Integrals

INTRODUCTION OF THE DEFINITE INTEGRAL

The geometric problems that motivated the development of the integral calculus (determination of
lengths, areas, and volumes) arose in the ancient civilizations of Northern Africa. Where solutions were
found, they related to concrete problems such as the measurement of a quantity of grain. Greek
philosophers took a more abstract approach. In fact, Eudoxus (around 400 B.c.) and Archimedes
(250 B.c)) formulated ideas of integration as we know it today.

Integral calculus developed independently, and without an obvious connection to differential
calculus. The calculus became a “‘whole” in the last part of the seventeenth century when Isaac Barrow,
Isaac Newton, and Gottfried Wilhelm Leibniz (with help from others) discovered that the integral of a
function could be found by asking what was differentiated to obtain that function.

The following introduction of integration is the usual one. It displays the concept geometrically and
then defines the integral in the nineteenth-century language of limits. This form of definition establishes
the basis for a wide variety of applications.

Consider the area of the region bound by y = f(x), the x-axis, and the joining vertical segments
(ordinates) x = @ and x = b. (See Fig. 5-1.)
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Subdivide the interval @ < x < b into n sub-intervals by means of the points x, x», ..., Xx,_; chosen
arbitrarily.  In each of the new intervals (a, xy), (x1, X3), ..., (x,_1, b) choose points &;,&,,...,&,
arbitrarily. Form the sum

SEDNx —a) +(E)(xa — x1) +(83)(x3 — x2) + - + f(E)(D — x,-1) (1)
By writing xg = a, x,, = b, and x; — x;_; = AXy, this can be written
n n
D fE = xie) = Y SED A &)
k=1 k=1

Geometrically, this sum represents the total area of all rectangles in the above figure.

We now let the number of subdivisions 7 increase in such a way that each Ax;, — 0. If as a result
the sum (/) or (2) approaches a limit which does not depend on the mode of subdivision, we denote this
limit by

b n
| e = tim Y~ reoan 3
a k=1

This is called the definite integral of f(x) between a and b. 1In this symbol f(x) dx is called the integrand,
and [a, b] is called the range of integration. We call a and b the limits of integration, a being the lower
limit of integration and b the upper limit.

The limit (3) exists whenever f(x) is continuous (or piecewise continuous) in @ < x < b (see Problem
5.31). When this limit exists we say that /' is Riemann integrable or simply integrable in [a, b].

The definition of the definite integral as the limit of a sum was established by Cauchy around 1825.
It was named for Riemann because he made extensive use of it in this 1850 exposition of integration.

Geometrically the value of this definite integral represents the area bounded by the curve y = f(x),
the x-axis and the ordinates at x = a and x = b only if f(x) = 0. If f(x) is sometimes positive and
sometimes negative, the definite integral represents the algebraic sum of the areas above and below the x-
axis, treating areas above the x-axis as positive and areas below the x-axis as negative.

MEASURE ZERO

A set of points on the x-axis is said to have measure zero if the sum of the lengths of intervals
enclosing all the points can be made arbitrary small (less than any given positive number €). We can
show (see Problem 5.6) that any countable set of points on the real axis has measure zero. In particular,
the set of rational numbers which is countable (see Problems 1.17 and 1.59, Chapter 1), has measure
Zero.

An important theorem in the theory of Riemann integration is the following:

Theorem. 1If f(x) is bounded in [a, b], then a necessary and sufficient condition for the existence of
b . . . o
J,, f(x)dx is that the set of discontinuities of f(x) have measure zero.

PROPERTIES OF DEFINITE INTEGRALS
If f(x) and g(x) are integrable in [a, b] then

b b

f(x)dx + J g(x)dx

a

1 r{f(X) +e(o)dr = |

a a

b b
2. J Af(x)dx = AJ f(x)dx where A is any constant
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b c b
3. f(x)dx = J f(x)dx —|—J f(x)dx provided f(x) is integrable in [a, ¢] and [c, b].

a c

b a
4. f)dx =— L f(x)dx

S. af(x)dx =0

6. Ifina <x b, m= f(x) £ M where m and M are constants, then
b
mo-a) < | fedx = M- a)

a

7. Ifina £ x £ b, f(x) £ g(x) then

Jb Sy < Jb () dx

a a

A

b
:J|f(x)|dx ifa<b

a

K f(x)dx

MEAN VALUE THEOREMS FOR INTEGRALS

As in differential calculus the mean value theorems listed below are existence theorems. The first
one generalizes the idea of finding an arithmetic mean (i.e., an average value of a given set of values) to a
continuous function over an interval. The second mean value theorem is an extension of the first one
that defines a weighted average of a continuous function.

