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4.5. OUTLINE ON STRUCTURAL LOADS 
 
Marian Gwóźdź, Andrzej Machowski „Wybrane badania i 
obliczeniakonstrukcjibudowlanychmetodami probabilistycznymi” 
(Selectedprobabilisticresearch andanalysis of civil engineering 
structures), Wydawnictwo PK, Kraków  2012 
 
Analysis of structural loads, prior to probabilistic analysis, covers 
load classification, mathematical model assessment and parameter 
estimation (characteristic values, safety measures) and analysis of 
effects of interaction of multi-source actions.  
Classification of loads may be done, due to the following criteria: 
(a) the origin of loads,  
(b) their time variation,  
(c) spatial variation of loads,  
(d) a sort of structural response, 
(e) inspection and limitation possibilities during operation. 
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The following sub-species of loads may be distinguished,  
due to the abovementioned criteria:  
 
(a)–the origin of loads: 
–  natural loads: gravity, atmospheric phenomena, pressure, 
temperature and humidity variation, subsoil variation, 
– man-made loads: room occupation, operation of machinery and 
devices, technological temperature variation. 
 
(b)– timevariation: 
– permanent loads: self-weight of structural elements, ground 
weight and pressure, 
– environmental and operational live loads, 
– extraordinary loads: vehicle impact, explosions, fires, 
hurricanes, catastrophic snowfalls, earthquakes. 
 
(c)–space variation: 
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– non-movable loads(constant position), 
– movable loads(arbitrary position). 
 
(d)–type of structural response: 
– static loads, generating neither accelerations nor inertia forces, 
– dynamic loads– inertia forces may be significant, acting on the 
structural analysis, 
– repetitive (cyclic) loads, which may lead to structural fatigue. 
 

(e) - inspection and limitation possibilities during operation 
– controlled loads: permanent and live loads, 
– non-controlled loads, e.g. wind, temperature, vehicle impact, 
explosions, earthquake. 
 

The mathematical background to model the loads, especially 
random function theory is a highly developed field. 
Model simplification may be introduced at different stages of 
analysis, the difficulties in model calibration come from the limited 
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statistical database access.The engineering approach is a 
simplified solution, intended to converge with the theoretical 
models, taking advantage of statistical data. 
4.5. SELECTED RANDOM LOAD MODELS 
 
The basic mathematical model is a random function -
generalization ofa random variable. 
Every elementary event is mapped into a function, not a numerical 
value, which wasrelevant for a random variable model. 
 
The theory of random loads states the elementary event – taking a 
single structure from a virtual or real population of structures of an 
identical design and operation conditions. 
 
The non-random parameters of a considered random function are 
point coordinates(x, y, z) inside a structure and time 0,t T∈ .  
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The reference timeT may be stated as the intended lifetime of a 
structure,T = tint.  
 
A general load model is a four-variablefunction ( ), , ,F F x y z t= - 
a spatial-temporal random field.  
 
The distinct forms of F may be scalar, vector or tensor random 
fields.  
 
The function F may serve for the load identification, taken directly 
from weather station measurements, likewind speedvb, water-snow 
equivalentm orthe parameter obtained at the building site, 
e.g.floor slab thicknessts.  
 
Random field, a key concept in engineering applications,may be 
assumed separate time and space variation, in terms of a single- or 
multivariable functions: ( )F t , ( )F x , ( , )F x y .  



J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures • 18 Loads 6 

 
Four load models are applied in structural design standards. 
 
The first and second models are discrete, the rest is continuous. 
 

a) Model of a stream of random impulses  
 
A stream of random impulses is a random function ( )N t of a 
continuous timet, whose values are nonnegative integers,N = n.  
The number of load impulses, without information on load 
values, occurring at a time interval is sufficient for 
extraordinary loads, damaging civil engineering structures, e.g. 
explosions, fires, plane collisions. 
 
This impact load is a rare and immediate event, comparing to the 
intended lifetime (durability) of a structure. 
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The streams of random events (impulses), being random time 
functions,may be considered random processes too. 
 
