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 SIMULATION OF DISCRETE RANDOM FIELDS  

THEORETICAL BACKGROUND 

A continuous, second-order, real-valued, vector random field ( , )ωX r  is 
specified by the expected (mean) value function 

( ) ( )( ),E ω=X r X r  (9.1) 

and the correlation tensor function 

( ) ( ) ( )( ) ( ) ( )( )( )1 2 1 1 2 2, , ,x E ω ω= − ⊗ −K r r X r X r X r X r  (9.2) 

where ( )E ⋅  is the expectation operator, ω ∈Ω  denotes an elementary event, 
the sign ⊗  denotes the tensor product, and 3

1 2, , ∈ℜr r r . If ( ) const=X r  and  

( ) ( )1 2 1 2,x x= −K r r K r r  (9.3) 
then the field is called homogeneous, i.e. stationary in space (Adler 1981). 

Using discrete methods of simulation and analysis, it is necessary to 
consider the random fields in the form of multidimensional random variables 
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X defined on regular or irregular meshes. Thus, the role of covariance 
function 1 2( , )xK r r  takes on the covariance matrix K, always symmetric and 
positively definite: 

( )( ) ( )( )( )TE ω ω= − −K X X X X  (9.4) 

where ( )ωX  describes the discrete, second-order, real-valued random field 
and X  stands for the expected value vector  

( )( )E ω=X X  (9.5) 

It is also useful to define the degenerated field by the condition for the 
global covariance matrix K: 

det 0=K  (9.6) 
The probabilistic foundation for the generation of arbitrary vector random 

variables has been formulated in the rejection theorem by Devroye (1986) and 
von Neumann (see Brandt 1998). The main theoretical assumption of the 
simulation method is that the probability density function f of an m-
dimensional random vector X is defined on a compact domain in mℜ  and 
obeys the condition ( )f < +∞X . This assumption makes sense in structural 
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mechanics. A random point Π  uniformly distributed in 1m+ℜ  can be 
generated in the following way: 

( ) ( )
( )( )

( )1 max

,  
 
i i i i i

i

x a u b a
u

u u c f

ω
ω

ω+

= + −Π = = 
=

x  (9.7) 

where ( ,  )i ia b , i = 1, 2,..., m are the given intervals of the reals and 
1( ),  ( ) [0,1]i iu u Uω ω+ ∈  are the values of independent, uniform random 

variables. If AΠ ∈  (i.e. Π  is not rejected), where 
{( , ) : ,    0 ( )}mA u u cf= ∈ℜ ≤ ≤x x X and c > 0, then the generated random 

variable ( 1,2,..., )iX i m=  is 

( )i i i i iX a u b a= + −  (9.8) 
The direct rejection method to generate vectors X introduces a new 

dimension: a uniform, independent random variable. In this extended 1m+ℜ  
space, the joint probability density defined on a suitable set, is uniform 
(Devroye 1986). Fig. 3.1 presents an interpretation of the proof in the case of 
m = 1. 
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Fig. 3.1. An interpretation of Devroye theorem for m = 1 

The random point Π  is not rejected if it falls below the curve ( )cf x  
(Fig. 3.1). The probability of this event for the random variable uniformly 
distributed in the rectangle max ( )cf b a−  becomes: 

( )
( )
( ) ( )max max

1
b

a
cf x dx

P A
cf b a f b a

Π ∈ = =
− −

∫  (9.9) 
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On the other hand, the probability for the point Π  to fall below the curve 
( )cf x  (Fig. 3.1) in the interval ( ,  )α β  is equal  

max

( )

( )

f x dx

f b a

β

α

−
∫  (9.10) 

It follows that the ratio 

( )
( )

( )
( )

( )

( ) ( )( )max

max

,  1

f x dx

P D f b a
f x dx P x

P A
f b a

β

α

β

α
α β

Π ∈ −
= = = ∈

Π ∈
−

∫

∫  (9.11) 

gives the required result. 
However, the method is not effective (time inefficiency) for large values of 

m. For that reason a method of a sequential type, by applying a propagation 
scheme and conditional probability distributions has been proposed 
(Bielewicz et al. 1985a and 1994b, and Walukiewicz et al. 1997).  
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 SIMULATION ALGORITHM 