By analogy, consider determining the arithmetic mean (i.e., average value) of temperatures at noon
for a given week. This question is resolved by recording the 7 temperatures, adding them, and dividing
by 7. To generalize from the notion of arithmetic mean and ask for the average temperature for the
week is much more complicated because the spectrum of temperatures is now continuous. However, it
is reasonable to believe that there exists a time at which the average temperature takes place. The
manner in which the integral can be employed to resolve the question is suggested by the following

example.
Let /" be continuous on the closed interval ¢ < x < b. Assume the function is represented by the
correspondence y = f(x), with f(x) > 0. Insert points of equal subdivision, a = x¢, X1, ..., X, = b.

Then all Ax;, = x;, — x;_; are equal and each can be designated by Ax. Observe that b —a = nAx.
Let &, be the midpoint of the interval Ax; and f(&,) the value of f/ there. Then the average of these
functional values is

JE) - +/E) _UE) +- - +ENAY ; L -3 f(6)A,
k=1

n b—a

This sum specifies the average value of the n functions at the midpoints of the intervals. However,
we may abstract the last member of the string of equalities (dropping the special conditions) and define

b

. 1 &, 1
im > €088 = 5 | s

a

as the average value of f on [a, b].
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Of course, the question of for what value x = & the average is attained is not answered; and, in fact,
in general, only existence not the value can be demonstrated. To see that there is a point x = & such that
f(&) represents the average value of f on [a, b], recall that a continuous function on a closed interval has
maximum and minimum values, M and m, respectively. Thus (think of the integral as representing the
area under the curve). (See Fig. 5-2.)

Fig. 5-2

b
mb—a) < J F(x)dx £ M(b - a)

a

or

m =

b
| rwar = v

Since /" is a continuous function on a closed interval, there exists a point x = £ in (a, b) intermediate
to m and M such that

1 b
SO =5 J F(x)dx

While this example is not a rigorous proof of the first mean value theorem, it motivates it and
provides an interpretation. (See Chapter 3, Theorem 10.)

1. First mean value theorem. If f(x) is continuous in [a, b], there is a point £ in (a, ) such that

b
| ey = e - arree @
2. Generalized first mean value theorem. If f(x) and g(x) are continuous in [a, b], and g(x) does not
change sign in the interval, then there is a point & in (a, b) such that
b

b
J F()g(x) dx =f(§)J ¢(x) dx 3)

a

This reduces to (4) if g(x) = 1.
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CONNECTING INTEGRAL AND DIFFERENTIAL CALCULUS

In the late seventeenth century the key relationship between the derivative and the integral was
established. The connection which is embodied in the fundamental theorem of calculus was responsible
for the creation of a whole new branch of mathematics called analysis.

Definition: Any function F such that F'(x) = f(x) is called an antiderivative, primitive, or indefinite
integral of f.

The antiderivative of a function is not unique. This is clear from the observation that for any
constant ¢

(F(x)+ 0 =F'(x) =f(x)

The following theorem is an even stronger statement.

Theorem. Any two primitives (i.e., antiderivatives), F and G of f differ at most by a constant, i.e.,
F(x)—G(x)=C.

(See the problem set for the proof of this theorem.)

3
EXAMPLE. If F'(x) = x?, then F(x) = [x2dx = % + ¢ is an indefinite integral (antiderivative or primitive) of x*.

The indefinite integral (which is a function) may be expressed as a definite integral by writing

X
J f(x)dx = J f(Hdt
(4

The functional character is expressed through the upper limit of the definite integral which appears
on the right-hand side of the equation.

This notation also emphasizes that the definite integral of a given function only depends on the limits
of integration, and thus any symbol may be used as the variable of integration. For this reason, that
variable is often called a dummy variable. The indefinite integral notation on the left depends on
continuity of f* on a domain that is not described. ~One can visualize the definite integral on the
right by thinking of the dummy variable ¢ as ranging over a subinterval [¢, x]. (There is nothing unique
about the letter #; any other convenient letter may represent the dummy variable.)

The previous terminology and explanation set the stage for the fundamental theorem. It is stated in
two parts. The first states that the antiderivative of f is a new function, the integrand of which is the
derivative of that function. Part two demonstrates how that primitive function (antiderivative) enables
us to evaluate definite integrals.

THE FUNDAMENTAL THEOREM OF THE CALCULUS

Part 1 Let f be integrable on a closed interval [a, b]. Let ¢ satisfy the condition ¢ < ¢ < b, and

define a new function
X
F(x):J f(dt if a<x=<bh

Then the derivative F'(x) exists at each point x in the open interval (a, b), where f is continuous and
F'(x) =f(x). (See Problem 5.10 for proof of this theorem.)

Part 2 As in Part 1, assume that f is integrable on the closed interval [a, ] and continuous in the
open interval (a, b). Let F be any antiderivative so that F'(x) = f(x) for each x in (¢, b). Ifa < ¢ < b,
then for any x in (a, b)

J Fydi = F(x) - F(©)
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If the open interval on which f is continuous includes « and b, then we may write

b
[ f(x)dx = F(b) — F(a). (See Problem 5.11)

a

This is the usual form in which the theorem is used.