A Poisson process specifies the random function of a number of 
impulses ( )N t  at a time interval (0, t) being time-dependent, 
described by a single empirical parameter 1[ ]h t− : 

( )( ) ( ; )
!

n
ht

n n
htP t P N n t e
n

−= = =  (1) 

The formula(1)may be derived assuming independence of random 
intervals between impulses 1τ , 2τ , ... , 2τ (Fig. 4.17a) and a time-
invarianth value. 
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Fig. 4.17b shows a  Poisson process section fort = const. Given a 
valueh = 0,001/year it presents a discrete random variable whose 
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single value is a number of forces Fata time interval (0, t) for a 
considered structure. 
 
Fig. 4.17cshows a step function of a single realization N(t), 
depicting the time history of occurrence of forcesF for a given 
structure.  
The mean value and variance of a number of forces F in the timetare 
expressed by: 

22

0 0
( ) ( ) , ( ) ( ) ( )n n n

n n
N t nP t ht t n N t P t htµ

∞ ∞

= =

= = = − =  ∑ ∑  (2) 

The formula(2)yields: 
2( ) ( )nN t tµ=  (3) 

( ) ( )N th const t
t

= =  (4) 
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Equality of mean and variance, according to(3)is a check for 
Poisson proces in the field of statistical data testing.  
 
The formula(4)states that the Poisson force stream is 
uniform(constanth), whereh is a mean number of impulses per unit 
time. 
 
The probability of survival of a structure, with respect to an 
impulse of a probability function(1) is the probability of non-
occurrence of impulses F in time interval (0, t): 

( )0; htP N t e−= =  (5) 

 
The probability of collapse (cumulative distribution of 
durability), i.e. probability of at least one impulseF is equal: 

( ) ( ) ( )1; 1 htP N t P T t F t e−≥ = < = = −  (6) 
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whereT is a structural durability. 
 
The time interval between two loadings F follows the probability 
density function: 

( ) htf t he−=  (7) 

The h parameter of the Poisson process is the occurrence rate, 
equal to 1/h T= . 
 
This process is uniform (constanth)and non-stationary, while the 
mean and variance of random ( )N t  are time-variant,  
see Fig. 4.17( d).  
The random process is stationary  having a constant mean:

( )F t F const= = , constant variance: 2 2( )F Ft constµ µ= =  and 
correlation moments of the process sections ( )F t i ( )F t t+ ∆
dependent on the time interval (time lag) t∆ , only, regardless of a 
specific timet: ( , ) ( )F FK t t t K t+ ∆ ≡ ∆ . 
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b) Regular sequence of random loads 
 
This model is relevant for live loads, e.g. operational load on 
floors or snow load on roofs. 
 
The interval L∆ between the point forcesFi (Fig. 4.18) may be stated 
arbitrarily, e.g. turning the load distributed along the lengthL inton = 
L/ L∆  point forcesFi.  
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This simple model is sufficient for stochastically independent, 
time-invariant and identically distributed Fiforces. 
 
Equivalent approach of identical results states that random forces iF
move along the x axis with a constant velocityv, appearing in 
constant time intervals 0τ .  
Thus 0 /L vτ∆ =  is a space interval of forces iF (Fig. 4.18). 
Linear system, due to structural mechanics, considers the total 
load effect E (cross-sectional force, deflection) a combination of 
component loads Fi,using non-random influence coefficientsci: 

1

n

i i
i

E c F
=

=∑  (8) 

The algebra of linear combination of random variables gives 
expressions for mean and variance of a random total load effect: 

( )1 1
1 1 0

Ln n

i i i
i i

dxE c F F c F c x
L= =

= = ≈
∆∑ ∑ ∫  (9) 
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( )2 2 2 2 2 2 2
1 1

1 1 0

Ln n

E i Fi F i F
i i

dxc c c x
L

µ µ µ µ
= =

= = ≈
∆∑ ∑ ∫  (10) 

The equalities of mean values i iF F= and variances 2 2
1Fi Fµ µ=  

(fori = 1,2, …, n) come from the initial assumptions.  
The approximate equations, on the right-hand sides of (9) and(10), 
result from replacing the influence coefficients ciby an influence 
functionc(x). 
 
