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The limit state analysis of a structure concerns its turning into a 
mechanism (kinematic system). The possible mechanisms of a 
structure are based on its geometry, joint connections and loads. 
Based on an initial static analysis elements of cross-sections of a bar 
structure may be detected to be decisive for a structural failure. 
They are called decisive (critical) elements of a structure, usually 
corresponding to a maximum combination of cross-sectional forces. 
The limit load-carrying capacity ( )N ω  of each element is random.  
 
In general, decisive elements of a bar structure are their real compo-
nents (cross-section, joint, member) to be investigated separately. 
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Any structure is a combination of decisive elements whose 
parameters are random. 
The safe structure – mechanism transformation is governed by a 
kinematically admissible failure mechanism (in Polish -  KDMZ) of 
a structure. Every such a mechanism is attached a minimum 
critical set of decisive elements (in Polish – MKZ). 
A minimum critical set of decisive elements  has at least one 
component proper for the structure to survive (e.g. resist its loads). 
If all the critical sets are failed the structure becomes a mechanism. 
Figs. 5.11a, b show a beam and its three decisive elements. 
The cantilever load case leads to a mechanism – critical set, 
containing one decisive element only (l = 1). The span load leads to 
another mechanism – critical set of two decisive elements (l = 2). 
Four decisive elements make the structure in Fig. 5.11 c: members 
and supports, failure occurs while breaking only one. Four mecha-
nisms – critical sets exist, each of one decisive element only (l = 1). 
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The beam in Fig. 5.11 d involves four decisive elements (cross-
sections) and two mechanisms – critical sets, each having l = 2. 
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The beam in Fig. 5.11 e involves two mechanisms – critical sets, 
having l = 2 and l = 3, respectively. Note that both mechanisms 
involve a common decisive element (3) – section at the support. 
Fig. 5.12 classifies bar systems due to their minimum critical sets  
- mechanisms and the number of decisive elements in each of them. 
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KDMZ – kinematically admissible mechanism of failure 
MKZ – minimum critical set of decisive elements. 
Each decisive element is assessed more or less important for a 
structure by means of a weight – a ratio of the element cross-
sectional force and the total structural load. 

5.4. Discrete structural reliability models 
Relations of decisive elements define a structure for its reliability 
check. Series, parallel and mixed (hybrid) systems are distinguished. 
A series system breaks if one of its decisive elements breaks only. 
Mechanical model is a chain of n components at tension, Fig. 5.13.,  
breaking of its i-th part of a resistance Ni is a structural collapse. 
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Series systems are „weakest-link” systems of n decisive elements 
and n mechanisms – critical sets, each having l = l. 
A parallel system breaks due to a given mechanism while all 
decisive elements of this mechanism fail. A simple parallel model is 
a bundle of elements at tension (Fig. 5.14).  

 
Mechanism = failure means all elements broken. 
Each minimum set of elements contains l > 1 decisive elements. 
Thus a single critical set is distinguished, of l = n.  
Parallel models result in weighted summation of resistances of 
decisive elements. 
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Mixed (hybrid) models combine two former ones, Figs. 5.15, 5.16. 

 
Fig. 5.15 shows a series hyper-chain of elements - parallel bundles 
of decisive elements. Fig. 5.16 shows a mixed system, having 
common elements in critical sets, not denoted in the previous case. 
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Identification of a system is denoting its decisive elements and 
kinematic mechanisms, then relations between elements and 
mechanisms. General classification of systems may be proposed: 
l) n decisive elements of a series connection –  the number of 
mechanisms is equal to the number of elements, each critical set is 
one-element only, l = l; 
2) having l > l decisive elements of a parallel connection – a single 
mechanism linked to a single critical set of elements, l > 1; 
3) series system of a number of critical sets of l > 1 (Fig. 5.15); 
4) a number of critical sets of decisive elements of l > 1, decisive 
elements may be common for various mechanisms (Fig. 5.16). 
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5.5. Series connections of decisive elements  