As the proposed algorithm concerns discretized random problems, the 
random fields are described by the multidimensional random variables 
defined at the mesh nodes. The covariance function is represented by the 
symmetric and positively defined covariance matrix ( )m m×K . The random 
variable vector ( 1)m ×X  is divided into two blocks consisting of the unknown 

( 1)u n ×X  and the known ( 1)k p ×X  elements ( )n p m+ =  

u

k

n

p

 
=  

 

X
X

X
 (9.12) 

described by a joint normal probability density ( )f X  

( ) ( ) ( ) ( ) ( )
1

12 2
1det 2 exp
2

m Tf π− − − = − − − 
 

X K X X K X X . (9.13) 

where the covariance matrix ( )m m×K  and the expected values vector 
( 1)m ×X  are also appropriately divided: 
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11 12

21 22

,           u

k

n n

p p

n p

  
= =   

   

K K X
K X

K K X  (9.14) 

The unknown vector uX  can be estimated from the following conditional 
distribution 

( ) ( )
( )u k

k

f
f

f
=

X
X X

X
 (9.15) 

where ( )kf X  is a normal probability density function of the known variables 
kX  

( ) ( ) ( ) ( ) ( )
1

12 2
22 22

1det 2 exp
2

p T
k k k k kf π− − − = − − − 

 
X K X X K X X  (9.16) 

Substituting (3.13) and (3.16) into formula (3.15) yields  



J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •   15 Field-Simulation 8 

( ) ( )
1
2

2

22

1 1
11 12

21 22 22

det 2
det

1exp
2

n

u k

T

u uu u

k kk k

f π
−

−

− −

 
=  

 
                ⋅ − − − −                             

KX X
K

X XK K 0 0X X
X XK K 0 KX X

 (9.17) 
where 0 is a null matrix. 

After simplification (see Jankowski and Walukiewicz 1997) formula (3.17) 
can be rewritten in the following way 

( ) ( ) ( ) ( )
1 T 12 2

1( ) det 2 exp
2

m

u k c u c c u cf π− − − = × − − − 
 

X X K X X K X X  (9.18) 

where cK  and cX , described as conditional covariance matrix and conditional 
expected value vector, can be calculated as follows: 

1
11 12 22 21c

−= −K K K K K  (9.19) 

( )1
12 22c u k k

−= + −X X K K X X  (9.20) 
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In the case of engineering applications the random variables are usually 
bounded by their upper and lower limits. For example, Young’s modulus E 
can be estimated only by nonnegative values ( 0E ≥ ), and no geometric 
discrepancies of any structures should cross a threshold set by relevant 
engineering codes. To fulfil this requirement a formula describing the 
Gaussian truncated distribution is introduced (Jankowski and Walukiewicz 
1997) 

( )( )t
f x

f x
P

=  (9.21) 

where ( )f x  is a Gaussian density function of one-dimensional random 
variable X , with standard deviation σ  and mean value x  

( )
2

1( ) exp
22
x x

f x
σσ π
− 

= − 
 

 (9.22) 

and P  is the area of the Gaussian density function described by the truncation 
parameter s  
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( )
2

1 exp
22

x s

x s

x x
P dx

σ

σ σσ π

−

−

− 
= − 

 
∫  (9.23) 

Putting ( ) /z x x σ= −  into formula (3.23) it is easy to obtain  

( )2erfP s= , (9.24) 
where erf ( )s is the error function 

( )
2

0

1erf exp ,    s 0
2 2

s xs dx
π

 
= − ≥ 

 
∫  (9.25) 

A variance of the random variable X  of the Gaussian truncated 
distribution represents the following formula  

( ) ( )22
x s

t t
x s

x x f x dx
σ

σ

σ
−

−

= −∫  (9.26) 

Substituting relations (3.21) and (3.24), and performing the required 
integration yields (see Jankowski and Walukiewicz 1997) 

( )2 2 1t tσ σ= −  (9.27) 
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where 
2exp( 2)

2   ( )
s st

erf sπ
⋅ −

=  (9.28) 

It is easy to notice that the assumption of the truncation parameter 5s = , 
usually used in the engineering applications, determines  that 0t ≈ .  