2 3 2

EXAMPLE. To evaluateJ x>dx we observe that F'(x)=x?, F(x)= %-ﬁ-c and J X dx = (%-l—c)—
! 303
3

1

(g + c) = % Since ¢ subtracts out of this evaluation it is convenient to exclude it and simply write 37

GENERALIZATION OF THE LIMITS OF INTEGRATION
The upper and lower limits of integration may be variables. For example:

COS X 12 cosx
J tdt = | = :(coszx—sinzx)/Z

sin x 2 .
sin x

In general, if F'(x) = f(x) then

v(X)
J,, /@ = Foo1 = Pt

CHANGE OF VARIABLE OF INTEGRATION

If a determination of [ f(x)dx is not immediately obvious in terms of elementary functions, useful
results may be obtained by changing the variable from x to ¢ according to the transformation x = g(z).
(This change of integrand that follows is suggested by the differential relation dx = g'(¢) dt.) The funda-
mental theorem enabling us to do this is summarized in the statement

Jf(x) dx = jf{g(z)}g’(r) di ©)

where after obtaining the indefinite integral on the right we replace ¢ by its value in terms of x, i.e.,
t= g_l(x). This result is analogous to the chain rule for differentiation (see Page 69).
The corresponding theorem for definite integrals is

b B
j F)dx = j Flaole (1) di %

where g(o) = a and g(B) = b, i.e., o = g"(a), B= g’l(b). This result is certainly valid if f(x) is con-
tinuous in [a, b] and if g(7) is continuous and has a continuous derivative in ¢ < ¢t < B.

INTEGRALS OF ELEMENTARY FUNCTIONS

The following results can be demonstrated by differentiating both sides to produce an identity. In
each case an arbitrary constant ¢ (which has been omitted here) should be added.
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un+1

1. " du = -1

Ju u o n#
di
2. Ji‘ — In |ul
u

3. sinudu = —cosu

4. cosudu = sinu

5. |tanudu = In|secu|
= —In|cosu|

6. |cotudu=In|sinu|

7. Jsecudu:ln|secu+tanu|
=In|tan(u/2 + 7/4)|

8. Jcscudu:ln|cscu—cotu|
=In|tanu/2|

9. Jsec2 udu =tanu

10. Jcsczudu: —cotu

11. secutanudu = secu

12. cscucotudu = —cscu

13. a“du:lna a>0,a#1

14. J e du=e"

15. sinh u du = cosh u

16. coshudu = sinhu

17. tanh u du = Incosh u

INTEGRALS
18. | cothudu = In|sinh u|
19. sech u du = tan™' (sinh )
20. cschudu = — coth_l(cosh u)
21. sech’® udu = tanh u
22. csch®udu = —cothu
23. sech utanh u du = —sech u
24. cschucothudu = —cschu
di . _
25. “ =sin"!'= or —cos”' =
§2 — u?
du
26, |—==Inju+ Vi £
Vi + a?
di 1
27. 5 “ 5= tan~'= or —=cot™' =
u-+a a a
du 1 u—a
28. =—1
Jur—a* 2a |u+4a
du u
29. =-1In
wat+ur 4 la+Vattu?
du 1 _,a |
30. szzcos ; or Esec -
31 J\/uz fadu— g\/uz £
2
j:% Infu+vVu? + |
2
2. |V —du=2Va -2+ % sin 1Y
2 2 a
33. | e™sinbudu= asin lzu — fcos bu)
as+b
30 o™ cos budu — e™(acos bu + bsin bu)

a* + b?

[CHAP. 5
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SPECIAL METHODS OF INTEGRATION

1. Integration by parts.
Let u and v be differentiable functions. According to the product rule for differentials

d(uw) =udv+vdu

Upon taking the antiderivative of both sides of the equation, we obtain
uv = J‘udfu—f- Jvdu
This is the formula for integration by parts when written in the form
Judv =uv — Jvdu or If(x)g/(x) dx = f(x)g(x) — Jf/(x)g(x) dx
where u = f(x) and v = g(x). The corresponding result for definite integrals over the interval

[a, b] is certainly valid if f(x) and g(x) are continuous and have continuous derivatives in [a, b].
See Problems 5.17 to 5.19.

. . PG . .
2. Partial fractions. Any rational function ﬁ where P(x) and Q(x) are polynomials, with the
degree of P(x) less than that of Q(x), can be written as the sum of rational functions having the
A A B . . .
form - 5 Xt - where r =1, 2, 3, ... which can always be integrated in terms of
(ax + b)" (ax* + bx + ¢)
elementary functions.
EXAMPLE 1. -2 A4, B L C D
(4x—3)2x+5° 4x—3 2x+5° (Q2x+5)7° 2x+5
2 —
EXAMPLE 2. SxT—x+2 Ax+ B Cx+D E

(Z42x+42(x—1) (Pt2x+47 XC+2x+4 x—1

The constants, 4, B, C, etc., can be found by clearing of fractions and equating coefficients of like powers of x
on both sides of the equation or by using special methods (see Problem 5.20).