Statically determinate structures take one failed element for a total 
collapse. Thus the weakest link (cross-section, joint, member) 
defines the system safety, its resistance is crucial for the system. 
A simple model is a chain (Fig. 5.13), examples shown in Fig. 5.17. 
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Fig. 5.13 shows a chain at tension, made of n links of elastic-plastic 
Prandtl material – a series system. Decisive elements are links of the 
chain at their yield failure. A single link at yield breaks the chain. 
Fig. 5.17 a is a determinate truss girder, loaded at joints. Decisive 
elements are axially loaded members. Buckling of any compressed 
member or yield of any tensile member disables the system. 
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Fig. 5.17 b shows a statically determinate frame. Any plastic hinge 
makes the system collapse. 
Fig. 5.17c shows a Gerber statically determinate. Any additional 
hinge (plastic) turns the system into a mechanism. 
Each of the presented structures exhibits l= 1, the number of critical 
sets (mechanisms) is equal to the number of elements n (Fig. 5.17d).  
Thus series model is an attribute of statically determinate systems. 
Random resistance of a series system ( )N ω  is stated by a weight 
resistance ( )i ia N ω  of a weakest link (weakest decisive element). 

1
( ) min ( )

n

i ii
N a Nω ω

=
=  (1) 

( )iN ω  – random capacity of an i-th decisive element, 
ai – weight of an i- th decisive element, 
n – the total number of decisive elements. 
Reliability of a series system is based on known distributions of 
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element resistances Ni and element load effects Xi . 
The simplest chain model (Fig. 5.13) assumes equal element 
forces, so all the weights equal ai = l. 
Statically determinate structures, shown in Figs. 5.17a - c, detect 
various element forces Xj , thus various weights ai.  
Deterministic models may assume identical resistance of chain links 
and various capacities of truss members or frame cross-sections. 
Random approach investigates reliability of decisive elements, due 
to their random resistances ( )iN ω  and random load effects ( )iX ω . 
Note that load effects Xi are not external actions – they may be bar 
element cross-sectional forces produced by the loads. 
Probability of a service of an i-th decisive element – its reliability 

{ }Pri i ip N X= >  (2) 

Reliability of a series model is the probability of a proper function 
of all its elements, is equal to  
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1

n

i
i

R p
=

=∏  (3) 

n – the number of decisive elements, 
pi – reliability of an i-th element. 
In practice the so-called design resistance (capacity) is investigated, 
due to structural loading at a given significance level. 
Design load-carrying capacity 0iN  of a decisive element (or a 
structure) corresponding to a standard Gaussian t is a fractile  

0i i NiN N ts= −  (4) 

where iN  is a mean capacity of an i-th element (or a structure), Nis    
- standard deviation of a capacity of an i-th element (or a structure).  
The t value may be derived from 

0i i

Ni

N Nt
s
−

=  (5) 
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Design capacity of a series model on a given significance level is 
the N0 value corresponding to resistance R equal to the predicted, 
target value R0 (e.g. R0 = 0,99865). The equation yields 

0
1

n

i
i

R p
=

=∏  (6) 

The trial-and-error solution may be used: the load X is imposed, 
resulting in element cross-sectional forces Xi. Then partial safety of 
elements { }Pri i ip N X= >  is obtained, finally, equation (6).  
The N0 value making the equation (6) fulfil is a design capacity of a 
structure on a given significance level (target reliability R0). 
Reliability of a series system is a probability of load X resisting for 
all decisive elements, determined from (4).  
Random load X produces load effects ( )iX ω  at elements i = 1, 2, ....  
Resistances of decisive elements ( )N ω  are also assumed random.  
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Random safety margin ( )iZ ω  of a decisive element of random 
resistance ( )iN ω  and random load ( )iX ω  equals 

( ) ( ) ( )i i iZ N Xω ω ω= −  (7) 

The mean value iZ  and standard deviation SZi of a random safety 
margin of a decisive element are computed by 

i i iZ N X= −  (8) 
2 2

Zi Ni Xis s s= +  (9) 

Reliability index ti of a decisive element i of a resistance denoted by 
iN , SNi and load denoted by iX , SXi equals 

2 2
i i

i

Ni Xi

N Xt
s s
−

=
+

 (10) 
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Standard Gaussian tables numerically estimate reliability of an i-th 
Ri = Pi(ti) in terms of ti. Formula (3) points out safety reduction  
of a series system with the increasing number of elements. 
Given a single decisive element reliability Rl = pl = 0,9 a structure 
composed of three identical elements detects R3 = 0,93 = 0,729. 
Statistical weakening is an important feature of series systems. 
 