Making use of the above formulas the truncated joint normal conditional 
distribution can be derived (Jankowski and Walukiewicz 1997) 

( ) ( ) ( ) ( ) ( ) ( )
1
22 T 12

1( ) 1 det 2 exp
2 1

m
m

t u k c u c c u cf t
t

π
−−

− − 
= − − − − − 

X X K X X K X X

 (9.29) 
The numerical analysis of the simulation method based on the conditional 

distributions (see, for example, Bielewicz et al. 1994b) has proved that the 
algorithm is efficient for meshes consisting of as many as 500 random values. 
To improve the numerical capability of the simulation algorithm some 
modifications are proposed. The changes make it possible to generate a field 
with a much larger number of random points. 
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To generate a discrete scalar random field use is made of a base scheme 
with random values. The scheme is placed at the nodal points of a mesh in 
such a way that it covers all the nodes i, 1 i MN≤ ≤ , MN M N= ×  (Fig. 3.2).  

 

 
Fig. 3.2. Coverage of the field points with moving propagation scheme 
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The simulation process is divided into three stages. First, the four-corner 
random values are generated (see Fig. 3.2a). Next, a propagation scheme with 
a growing number of points covers a defined base scheme of the field mesh. 
In the example shown in Fig. 3.2b the dimension of the base scheme equals 

5 5 20c d× = × =  random values (mesh points). In the third stage the base 
scheme is appropriately shifted, and the next group of unknown random 
values is simulated (see Fig. 3.2c and d). The base scheme is translated so as 
to cover all the field nodes. 

Values of the random variables at the first four points of the mesh 
(i = 1,..., 4) are generated using the direct rejection method (see Eq. (3.7)). 
Substituting p = 0, and m = n = 4 into Eqs. (3.12) and (3.14), the following 
random vector of unknown variables, its expected values, and the appropriate 
covariance matrix are obtained: 

u=X X ,               11,u= =X X K K  (9.30) 
The truncated density function of X  is used in the generation 

( ) ( ) ( ) ( ) ( ) ( ) ( )
12 2 12

11 det 2 exp
2 1

T
tf t

t
π− − − − 

= − − − − − 
X K X X K X X

 (9.31) 
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where t is the assumed truncated parameter whose value is assumed according 
to the generated field properties. 

The generation process consists of the following steps (Bielewicz et al. 
1987 and 1994b): 
1. Generation of random vector (4 1)u ×X  with the components: 

( ) ,   1,...,4i i i i iX a b a u i= + − = , (9.32) 
where iu  are the random variables uniformly distributed in the interval 
[0,1], and ( ,  )i ia b , 1, 2, ... ,i m=  are intervals of the reals.  

2. Generation of random variable u from the interval [0,1] and definition of 
the value 

( ) ( ) ( )2 1/2 2
max ,             1 det 2f u t π− −= Φ Φ = − K  (9.33) 

where K(4×4) is the local covariance matrix and Φ bounds the conditional 
density function.  

3. Calculation of the density function ( )uf X  

( ) ( ) ( )1exp
2 1u uf J

t
 

= Φ − − 
X X  (9.34) 
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where 
( ) ( ) ( )1T

u u u u uJ −= − −X X X K X X  (9.35) 

4. Checking the condition 
( )max uf f≤ X  (9.36) 

If this condition holds, vector (4 1)u ×X  is accepted and if not, the 
calculations are repeated.  

For any point of the base mesh "i", 5 ( )i c d≤ ≤ × , where ( )c d×  denotes 
the dimension of the base scheme (see Fig. 3.2a) the only unknown random 
value is iX , whereas other random variables 1 1iX X −÷  are known. 