 
In the case of surface loads the linear section L∆ turns into a 
surface element A∆ , integrals(9) and(10) turn into an area integral. 
Other parameters are updated too, e.g. the number of forces acting 
on a floor equals /n A A= ∆ .  
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Assuming influence coefficients constant, say ci = 1 (the case of a 
column axial force), the formulae (9) and(10) lead to a coefficient 
of variation of a load effect: 

1 1

1 1

0, gdyE F F
E

nv n
E nF nF
µ µ µ

= = = → →∞  (11) 

Formula (11) shows that large structures of a high number of 
independent loads (as civil engineering structures do) random 
loads stabilize, so static deterministic analysis is sufficient. 
 
The disadvantage of this model is an independence assumption  
for the loads iF , sometimes divergent from the real conditions. 
 
Given a partial reliability index value Eβ  the formula(9) and(10)
make it possible tocompute the design load effect, as follows: 

2
1

1 1

n n

d E E i E Fi i
i i

E E F c cβ µ β µ
= =

= + = +∑ ∑  (12) 
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The design values for each separate load, 1 1di E FF F β µ= + combined 
with(8)lead to a load effect: 

( )*
1

1 1

n n

d i di i E F
i i

E c F c F β µ
= =

= = +∑ ∑  (13) 

 
The ratio of (12) and (13) gives a reduction coefficient Aα ,assuming

0c ≥ ; i=1,2, ... , nit is the measure of advantageous impact of 
statistical independence of loads iF : 
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The reduction coefficient for live loads is introduced in the 
standard PN-EN 1991-1-1, taking a form relevant for A ÷ E floor 
types: 

0
5 1,0
7A

A
A

α ψ ∆
= + ≤  (15) 

limiting the C and D cases; 0,6Aα ≥ . 
 
The reduction coefficient for live (operational) loads of walls 
and columns of multistorey buildings, mα , according to the same 
standard: 

( ) 02 * 2
*m

m
m

ψ
α

+ −
=  (16) 

The formulae(15)i(16) specify: 210,0 mA∆ = - floor area element, 
0ψ  - coincidence coefficient for live loads (Table4.18) according 
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to Polish standard PN-EN 1990 (having live loads dominant 0ψ  = 
1,0), * 2m ≥  - the number of storeys above the analysed one.  
 
Reduction by means of amcoefficient refers only to axial forces  
produced by live loads.  
 
 
 
 
Recommended values of Ψj for buildings, Polish standard, 1990 
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Area occupation: A – residential , B – office, C – meeting rooms, D – shops, markets,  
E – warehouses, F – vehicles <= 30 kN, G – vehicles <= 160 kN, 

last three rows: snow <= 1000 m above sea level, wind, non-fire room temperature 
 
 



J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures • 18 Loads 20 

Discrete model of random forces, at equal intervals (having 
accepted all its assumptions)may be used for the climatic load 
forecast (wind and snow actions) 
 
The focus of the weather station measurements is thewater-snow 
equivalent – the mass m of water equivalent to a given batch of 
ground snow.  
 
Wind load analysis is preceded by recordingthe wind speedvbo. 
 
The observations of a measurement periodt are done 
continuously, the maximum valuesFiof unit periodst0are 
chosen(finally the number of outcomes isn = t/t0).  
 
The unit observation period for climatic actions, due to their 
seasonal feature, equals t0= 1 year, starting 1st of October  
(like the academic year). 
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Statistical analysis of meteorological data usually neglects non-
stationarities at multi-year periods, assuming that the annual 
maximum values are independent. 
 
The multi-year load forecast for a single station, based on 
observation of annual maxima may be done analytically or 
graphically. 
 
