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Basic design variables – loads, material and geometrical parameters, 
imperfections, are frequently recognized as random variables. If 
random loads are acting on a deterministic structure, the problem is 
called stochastically linear, whereas the assumption of random 
structure features makes us classify the problem as stochastically 
nonlinear.  

Probabilistic analysis of structural limit states belongs to the class of 
problems which deal with the stochastic nonlinear operator. 
Analytical solutions of these problems are not available at all. 
Numerical methods are then naturally developed in the field of 
random limit state analysis.   
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Sensitivity of a limit state of a structure is assessed with respect to a 
selected random variable, in the form of the limit state probability 
distribution. This concept is presented in the form of a problem-
oriented Monte Carlo simulation procedure, where the selected 
variable plays the dominant role.  

Numerical example is presented serviceability limit state of the 
monumental structure. The dominant variable is the wind action, in 
the form of two correlated random variables. 

These investigations can be classified into the branch of 
computational sciences, because the numerical procedure is the core 
of the presented concept. Modelling and computer simulation is 
nowadays regarded the third base of contemporary science, 
complementary to theory and experiment.  
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The Monte Carlo simulation method is a numerical tool of a wide a 
engineering application. Three steps, due to structural design are: 
• generating basic variables of the problem - random variates, 
• performing deterministic operations in every simulation step, 
• statistics of the set of results, interpreting the histogram. 

The basic random variables, with given probability distribution 
functions, are represented by sets of random numbers. 

The elementary event ω  is assumed the structural limit state. Thus 
the sample space Ω consists of the limit states of the structure. The 
uni-dimensional random variable is defined on the sample space. 
This variable is the multiplier of the dominant basic variable (group 
of variables) of the problem. The choice of dominant variables must 
be completed first. 
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The procedure key is the performance of a single simulation step. It 
consists of the following operations: 
• generating loads and characteristics of a particular structure in 

the form of random numbers - establishing a deterministic 
structure under deterministic loading,  

• uni-parametrical increment of dominant variable (or variables), 
when the limit state is reached, the limit multiplier of dominant 
basic variables is recorded. 

Consequently, various definitions of limit states may be taken. 
Assumed the limit states investigated with respect to loads, one-
dimensional random variable ( )ωΛ  is defined on the sample space 

. Its values are limit load multipliers Ω λ i of the simulation steps, i = 
1, …, N, where N is the number of realizations. 
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Histogram of the variable ( )ωΛ  is the estimator of the probability 
density function of the limit state with respect to loads. The failure 
probability estimator ˆ fp  can be calculated by the formula 
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While material parameters are dominant basic variables, uni-
dimensional random variable ( )ωΜ  is defined on the sample space 

. Its values are the limit material multipliers Ω λ i, i = 1, …, N. 
Histogram of the variable ( )ωΜ  represents probability distribution 
of the limit state with respect to material parameters. Thus the failure 
probability estimator ˆ fp can be calculated by the formula 
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The numerical example concerns probabilistic serviceability limit 
state analysis of the monumental structure of the Licheń Basilica. 
consecrated in 2004. The major load-carrying tower part consists of 
the foundation ring, four-column structure supporting the main ring, 
the two-storey colonnade and the dome. Both lower and upper 
storeys of the colonnade consist of concentric 16-column rings. A 
space frame model includes 224 elements. The upper deck deflection 
of the colonnade is investigated here. 

The main loads acting on the model are: dead load, wind acting on 
the colonnade walls and the forces on the upper deck of the 
colonnade, representing the dome’s weight and the wind acting on 
the dome. The wind load is assumed uniform on the columns of 
lower storey middle ring and on the columns of the upper storey 
outer ring (rigid plates are provided between the columns).  
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Basic random variables of the problem were assumed as follows: 
probability distributions (in the form of bounded histograms):  
� Dead load of colonnade and dome: Gaussian, N(1.0; 0.0333), the 

range (0.9, 1.1) – variable D(ω), 
• Young’s modulus of concrete: uniform, the range (0.8; 1.0) – 

variable E(ω) 
• Wind load – the variables: W1(ω) for the lower storey and W2(ω) 

for the upper storey and the dome. Both variables are quadratically 
transformed variables V1 and V2 - wind velocities in both intervals. 
The variables V1 and V2 are correlated, Gumbel distributed. 

Assumption is made that the dominant variables are both the wind 
actions W1 and W2, thus structural sensitivity to wind actions is 
examined throughout the example. 
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Three variants of calculations are performed. They differ in the 
correlation coefficients of the variables W1(ω ) and W2(ω ).  
The technique to generate correlated random variables of a given 
covariance matrix  is based on the following theorem, formed by 
Devroye: 
Theorem. Let { }, 1,2,...,iX i d  be the random vector composed 
of the i.i.d. random variables of zero mean and unit variance. There 
exists a nonsingular matrix H, that fulfils the equation 

≡ =X

 =Y HX  (5) 

where Y is the random vector of a given covariance matrix C. The 
matrix H may be derived from the equation: 

 =THH C (6) 
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Indeed, the statistical moments of Y satisfy the assumptions: 

( ) ( )
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where ( )E ⋅  is the expectation operator. No restrictions are 
introduced on variable types. We will find the matrix H from (6), 
given the matrix C. It is possible to build a lower triangular matrix H 
satisfying (7). 