In the calculations it is necessary to make the following substitutions in 
formulas (3.12) and (3.14): m = i, n = 1, p = i − 1. It is easy to notice that the 
problem is reduced to one-dimensional ( c cK≡K , c cX≡X ). It makes the 
generation easier and relatively fast. The calculations include the following 
operations: 

 
1. Determination of the local covariance matrix ( )i i×K , and 

determination of the known part of the random vector (( 1) 1)k i − ×X , as 
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well as the expected values vector ( 1)i ×X , according to formulas 
(3.12) and (3.14), respectively.  
 

2. Calculation of the conditional variance cK  and the mean cX  on the basis 
of equations (3.19) and (3.20):  

1
11 12 22 21cK K −= − K K K  (9.37) 

( )1
12 22c u k kX X −= + −K K X X  (9.38) 

3. Generation of random variable iX : 

( )i i i i iX a b a u= + −  (9.39) 
4. Generation of the independent random variable u from interval [0,1] and 

definition of the value  

( ) ( ) 1 2( 1)/2
max ,             1 2i

cf u t Kπ −− −= Φ Φ = −  (9.40) 
5. Calculation of the density function ( )if X  



J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •   15 Field-Simulation 17 

( ) ( ) ( )1exp
2 1i if X J X

t
 

= Φ − − 
 (9.41) 

where 

( ) ( )2
i c

i
c

X X
J X

K
−

=  (9.42) 

6. Checking the condition 

( )max if f X≤  (9.43) 
If this condition holds, the random value iX  is accepted and if not, the 
calculation returns to point three.  

Intervals ( , )i ia b  are fixed for every node. The assumed standard deviation 
iσ  at the node i is connected with the interval by equation  

( ) ( )( )1 2
2i

i

b

i i i i ia
x x f x dx σ− =∫  (9.44) 

The proposed method of covering the random field with the defined base 
schemes makes it possible to analyse the meshes with a large number of 
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points. The maximum dimension of the covariance matrix K is defined by the 
base scheme size. The numerical analysis leads to the conclusion that 400 
mesh points are an optimal base dimension. The symmetry of the matrix K 
(see Eq. (3.14)) significantly reduces the calculations.  

It should be pointed out that according to the proposed algorithm the single 
random value is calculated on the assumption that the random values only in 
the close neighbourhood (the base mesh) are known. The specific way of 
covering the random field has a significant effect on the accuracy of the 
calculations. In strongly correlated fields the convergence of the simulation 
process can lead to considerable discrepancies.  

This procedure can be used for simulation of arbitrary planes or three-
dimensional random fields. The meshes can also be irregular. The 
implementation of the method is restricted only to the Gaussian fields. 
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ACCURACY ANALYSIS OF SIMULATED RANDOM FIELDS 

Using the proposed generation procedure, various homogeneous and non-
homogeneous Gaussian random fields can be simulated. To examine the 
correctness of the proposed method the following scalar, zero-mean value 
correlation functions have been considered in numerical examples: 
– —White noise field ( , )N ωr  

( )2
1 2 1 2( , )NK σ δ= −r r r r  (9.45) 

– —the Wiener field (non-homogeneous) ( , )W ωr  

( ) ( ) ( ) ( )2
1 2 1 2 1 2 1 2, min , min , min ,W x x y y z zK r r r r r rα= × ×r r  (9.46) 

– —the Brown field (locally non-deterministic) 

( ) ( )2
1 2 1 2 1 2, 0.5BK β= + − −r r r r r r  (9.47) 

– —Homogeneous (Shinozuka) field ( , )S ωr  (Shinozuka 1987a). 

( ) ( )( ( ) ( ) )22 22 2 2 2
1 2 0 1 1 2 2 1 2 3 1 2, expS x x y y z zK r r r r r rα α α α= − − − − − −r r  (9.48) 
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where 2
+∈ℜr  is the position vector (Fig. 3.2a) and 0 1 2 3, , , , , ,α β α α α α ρ  are 

arbitrary positive constants, ⋅  denotes the standard Euclidean norm 
(distance) and δ  stands for the Dirac delta. 

All presented functions are spatial but the calculations have been performed 
only for two-dimension cases. It should be mentioned that the developed 
computer program can be applied to generate any plane or spatial fields. 