According to graphical method the annual maxima are formed 
in ascending order F1<F2< ... <Fi< ... <Fn, , being ordinates of 
points on a probability paper.  
 
The followingFivaluescorrespond to the ordinates (empirical CDF)

* / ( 1)iF i n= + . 
The forecast resembling the linear one is accepted on the probability 
paper. 
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Characteristic maximum valuesFkof the return period of an 
extreme load,tret is a fractile whose order is F1(Fk): 

( ) 0
1

ret

1k
tF F
t

= −  (17) 

where 1( )F   is a cumulative distribution function.  
 
ProbabilityPof non-exceeding theFkvaluein time period 0T n t= ⋅  
equals: 

( ) ( )
0/

0
1

ret

1
T t

m
k k

tP F F F F
t

 
< = = −    

 
 (18) 

LargeT values lead to a formula: 

( ) /1 retT t
kP F F p e e−−< = = =  (19) 

GivenT = tret the result isp =0,368, so the probability of taking loads 
less thanFkis 0,368ω ≅ .  
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The probability of exceeding the Fkvalue more than once equals 
1 − 0,368 = 0,632.  
 
The formula(19)gives the return period of loads Fk: 

1ln
ret

Tt

p

=
 
 
 

 (20) 

Assuming, after the PN-EN 1990 standard that characteristic loads 
are described by a probability p = 0,98 and an operational period 
T = 50 years, the formula(20)leads to the return period of 
characteristic loads tret= 2575 years. 
 
Note that the characteristic loadsFkare determined by(18)or the 
equivalent relation(19). 
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The analytical method investigates for parameters of an assumed 
probability distribution by the maximum likelihood method (the 
sample mean and sample variance are used to compute the assumed 
distribution parameters) and states characteristic maximum values 
for a prescribed operational periodT.  
 
In particular, characteristic maximum for a Gumbel distribution 
F isstated by: 

1
0

lnn
TF F
t

µ
 

= +  
 

   (21) 

In order to illustrate the discrete model of random loads in equal 
time intervals, Fig. 4.19 presents maximum values of ground snow 
loads detected in the period 1950-2000 at three weather stations: 
Częstochowa(1), Łódź (2) and Rzeszów (3). 
(note a 1979 “Winter of the Century” peak in Łódź) 
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The points in 4.19 led to a scanning-based recovery of annual 
maximum values s[kN/m2], collected in Table4.12.  
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Lower rows of the table present mean (lines parallel to time axis, 
Fig. 4.19), standard deviation, coefficient of variation for every 
realization of sΣ  (total 50-year snow weight). 
 
Comparison of realizations in Fig. 4.19 shows, that the assumption 
of the stationary character is only partially fulfilled. 
 
The mean values are identical, weak decreasing trend is observed at 
stations 1 and 2, stronger at station 3. 
The tests of significance for trend detection were not performed. 
 
An unexpected result came for the total 50-year snow load – almost 
constant for three realizations, sΣ  = 22 − 23 kN/m2 = const.The 
coefficient of variation is high, equal vs = 81% for 2nd realization. 
The probability distribution type for a snow load should be 
verified.Fig. 4.20 shows a forecast for multi-year load at particular 
weather stations, presented on a Gumbel probability paper. 
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The empirical points for three sequences of values fit the 
straight line well, so this sort of distribution may be accepted. 
 
Given a return period if maximum load tret= 50 lat, the fractile 
ofF(sk) = 1 − 1/50 = 0,98 order corresponds to the ordinate of a 
point on an approximation straight line, according to Fig. 4.20 for 
the abscissa equal to −ln[−ln(0,98)] = 3,90.  
 
Statistical data for three Polish weather stations lead to the 
corresponding characteristic values of snow load:Częstochowa - 
sk= 1,05 kN/m2, Łódź - sk= 1,20 kN/m2,  
Rzeszów -sk= 1,10 kN/m2. 
 