Physically, statistical weakening for large numbers of decisive 
elements means an increasing probability for a single element  
that the load is larger or the resistance is smaller than their 
respective mean values. 
The number of minimum critical sets, thus the number of series-
connected elements makes this effect increase. 
Fig. 5.18 shows ratio of  a fractile N0 of a system capacity to a 
fractile N0i of a single element, in terms of a number of elements n 
the coefficients of variation equal to iν  = 0,05; 0,12; 0,20. A 
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logarithmic scale is used for n, fractiles N0  i N0i are computed at an 
identical safety level P(t0). 

 
 
Given a chain of 10 elements, their identically distributed resistance 
of a mean iN  = 18,0 kN and standard deviation SNi = 1,21 kN. Task: 
- design capacity for a component pi(t) = p(3);(Ri = 0,99865); 
- reliability of a chain randomly loaded, X  =12 kN, Sx = 1,2 kN; 
- design capacity of a chain given its target reliability R =0,99865. 
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Design capacity of a link for its target reliability Ri = 0,99865 is  

0 18,0 3 1,21 14,37 kNi i NiN N ts= − = − ⋅ =  

The mean safety margin (limit state function mean) and reliability 
index of a single link loaded by X force: X =  12 kN, Sx = 1,2 kN are 

18,0 12,0 6,0 kNiZ N X= − = − =  

2 2 2 2

18,0 12,0 6,0 3,53
1,71,21 1,2

i i

Ni Xi

N Xt
s s
− −

= = = =
+ +

 

Gaussian tables show pi(3,53) = 0,9997922. Reliability of a 10-link 
chain, randomly loaded by an X force of X =  12,0 kN, Sx = 1,2 kN is 

10
10 10

0
1

0,9997922 0,997024i j
i

R p p
=

= = = =∏  

In order to assess the design capacity of a chain given its target 
reliability R = 0,99865 the following equation is stated 
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10
10

0
1

0,999865i j
i

R p p
=

= = =∏  

10 0,99865 0,999865ip = =  
In order to achieve a system reliability R = 0,99865 each link has to 
follow pi = 0,999865 - a Gaussian CDF value for t = 3,65. 
Design capacity related to a target system reliability R = 0,99865 is  

0 18,0 3,65 1,21 13,58 kNNN N ts= − = − ⋅ =  

The ratio: system (chain) resistance) to element (link) resistance is 

0 0/ 13,58 /14,37 0,945iN N = =  

This effect means statistical reduction of system resistance. 
Series systems – remarks  
Reliability of a series system is a product of the components 
reliabilities, assuming their independence. 
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1

n

i
i

Q Q
=

=∏  

where Qi denotes reliability of an i-th element.  
A reliability-consistent system of Qi = const shows n

iQ Q=  
Reliability of a series system increases together with the element 
reliabilities, decreases in the case of element reliability decrement.  
Reliability of large series systems is significantly reduced even in 
the case of high element reliability, e.g. Qi = 0.999, variable n  
n = 10 gives Q = 0.99910 = 0.990, 
n = 100 gives Q = 0.999100 = 0.905, 
n = 1000 gives Q = 0.9991000 = 0.3677. 
 
While the number of elements tending to infinity (n →∞ ) the 
system resistance CDF tends to a selected extreme value 
distributions, regardless of the CDFs of elements: 
 
Gumbel  – infinite (unbounded) random variables 
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( )
ˆ

1 exp exp
R

R RF R
µ

 −
= − − 

 
 

 
Weibull – left-bounded random variables 

( )
1/

1 exp ;ˆ
RR CF R R C

R C

υ  −
= − − >  −  

 

 
Frechet– right-bounded random variables 

( )
1/

1 exp ;
RC RF R R C

C R

υ  −
= − − <  −   


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