3. Rational functions of sin x and cos x can always be integrated in terms of elementary functions by
the substitution tan x/2 = u (see Problem 5.21).

4. Special devices depending on the particular form of the integrand are often employed (see
Problems 5.22 and 5.23).

IMPROPER INTEGRALS

If the range of integration [a, b] is not finite or if f(x) is not defined or not bounded at one or more
points of [a, b], then the integral of f(x) over this range is called an improper integral. By use of
appropriate limiting operations, we may define the integrals in such cases.

M

5= lim tan~'x
0 1+x M— o0

0 dx M
EXAMPLE 1. J —— = lim J
0 1 —+ xz M—o0

= lim tan"'M =2
0 M—o00

ol
d>
X _ im 2%
e—>0+

(1 dx .
EXAMPLE 2. Jo f = e1_131+ J€ NG

1
= lim 2 —2e) =2
e €0+

1. 1 1
EXAMPLE 3. [ @: lim [ @: lim Inx

Jo X e—>0+ )¢ X e—0+

= lim (—1Ine)
e—>0+

Since this limit does not exist we say that the integral diverges (i.e., does not converge).
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For further examples, see Problems 5.29 and 5.74 through 5.76. For further discussion of improper
integrals, see Chapter 12.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

Numerical methods for evaluating definite integrals are available in case the integrals cannot be
evaluated exactly. The following special numerical methods are based on subdividing the interval [a, b]
into n equal parts of length Ax = (b — a)/n. For simplicity we denote f(a + kAx) = f(x;) by y,, where
k=0,1,2,...,n. The symbol &~ means “approximately equal.” In general, the approximation
improves as n increases.

1. Rectangular rule.

b
J Jx)dx~ Ax{yg+y1+y2+---+ o} or Ax{yi+yo+yit+-c-+ ®
a

The geometric interpretation is evident from the figure on Page 90. When left endpoint
function values yy, yy, ..., y,_ are used, the rule is called “the left-hand rule.” Similarly, when
right endpoint evaluations are employed, it is called ‘“‘the right-hand rule.”

2. Trapezoidal rule.

b
AXx
| e~ S 04 2n 4 2004k 2 ) ©)
a

This is obtained by taking the mean of the approximations in (§). Geometrically this
replaces the curve y = f(x) by a set of approximating line segments.

3. Simpson’s rule.

b
AXx
J f(x)dx~ T{yo +4y1+ 20+ 4y + 2y +4ys + -+ 290 4y + ) (10)
a

The above formula is obtained by approximating the graph of y = g(x) by a set of parabolic
arcs of the form y = ax*> + bx +¢. The correlation of two observations lead to 10. First,

h
J [ax® + bx + ¢]dx = g[Zahz + 6¢]
—h

The second observation is related to the fact that the vertical parabolas employed here are
determined by three nonlinear points. In particular, consider (—#, yg), (0, y;), (&, y,) then
Yo = a(—=h)* +b(=h) + ¢, y; = ¢, y, = al® + bh+ ¢. Consequently, yo + 4y, + v, = 2ah’ + 6c.
Thus, this combination of ordinate values (corresponding to equally space domain values) yields
the area bound by the parabola, vertical segments, and the x-axis. Now these ordinates may be
interpreted as those of the function, f, whose integral is to be approximated. Then, as illu-
strated in Fig. 5-3:

h Ax
Zg[}’kq + 4y + Vel = T[J’o +4 20+ 4y + 2+ 4ys+ o+ 20 4y + 0l
k=1

The Simpson rule is likely to give a better approximation than the others for smooth curves.

APPLICATIONS

The use of the integral as a limit of a sum enables us to solve many physical or geometrical problems
such as determination of areas, volumes, arc lengths, moments of intertia, centroids, etc.
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y=/()

Approximating parabolic
segments
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ARC LENGTH

As you walk a twisting mountain trail, it is possible to determine the distance covered by using a
pedometer. To create a geometric model of this event, it is necessary to describe the trail and a method
of measuring distance along it. The trail might be referred to as a path, but in more exacting geometric
terminology the word, curve is appropriate. That segment to be measured is an arc of the curve. The
arc is subject to the following restrictions:

1. It does not intersect itself (i.e., it is a simple arc).
2. There is a tangent line at each point.
3. The tangent line varies continuously over the arc.

These conditions are satisfied with a parametric representation x = f(¢), y = g(¢),z = h(t),a < t £ b,
where the functions f, g, and /& have continuous derivatives that do not simultaneously vanish at any
point. This arc is in Euclidean three space and will be discussed in Chapter 10. In this introduction to
curves and their arc length, we let z = 0, thereby restricting the discussion to the plane.

A careful examination of your walk would reveal movement on a sequence of straight segments,
each changed in direction from the previous one. This suggests that the length of the arc of a curve is
obtained as the limit of a sequence of lengths of polygonal approximations. (The polygonal approx-
imations are characterized by the number of divisions » — oo and no subdivision is bound from zero.
(See Fig. 5-4.)