Two bottom rows of Table 4.12 show the Gaussian – 
Gumbelparameter conversion, by means of an analytical method. 
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The characteristic values are therefore stated, according to(21), 
forp = 0,98: 
- station 1: sk= 0,369 + 3,90·0,189 = 1,11 kN/m2, 
- station 2: sk= 0,332 + 3,90·0,293 = 1,47 kN/m2, 
- station 3: sk= 0,348 + 3,90·0,202 = 1,14 kN/m2, 
The multipliers of variability measure:−ln[−ln(0,98)] = 3,91. 
 
Comparison of graphical and analytical methods is shown in Fig. 
4.13, by means of characteristic snow ground load values, according 
to Polish standard PN-EN 1991-1-3.  
 
The empirical forecast concerns the climatic zone 2 venues, so the 
analytical method proved to fit the standard recommendations more 
than graphical method for the cases considered. 
 



J. Górski, M. Skowronek   •   Gdansk University of Technology  •  Reliability of Structures • 18 Loads 31 
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Statistical analysis of wind load is much more complicated than 
the analysis of snow load.  
 
The following directions of wind speed measurement are valid at 
the weather stations: 
1. The measurement time interval is 1 hour, recording is made every 
10 min before the full hour of universal time, 
2. Wind speed is registered with a1 m/s accuracythe wind 
directionwith a 10oaccuracy. 
3. The instantaneous wind speed is recorded in the case of gusts, if 
the 10 minute time interval shows the mean speed exceedance not 
less than 5 m/s. 
The former and the present measurement requirements and 
procedures differ. 
a. until the end of 1975 r. weather stations recorded mean 2-minute 
wind speeds, from the beginning of1976 the 10-minute speeds, 
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b. until 2000 the weather station workers assessed wind speed and 
direction without any equipment, from 2001 r. these operations are 
done automatically. 
 
The statistical database of the Institute for Meteorology and 
Hydraulic Management is vast but its homogeneity is not assured. 
 
The basic methods of data acquiring for the wind speed cover: 
- maximum annual values are used to assess the characteristic wind 
speed vbO, 
- mean 10-minute wind speeds used to estimate the parameters and 
verify the type of empirical distribution 
 
Fig. 4.21 shows maximum annual wind speeds for the years 1964-
2003 at Warszawa-Okęcie weather station.  
The points in Fig. 4.21led to a recovery of annual maximum values 
wind speed values v1 [m/s], shown in Table 4.14. 
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Lower rows of the table present mean wind speed (a line parallel to 
time axis, Fig. 4.21), standard deviation and coefficient of variation. 
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Fig. 4.22 presents graphical equalization of measured annual 
maximum wind speeds on a Gumbel probability paper.  
 

 
 
The empirical point sequence of wind speed v1fit the straight line 
well, thus Gumbel distribution may be accepted for wind speed.  
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The fractile of the F(vk) = 1 − 1/50 = 0,98 order, related to the return 
period of maximum load, tret = 50 years, corresponds to an ordinate 
of a point lying on the approximation line (Fig. 4.22) whose 
abscissa equals −ln[−ln(0,98)] = 3,90.  
 
The characteristic value of maximum annual wind speed vk = 22,7 
m/s is obtained from the diagram. 
 
Two bottom rows of Table 4.14 present the Gaussian – Gumbel 
conversion of parameters, by means of analytical method, see (21). 
 
The characteristic wind speed value, i.e. 89% fractile is therefore 
obtained:vk= 15,9 + 3,90 (1,61) = 22,2 m/s. 
 
Comparison of graphical and analytical methods is shown in Table 
4.15, by means of characteristic wind speed values, according to 
Polish standard PN-EN 1991-1-4.  
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The empirical forecast concerns the climatic zone 1, so the graphical 
method fits the standard recommendations more than the analytical 
method.  
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Columns (4) and (5) of theTable 4.15 present characteristic values 
of wind pressure, by the formula 

2
0

2
b

k
vq ρ

=  (22) 

whereρ - mass density of air, dependent on the elevation above sea 
level, temperature and atmospheric pressure (Table 4.15 statesρ = 
1,23 kg/m3. 
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