In two-dimensional cases, given the correlation coefficient h, the 
matrix H may be derived as: 
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The following steps are distinguished in the algorithm: 
* Generation of the vector X consisting of two uncorrelated random 
variables, uniformly distributed in the range <0, 1>. All the 
histograms in the paper show relative frequencies on their ordinates. 
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* Linear mapping Y ; Y is the vector of uncorrelated uniformly 
distributed variables of zero mean and unit variance (standardized), 
according to the formula: 

→X

( )2 1 3, 1,2  (9) i iY X i= − =

* Matrix operation =T HY, resulting in the vector T of a covariance 
matrix C. Taking the matrix H in the form (8), we get the following 
relations: 

1 1

2
2 1 2 1

T Y

T hY Y h

=⎧⎪
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= + −⎪⎩
    (10) 

The types of { }1 2,Y Y  and  { }1 2,T T  are not identical. Here T1 is 
uniform 3, 3− , but T2 shows triangular (Simpson) distribution 
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in the range ,g g− , where ( )21g h h= + − 3 . The histograms of 

T1 and T2, assumed h = 0.8, are shown below.  
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The vector transformation of T into Z occurs, it involves two 
uniformly distributed random variables in the range <0, 1>,  with 
given covariance matrix C. The variable Z1 is taken by the formula: 

1
1 0.5

2 3
TZ = + .   (11) 

while the transformation 22Z T→   is performed using the cumulative 
probability distribution function of the Simpson distribution: 

( ) ( )
210.5

2T
tF t sign t t

g g
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

.  (12) 

Transforming the vector { }1 2
TZ Z=Z  into { }1 2

TV V=V using the 
inverse Gumbel distribution function: 
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( ) ( )1
1 1

1 ln ln , 1,2i VV F Z u Z i
α

−= = − − =   (13) 

In the above equation ( )VF ⋅ symbolizes the Gumbel distribution 
function of parameters α  and u . In the worked example the 
following values were assumed: u = 0.2, α  = 8.0. 

{Creating the random wind load vector }1 2
TW W=W , by the 

formula Wi = Vi
2 , i = 1, 2 

The procedure presented above results in the variables W1 and W2 of 
the correlation coefficient  

1 2WWr ρ= , which may differ from the 
correlation coefficient of the variables Z1 and Z2 (i.e. the value 

1 2Z Zh ρ= . It is possible to obtain in an iterative way, variables W1 and 
W2 of a correlation coefficient approximately equal to the arbitrary 
value r. 
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The following operations make up the single simulation step: 
* Space frame analysis, calculating the initial value of the horizontal 
upper deck deflection u(ω ) in the wind direction(Fig. 3), 
* Uni-parametrical load rise, up to allowable upper deck deflection 
u0, 0 400u H= , where H = 17.95 m is the colonnade height. 
The single simulation step produces the limit load multiplier λ i of 
this realization – a single value of the variable Λ(ω ). 
Three computational variants were  provided, with respect to the 
wind load correlation coefficient r. The considered cases: 
a) variables W1 and W2 uncorrelated – the coefficient r = 0  

b) variables W1 and W2 correlated – the coefficient r = 0.62 

c) variables W1 and W2 fully correlated – the coefficient r = 1 
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The SLS histograms are presented below 
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The results of the three variants of calculations are relative 
histograms of the limit state of the structure, statistical 
characteristics are collected in the table. It is worth pointing out that 
in the assumed structural and stochastic model each variant of 
calculation results in the probability of  exceeding the allowable 
deflection lower than the accuracy of the method (the reciprocal of 
the number of realizations). On the basis of probabilistic limit state 
analysis it can be stated that the examined part of the structure is stiff 
enough to assure the proper structural service. 
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REMARKS: 
Sensitivity analysis of limit states of structures is proposed here, by 
means of a dedicated Monte Carlo algorithm. It leads to the 3rd level 
probabilistic methodology, i.e. the limit state histogram.  
The procedure also allows to solve the problem limited to the 
reliability, or the probability of failure estimation.  
Simulation-based limit state analysis usually means creating a 
population of structural states and choosing the failed cases, which 
determine the failure probability. The procedure proposed is 
modified and therefore developed. A group of dominant basic 
variables is chosen, in every simulation step. These variables 
increase uni-parametrically, to reach finally the structural limit state. 
Thus every simulated case is led to the limit state. The set of non-
dimensional multipliers of dominant variables is the result of 
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simulation. Its histogram serves as the estimator of the PDF of the 
structural limit state.  
The proposed procedure makes it possible to perform the reliability 
assessment only. In this case techniques to reduce the number of 
simulations may be used. 

ATTEMPTS TOWARDS A FULLY PROBABILISTIC DESIGN 
The semi-probabilistic design procedures (for instance LRFD) make 
use of partial factors to depict random scatter of basic variables. 
Values of loads and resistance coefficients are to be calibrated on the 
basis of statistical data. 
The fully probabilistic design is the subject of a great number of 
present day’s publications. Several international codes (e.g. ISO 
2394: General principles of structural reliability, and EN 1990: Basis 
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of structural design) present the overall design scheme exploring 
random analysis in greater extent. These documents serve as the 
code formats only (according to the JCSS nomenclature). They form 
the very basis of fully random design. No specific design codes exist 
up till now, referring to particular civil engineering branches (metal, 
concrete, timber structures, etc.) which  really represent the fully 
probabilistic point of view. The transformation, described in 
numerous papers, seems to be a long-time process, requiring a huge 
effort of the code-writing committees and a population of 
professional designers, deeply educated the semi-probabilistic 
methods. 

 
 
 