Statistical formulas give the estimators of the mean value ŵ  and the global 
covariance matrix K̂  of the generated set of realizations: 

1

T

1

1ˆ

1ˆ ˆ ˆ( )( )
1

NR

i
i

NR

i i
i

NR

NR

=

=

=

= − −
−

∑

∑

w w

K w w w w
 (9.49) 

where wi is the random vector and NR is the number of realizations in the set.  
The following definition of the global error erG  allows to compare the 

estimator of the covariance matrix K̂  with the theoretical one K: 
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( )
( )

ˆ
100%erG

−
= ×

K K

K
 (9.50) 

where 2( )tr=K K  is the Euclidean norm.  
The error of variances erV  and the local error erL  of a single element of 

covariance matrix can also be used: 

( ) ( )
1

ˆ ˆmax
100%, 100%

MN ii ii ij ij
er er

i ii ii jj

k k k k
V L

k k k=

− −
= × = ×∑  (9.51) 

where ijk  and îjk  denote the element of the theoretical covariance matrix and 
its estimator respectively. 

The mesh dimensions of the simulated fields described by Equations (3.45)
 ÷ (3.48) are the same as the size of the engineering examples calculated in 
the next sections. In this way the correctness analysis is strictly related to the 
problems which are solved in the present work. Two different meshes for the 
generation of the random fields have been selected. 
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First, a plane square 11 × 11 mesh (121 nodes) is chosen. In all cases 
, 1.0, 11.0x yr r ∈< >  (Fig. 3.2). The values of the positive constant (see formula 

(3.45) ÷ (3.48)) are assumed to be: 1.0α =  (the Wiener field), 1.0β =  (the 
Brown field), 2

0 1.0α = , 1 2 0.25α α= =  (homogeneous field), and the 
parameter s (see the formula  
(3.28)) equals s = 5. For these 11 × 11 meshes the generation processes can be 
performed using a single base scheme (see Fig. 3.2 a and b).  

To check if the errors of the fields generations decrease with the number of 
calculated realizations the following tests are performed. For each field (3.45)
 ÷ (3.48) one hundred independent trials (NT = 100) are carried out. Ten 
thousand realizations (NR = 10000) are generated in a single trial. The 
expected value of global errors of covariance matrix ( )erE G  (Eq. (3.50)), 
error of variances ( )erE V , and single element error ( )erE L  (Eqs (3.51)) are 
calculated every 100th realizations using the following formulas: 
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( ) ( )

( ) ( )

( ) ( )

1

1

1

1

1

1

NT

er er i
i

NT

er er i
i
NT

er er i
i

E G G
NT

E V V
NT

E L L
NT

=

=

=

=

=

=

∑

∑

∑

 (9.52) 

Also the variances of these errors are introduced: 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

22

1

22

1

22

1

1
1

1
1

1
1

NT

er er eri
i

NT

er er eri
i
NT

er er eri
i

D G G E G
NT

D V V E V
NT

D L L E L
NT

=

=

=

= −
−

= −
−

= −
−

∑

∑

∑

 (9.53) 

The results are presented in Fig. 3.3 ÷ Fig. 3.6. The plotted functions of the 
calculated mean errors and the standard deviations are different in each case 
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of the random fields. The same characteristic features are common, for 
example:  
– all the calculated error functions are visibly decreasing, in the most cases 

very fast, 
– the maximal errors of a single element computation scatter much more in 

comparison with other estimators,  
– the errors of the variance calculation are always smaller than other 

estimators.  

 
Fig. 3.3. Error analysis of white noise field generations (size 11 × 11) 
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Fig. 3.4. Error analysis of the Wiener field generations (size 11 × 11) 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of realizations

0

10

20

30

40

50

60

70

Er
ro

rs
(%

)

Wiener field (size 11 × 11) errors:
Covariance matrix - expected values
Covariance matrix - standard deviations
Maximal single element - expected val.
Maximal single element - standard dev.
Variances - expected values
Variances - standard deviations



J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •   15 Field-Simulation 26 

 
Fig. 3.5. Error analysis of the Braun field generations (size 11 × 11) 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of realizations