B e e " (X, V)

(%0 Y0)

I
|
I
|
X1 !
|
|
I
L

Fig. 5-4

Geometrically, the measurement of the kth segment of the arc, 0 < ¢t < s, is accomplished by
employing the Pythagorean theorem, and thus, the measure is defined by
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lim > {(Ax)” + (A}
n— 00 i

or equivalently

n A 2 172
. Yk
1 1 — A
,1Lr§c;: + (Ax) } (AXg)

where Ax; = X — X and Ayy = yr — Vi_1-
Thus, the length of the arc of a curve in rectangular Cartesian coordinates is

b ) 57172
L=| {[f'(l)2]+[g/(f)]2}”2dt:” (%) (%) } dr

(This form may be generalized to any number of dimensions.)
Upon changing the variable of integration from ¢ to x we obtain the planar form

40 )2
]2
(@ dx
(This form is only appropriate in the plane.)

The generic differential formula ds® = dx* + dy* is useful, in that various representations algebrai-
cally arise from it. For example,

é
dt

expresses instantaneous speed.

AREA

Area was a motivating concept in introducing the integral. Since many applications of the integral
are geometrically interpretable in the context of area, an extended formula is listed and illustrated below.

Let /" and g be continuous functions whose graphs intersect at the graphical points corresponding to
x=aand x =b,a <b. 1If g(x) = f(x) on [a, b], then the area bounded by f(x) and g(x) is

b
A= j {g(x) — £(x)) dx

If the functions intersect in (a, b), then the integral yields an algebraic sum. For example, if
g(x) = sinx and f(x) = 0 then:
2
=0

2
J sin x dx = cos x
0

0

VYOLUMES OF REVOLUTION

Disk Method

Assume that f is continuous on a closed interval ¢ < x < b and that f(x) = 0. Then the solid
realized through the revolution of a plane region R (bound by f(x), the x-axis, and x = a and x = b)
about the x-axis has the volume

b
V= nJ LGP d
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This method of generating a volume is called the disk method because the cross sections of revolution
are circular disks. (See Fig. 5-5(a).)

y y

@ Fig. 5-5 ®)

EXAMPLE. A solid cone is generated by revolving the graph of y = kx, k > 0 and 0 < x < b, about the x-axis.
Its volume is

Shell Method

Suppose f is a continuous function on [a, b], a = 0, satisfying the condition f(x) = 0. Let R be a
plane region bound by f(x), x = a, x = b, and the x-axis. The volume obtained by orbiting R about the
y-axis is

b
V= J 2x f(x) dx

This method of generating a volume is called the shell method because of the cylindrical nature of the
vertical lines of revolution. (See Fig. 5-5(b).)

EXAMPLE. If the region bounded by y = kx, 0 < x < b and x = b (with the same conditions as in the previous
example) is orbited about the y-axis the volume obtained is
b B JE
V= 271{ x(kx)dx = 2nk—| = 2mk —
0 3, 3
By comparing this example with that in the section on the disk method, it is clear that for the same
plane region the disk method and the shell method produce different solids and hence different volumes.

Moment of Inertia

Moment of inertia is an important physical concept that can be studied through its idealized geo-
metric form. This form is abstracted in the following way from the physical notions of kinetic energy,
K= %mvz, and angular velocity, v = wr. (m represents mass and v signifies linear velocity). Upon

substituting for v

K= %mwzr2 = %(mrz)w2
When this form is compared to the original representation of kinetic energy, it is reasonable to
identify mr? as rotational mass. It is this quantity, / = mr? that we call the moment of inertia.
Then in a purely geometric sense, we denote a plane region R described through continuous func-
tions f and g on [a, b], where a > 0 and f(x) and g(x) intersect at ¢ and b only. For simplicity, assume
g(x) = f(x) > 0. Then
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b
= | et~ ponas
By idealizing the plane region, R, as a volume with uniform density one, the expression

[f(x) — g(x)] dx stands in for mass and r* has the coordinate representation X2, (See Problem 5.25(b)
for more details.)

Solved Problems

DEFINITION OF A DEFINITE INTEGRAL
5.1. If f(x) is continuous in [a, b] prove that

5 (0020 [

hm

Since f(x) is continuous, the limit exists independent of the mode of subdivision (see Problem 5.31).
Choose the subdivision of [a, b] into n equal parts of equal length Ax = (b — a)/n (see Fig. 5-1, Page 90). Let
& =a+k(b—a)/n, k=1,2,...,n. Then

k
Jim 3 ftgoave = fim P43 (0 M) = [ reoax

®h=

5.2. Express lim Z f ( ) as a definite integral.

n—>o00 N

Let a=0,b =1 in Problem 1. Then

1 (K !
lim — - :J x) dx
M”;f(n) L
1
5.3. (a) Express J x% dx as a limit of a sum, and use the result to evaluate the given definite integral.

