distributions whose correlation 
coefficient is modified by a nonlinear transformation of given marginal and 
Gaussian densities. The corresponding samples of the correlated variables can 
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then be generated by means of the approximated distributions. The joint 
density function of all variables is usually ignored in stochastic analysis, so 
marginal distribution and covariance functions are enough. 
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Fig. 2.3. Inversion and rejection methods of generating random variables 
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4.7. Stochastic finite element methods 
The most common analytical method to assess statistical measures of 
responses to uncertainties of structures and loads is the Perturbation 
Technique. This method uses the Taylor expansion of a mathematical operator 
that relates the input and output variables. Truncation of the series to the first 
two terms implies that the accuracy of the method is limited to the cases of 
low coefficients of variation of input variables, not more than 0.15. This 
condition is more restrictive in the case of nonlinear systems. 
The Hierarchical Closure Approximation assumes that higher order moments 
of the system and the output are considered functions of lower order.  
 
Various problems are solved by means of the Stochastic Finite Element 
Modelling (SFEM). 
 
The powerful analytical method recently developed is the Spectral Approach.  
This technique consists of the following steps: 
a) description of a random field by truncated infinite series using the 
Karhunen-Loeve decomposition, 
b) projection of the decomposed random field of the solution on a class of 
polynomials on nonlinear systems known as Homogeneous Chaos, 
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c) solution of the resulting system of equations. 
In a one-dimensional application the spectral density function of a harmonic 
process can be presented as follows 

( ) ( ) ( )
1

cos
N

i i i i
i

x s A sκ κ φ
=

= +∑  (4.18) 

in which the iφ  are random phases.  
The harmonic process is convergent to the Gaussian one with a single-sided 
spectral density (i.e. defined only over positive wave number or frequencies) 

( ) 2 ( )G Sκ κ= . This case the wave amplitudes ( )i iA κ  are estimated as 
functions of discretized spectral density intervals of the length κ∆  

( ) ( )2i i iA Gκ κ κ= ∆  (4.19) 

due to the fact that the variance of the process is equal to the area under the 
curve of the spectral density.  