0

10

20

30

40

50

60

Er
ro

rs
(%

)

Braun field (size 11 × 11) errors:
Covariance matrix - expected values
Covariance matrix - standard deviations
Maximal single element - expected val.
Maximal single element - standard dev.
Variances - expected values
Variances - standard deviations



J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures •   15 Field-Simulation 27 

 
Fig. 3.6. Error analysis of homogeneous field generations (size 11 × 11) 
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reproduce the prescribed correlation functions properly. The exact number of 
simulation should be checked in each case individually. 
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Additionally, graphical comparisons between the theoretical covariance 
matrices K  and the estimators K̂  (Eq. (3.49)) for the four random fields 
(3.45) ÷ (3.48) are created, and the results are presented in Fig. 3.7. In each 
case the lower triangle represents the generated field while the upper triangle 
the theoretical one. The figures allow for a visual check of the correctness of 
the simulated fields. Moreover, one can note that the selected correlation 
functions (3.45) ÷ (3.48) are very different, and because of that the verifying 
analysis has a comprehensive meaning.  

 

a) b)

c) d)
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Fig. 3.7. Comparison of the target covariance matrices (upper triangles) with 
the simulated matrices (lower triangles): a) White noise field, b) the Wiener 

field, c) the Brown field, d) homogeneous field 
Comparing the graphical presentations of the simulated fields (Fig. 3.7) and 

their errors function (Fig. 3.3 ÷ Fig. 3.6) an additional conclusion can be 
formulated. For example, the global covariance matrix errors is greater in the 
case of the white noise field (Fig. 3.3) and the homogeneous field (Fig. 3.6). 
Analysing the fields graphical presentation in Fig. 3.7a and d, it can be stated 
that a great part of the theoretical covariance matrix values equal zero. As the 
matrix element estimators have non-zero values (see Fig. 3.7) the calculated 
errors are remarkably high.  

Some examples of the simulated single realizations are presented in 
Fig. 3.8. Also the graphical presentation of these realizations allows for 
specifying the type of the random field analysed. For example, observing the 
results presented in Fig. 3.7 and Fig. 3.8 one can find out if the field is a 
correlated one. 

Next, a much bigger mesh is analysed. A plane discrete field, 
16 × 308 = 4928 nodes has been chosen. The same dimension field (but 
described by different correlation function) is used in Chapter 7 to analyse a 
petrol tank with initial geometric imperfection. Only one homogeneous 
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(Shinozuka) correlation function (3.48) has been used in the generation 
process. This field seems to be an appropriate description of many two- and 
three-dimensional engineering problems, illustrating geometric imperfections 
of steel plates and shells or spatial variability of material parameters of soil, 
for example. The same values of the positive constant are assumed ( 2

0 1.0α = , 
1 2 0.25α α= = ) as in the previous calculation. The size of the field determines 

the use of the shifted scheme method of generation (see Fig. 3.2). 16 × 16 
points scheme has been chosen. It is easy to note that to cover all the random 
field points the scheme must be shifted 308 – 16 = 292 times. Only one series 
of calculations has been performed and the results are presented in Fig. 3.9. 

 

 

a)

c) d)

b)
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Fig. 3.8. Examples of realizations of the simulated fields: a) White noise, b) 
the Wiener field,  

c) the Brown field, d) homogeneous field 

 
Fig. 3.9. Error analysis of Shinozuka (homogeneous) field generations (size 

16 × 308) 
Compared to the previous convergence analysis a standard mean error of 

covariance matrix and variances has also been calculated (see Fig. 3.9). The 
obtained global covariance error is bigger in comparison with the 11 × 11 
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field generation (Fig. 3.6). Nevertheless, the results proved that the generation 
of real engineering fields is possible and accurate. 

To prove the correctness of the proposed generation method an additional 
test for the Brown and Wiener fields proposed by Walukiewicz has been 
performed (see Walukiewicz et al. 1995). As in the first step of the analysis 
one hundred independent trials for 11 × 11 fields have been carried out. From 
the estimation theory (Krishnaiah, 1994) it is known that theoretical 
distributions of estimators for some characteristics of the multidimensional 
normal random variables can be derived on the basis of the Wishart (gamma) 
distribution. In the following the theoretical distributions of variances and 
covariances (local characteristic), as well as the distributions of the 
determinants of the covariance matrices (global characteristic) are calculated. 