0
(b) Interpret the result geometrically.

(a) If f(x) = x%, then f(k/n) = (k/n)* = k*/n*. Thus by Problem 5.2,

This can be written, using Problem 1.29 of Chapter 1,

1 2 2 2 2 2. 2
[ as = i 1(g+a+...+g) i 2

0 n—oo N n

n(n +D2n+1)

n~>oo 6n’
i U 1/n)6(2 +1/n) :%

which is the required limit.

Note: By usmg the fundamental theorem of the calculus, we observe that
NP dy = (P 3)h =133 -0%/3 = 1/3

b) The area bounded by the curve y = x?, the x-axis and the line x = 1 is equal to %
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5.4. Evaluate lim ! + ! 4+t ! )
nsooln+1 n+2 n+n

The required limit can be written

lim ! ! + ! +-o+ ! = lim IXn: !
nsoon L+ 1/n 142/n L+n/n|  nsooné=1+kjn

1
dx
:L ] +x:1n(1 +x)d =1n2

using Problem 5.2 and the fundamental theorem of the calculus.

Lo 2t .
5.5. Prove that lim — {sm —+sin —+---+sin
n n

n—o0o n

(n—1z] 1-—cost

n h t
Leta=0,b=1,f(x) =sinx in Problem 1. Then
n t

lim EZsin@:J sinxdx =1—cost
n—oQ n/(:l n 0

and so

. . sint
using the fact that lim e 0.
n—0o0

MEASURE ZERO

5.6. Prove that a countable point set has measure zero.

Let the point set be denoted by xi, x», x3, x4, ... and suppose that intervals of lengths less than
€/2,€/4,¢€/8,¢€/16, ... respectively enclose the points, where € is any positive number. Then the sum of
the lengths of the intervals is less than €/2 + ¢/4 + €/8 4+ --- = € (let @ = ¢/2 and r = 1 in Problem 2.25(a) of
Chapter 2), showing that the set has measure zero.

PROPERTIES OF DEFINITE INTEGRALS

Jb f(x)dx

a

b
5.7. Prove that < J | f(X)|dx if a<b.

a

By absolute value property 2, Page 3,

Zf (&) Axy
k=1

< ; |f(E)AX,] = ; |/ (€D Ax,

Taking the limit as n — oo and each Ax; — 0, we have the required result.

5.8. Prove that lim

n—00

dx =0.

r” sin nx
0 x2+n?

21 o 2
smnx
0 X“+n 0

S
J s71n nx2 dx‘ =0, and so the required result follows.
0 X" +n

sin nx

dx <
X2+ n?

Then lim

n—0oo
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MEAN VALUE THEOREMS FOR INTEGRALS
v

5.9. Given the right triangle pictured in Fig. 5-6: (a) Find the
average value of 4. (b) At what point does this average value
occur? (¢) Determine the average value of

fx) = sinT!x,0 < x < % (Use integration by parts.)

(d) Determine the average value of f(x) = cos?x,0 < x < g x

H . .
(a) h(x)= 3 According to the mean value theorem for integrals,

the average value of the function / on the interval [0, B] is

1 (BH H
A== =xdx=—
BJO Bxdx 5

(b) The point, &, at which the average value of /1 occurs may be obtained by equating /(&) with that average

. H H B
value, i.e., Eé =5 Thus, & = >

FUNDAMENTAL THEOREM OF THE CALCULUS

5.10. If F(x) = [ f(¢) dt where f(x) is continuous in [a, b], prove that F'(x) = f(x).

F(x+h) —Fx) 1" X 1+
. { | a0 dz} [ roa

=1 & between x and x + /

by the first mean value theorem for integrals (Page 93).
Then if x is any point interior to [a, b],

F(x+h)— F(x)

F(x) = lim h

= lim /(§) =/(x)

since f is continuous.
If x = a or x = b, we use right- or left-hand limits, respectively, and the result holds in these cases as
well.

5.11. Prove the fundamental theorem of the calculus, Part 2 (Pages 94 and 95).

By Problem 5.10, if F(x) is any function whose derivative is f(x), we can write
Fo =]

a

fdt+c
where c¢ is any constant (see last line of Problem 22, Chapter 4).

b b
Since F(a) = ¢, it follows that F(b) = [ f(t)dt + F(a) or [ f(t)dt = F(b) — F(a).
5.12. If f(x) is continuous in [a, b], prove that F(x) = J f(t)dt is continuous in [a, b].

a

If x is any point interior to [a, b], then as in Problem 5.10,
lim F(x+h)— F(x) =1lim i f(&) =0
h—0 h—0
and F(x) is continuous.

If x = a and x = b, we use right- and left-hand limits, respectively, to show that F(x) is continuous at
x=aand x =b.
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Another method:

105

By Problem 5.10 and Problem 4.3, Chapter 4, it follows that F’'(x) exists and so F(x) must be con-

tinuous.

CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

5.13. Prove the result (7), Page 95, for changing the variable of integration.

Let F(x) = J f(x)dx and G(r) = [[ fle(d} g/ (1) dt, where x = g(b).

Then dF = f(x)dx, dG = f{e())} g (1) dr.

Since dx =g'(t)dt, it follows that f(x)dx =f{g(t)}g'(f)dt so that dF(x) = dG(t), from which

F(x) = G(1) + c.

Now when x = a, t =« or F(a) = G(a) + ¢. But F(a) = G(e) =0, so that c = 0. Hence F(x) = G(2).

Since x = b when ¢ = 8, we have

b B
j S dx = J Fe0) g/ () dr

as required.

5.14. Evaluate:

.9 _ ! dx V2 xgin~! X2
(a) J(x + 2)sin(x” 4+ 4x — 6) dx (¢) J,l —(x 6 (e) L 7_1 = dx
cot(In x) “x l—x X dx
(b) J — dx (d) J 27 tanh 2" " dx N Ji\/m

(a¢) Method 1: Let x* +4x —6 =u. Then (2x +4)dx = du, (x +2)dx =1 du and the integral becomes

1(. 1 1 )
§J sinudu = ) cosu+c= ) cos(x“+4x—6)+ ¢
Method 2:
1 1
J(x +2) sin(x® + 4x — 6) dx = 3 J sin(x? 4+ 4x — 6)d(x* + 4x — 6) = — zcos(x2 +4x—6)+c
() LetIlnx =u. Then (dx)/x = du and the integral becomes

Jcotudu:lnlsinul + ¢ =1In|sin(lnx)| + ¢

dx dx dx dx
)  Method 1: = = =
() Metho jJ<x+2><3—x> JJ6+x—x2 J¢6—<x2—x) J\/25/4—(x—§)2

Letting x — % = u, this becomes

du _.qou _oif2x—1
m—sln 5/—2+C—Sln T +c

[1 & =sin”! (2x — 1) | =sin”! <l> —sin”! <—§>
Jo1{/(x+2)3 —x) 5 o 5 5

=sin"' 2+4sin'.6

Then
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Method 2: Let x —%: u as in Method 1. Now when x = —1, u = —%; and when x = 1, u = % Thus
by Formula 25, Page 96.

J‘ dx J‘ dx Jl/z du o |'?
— = —=sin" —
“1/(x+2)3-x) Ja [25/4 — (x — 1) -3/2/25/4 —u? 5/21 5
=sin' 2+sin”!.6

du .
——, so that the integral becomes

l—x _ _nl=x - — —X —
(d) Let2™ =u. Then —2""(In2)dx = du and 2 "dx T3

1 ) . 1 —x
—mjtdnhuduf mlncoshZ + ¢

1 2xd:
(&) Letsin™'x*=u. Then du=—— 2xdx = >

/1_(x2)2 v]—x4

and the integral becomes

1 1 1.
E[uduzzu‘+c:z(sm ')+ e
WVigsin' 1 o 7
2 ’ b o1 2y _ A
Thus L ﬁdx_“(sm X7) . _4(sm 2) =14
o [ x dx 1J2x+1—1 IJ 2x+1 d 1 dx
V2 rx+1l 2) /e rxtd 2/ +x+1 2/ fx+1

If 2 12 402 1 dx
|+ )P 4 ) |
2J 2
NCES
=Vl +x+1-Ilnx+i+ /x+D)*+3+¢

2 dx 1
(X2 =2x+4y°7 6

. . 2 dx
Write the integral as T
1[(x = 1) + 3]

u=tan"' 0 =0; when x =2, w = tan" ! 1//3 = /6. Then the integral becomes

5.15. Show that J

Let x — 1 =+/3tanu, dx = /3sec’ udu. When x = 1,

J”T/6 V3sec® udu J”/(’ﬁseczudu_l 6

/6 1
= == cosudu=—sinu| =-—
o B4+3tan?ul’?  Jo [Bsecu’? 3 L 3 o 6

2
4
5.16. DetermineJ L
¢ xX(In x)’

Let Inx =y, (dx)/x =dy. When x = e, y = I; when x = ¢*>, y =2. Then the integral becomes

Jz_y:y_
P2

U

<

5.17. Find[x"lnxdxif (@ n#£ -1, () n=-1.
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(a) Use integration by parts, letting u = Inx, dv = x" dx, so that du = (dx)/x, v = x""'/(n+1). Then

an warl dx
Inx — -—
n+1 n+1 x

Jx”lnxdx: Judv: uv—Jvdu:

n+l1 n+l1

. Inx ——
n+1 X (n+1)2+c

(b) Jx*‘ Inxdx = [lnxd(lnx) = %(m X +c.