To start with, the probability distribution for the estimator of the covariance 
matrix K̂  was derived. Since K̂  is a symmetric matrix of dimension (m × m), 
the following joint probability distribution is defined in space ( )1 2m m+ℜ  
(Walukiewicz et al. 1995) 

( )( ) ( )( ) ( ) ( )
1

122ˆ ˆ ˆ, , exp tr
2

NR mNR NRf NR C NR m
− −

− − = × − 
 

K K K K K K  (9.54) 
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where the constant ( ),C NR m  is calculated from the normalization condition: 

( ) ( )
1

12 2

1

1, 2
2

NR m NR m m
m m

j

NR jC NR m NR π
−× ×

− −

=

 + − = Γ  
  

∏  (9.55) 

The condition 1NR m> −  must be fulfilled for positively defined K̂  (almost 
surely). Function Γ  is defined for positive real arguments or for some natural 
arguments as: 

( ) 1

0

y xy x e dx
∞ − −Γ = ∫  (9.56) 

or 

( ) ( )1 !NR NRΓ = −  (9.57) 

If matrix K̂  is not positively defined then the probability distribution 
vanishes. 

From formula (3.54) one obtains the probability distribution for a single 
variance estimator 2σ̂  (m = 1): 
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( )( ) ( ) ( )
2

2 222 2 2
2 2

2
2

ˆ ˆˆ , exp
22

2

NRNR NR

NR

NR NRf NR
NR

σ σ σσ σ
σ

−
−

 
= × − 

   Γ 
 

 (9.58) 

where 2σ  is the theoretical variance of the simulated field at a point. 
The histograms of the variances of the Wiener and the Brown fields are 

presented in Fig. 3.10 and Fig. 3.11. These results show a very good 
agreement with the theoretical (Wishart) distribution. 

Next, the first two moments of the estimated covariance matrix determinant 
ˆ( )K  are calculated (Walukiewicz et al. 1995). 

( ) ( )( ) ( ) ( )

( ) ( )22

1

1ˆ ( ) 1 2 ...  

1 3ˆ ( ) 1 1  

m

m

j

E NR NR NR m
NR

j jE
NR NR=

= − − −  

 − −  = + +   
   

∏

K K

K K
 (9.59) 

For the Wiener field and the Braun fields the sampled (100 samples) and 
the theoretical moments (formulas (3.59)) are calculated, as the functions of 
the number of realizations. These moments are presented in Fig. 3.12. One 
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can observe a striking agreement of the estimated (generated) moments with 
the theoretical predictions. 
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Fig. 3.10. Distribution of the Brown field sampled variances versus the 
Wishart distribution  

Further investigation based on Shannon’s measure of information (see, for 
example, Aczél and Daróczy 1975, Sobczyk 1973, or Sobczyk and Spencer 
1996) has been performed by Walukiewicz (1997a and 1997b).  

A statistical analysis of the simulated various homogeneous and 
nonhomogeneous, second-order random fields proved a high accuracy and 
some universality of the proposed method of simulation. The method will be 
especially useful in the simulation-based approach. 
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Fig. 3.11. Distribution of the Wiener field sampled variances versus the 

Wishart distribution  
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Fig. 3.12. Moments of sampled covariance matrix determinants versus 
theoretical moments 

0
NUMBER OF REALIZATIONS

D
ET

ER
M

IN
A

N
T 

VA
LU

E 

0.0

0.1

0.2

0.3

0.4

0.5

2000 4000 6000 8000 10000

expected value
of determinant  (| |)E K

standard deviation
of determinant  (| |)D K

theoretical curve
sampled curve - Brown field
sampled curve - Wiener field

Wiener field  | =1.0K|

theoretical value of determinant:
Brown field 2.21 10        | =K| ×  26


	Theoretical background
	Simulation algorithm
	Accuracy analysis of simulated random fields