5.18. Find me dx.

Let v2x+1 =1y, 2x+ 1 =)?. Then dx = ydy and the integral becomes [3}' -ydy.
Integrate by parts, letting u = y, dv = 3" dy; then du = dy, v = 3"/(In 3), and we have

; y-3 3 y-3 3r
3 .ydy = dv=uv— |vdu= —|—dy= —
J ydy Ju v = uv Jv lu n3 JlnS 2% n3 (1n3)2 +c

1

5.19. Find J xIn(x + 3) dx.
0
dx X2

3T

Let u = In(x + 3), dv = xdx. Then du= < Hence on integrating by parts,

2 2 2
x l (x"dx x 1 9
Jxln(x+3)dx:?1n(x+3)fij.x+3:iln(x+3)*ij(xf3+x+3>dx

2 2
:len(x+3)—;{x—3x+91n(x+3)]+c

2
! 5 9
Then xIn(x+3)dx=-—4In4+-1n3
0 4 2
6—x
5.20. Determine | ———  dx.
J(x -3)2x+5)
6 — A B

Use the method of partial fractions. Let o + .
2x+5

(x—3)2x+5 x-3
Method 1: To determine the constants A and B, multiply both sides by (x — 3)(2x 4+ 5) to obtain

6—x=A2x+5)+B(x—3) or 6—x=54—-3B+(2A4+ B)x @)
Since this is an identity, 54 —3B=6,24+ B=—1 and 4 =3/11, B=—17/11. Then

6—x 3/11 —-17/11 3 17
X = =—1 —3—=1n]2
J(x73)(2x+5)dx J 73dx+J'2x+5dx T n|x — 3| > n|2x+5/+c¢

Method 2: Substitute suitable values for x in the identity (/). For example, letting x = 3 and x = —5/2 in
(1), we find at once 4 = 3/11, B=—17/11.

dx
5.21. Evaluate | ———— by using the substitution tan x/2 = u. >
J 54 3cosx y £ / m u
From Fig. 5-7 we see that 2
1 1
sinx/2 = " cosx/2 =

V14 Vi+a? Fig. 5-7
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Then cosx = cos® x/2 — sin® x/2 =

1
Also du= Esec2 X

INTEGRALS [CHAP. 5

2

—u
14+
2d
/2dx or dx= 2coszx/2du: 1 +‘;2.

1 1 1
Thus the integral becomes J du =-tan 'u/2 +c=-tan"! <§ tan x/2> +c.

w44 2 2
7 xsinx
5.22. EvaluateJ ——
o 1+ cos™x
Let x=7—y. Then
_J” xsinx dx_r(zrfy)sinydy_nr siny J _J” ysiny
T Jol4costx T Jo 14costy T 7)o 14costy Y o 14cos’y
= yrj d(LSJ;)—I:—ntan"(cosy)lﬁ—l:nz/Z—I
ol +cos™y
ie, I=7/2—1 or I=n"/4.
/2 A/sin x b4

5.23. Prove that J

dx =—

0 +/sinx + /cosx 4

Letting x = /2 — y, we have

/2 : /2 /2 "
I:J +/sin x d _J J/cosy d’:J 4/cos x dx

0

Then

from which 2/ =«

0 4/COSX 4+ +/sinx

T ——0X= - )
A/SIN X + 4/COS X 0 /COsy+./siny

/2 V/sin x J'”/2 Jcosx dx

—————dx + —_—
0 +/sinx 4+ 4/cosx 0 4/COSX 4+ +/sinx
7J”/2\/sinx+./cosxd\‘7J’”/zdx7g
" Jo sinx+.cosx B

O 2
/2 and I = /4.

I+I:J

The same method can be used to prove that for all real values of m,

(see Problem 5.89).

/2 sin” x PR
——dx =
o sin” x +cos™ x 4

Note: This problem and Problem 5.22 show that some definite integrals can be evaluated without first
finding the corresponding indefinite integrals.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

1

d . . . .

5.24. Evaluate J sz approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, where the
0 X

interval [0, 1] is vdivided into n = 4 equal parts.

Let f(x) = 1/(1 +x°). Using the notation on Page 98, we find Ax = (b —a)/n = (1 — 0)/4 = 0.25.
Then keeping 4 decimal places, we have: y, = f(0) = 1.0000, y; = f(0.25) = 0.9412, y, = f(0.50) = 0.8000,
y3 =£(0.75) = 0.6400, y, = f(1) = 0.50000.

(a) The trapezoid

al rule gives
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Ax

2
3 (Vo +201 + 2y, + 2y + 14} = % {1.0000 + 2(0.9412) + 2(0.8000) + 2(0.6400) + 0.500}

= 0.7828.

(b) Simpson’s rule gives

A 25
T" (v + 4y1 + 295 + 4y + yg) = OT {1.0000 + 4(0.9412) + 2(0.8000) + 4(0.6400) -+ 0.5000}
=0.7854.

The true value is /4 ~ 0.7854.

APPLICATIONS (AREA, ARC LENGTH, VOLUME, MOMENT OF INTERTIA)

5.25. Find the (a) area and (b) moment of inertia about the y-axis of the region in the xy plane
bounded by y = 4 — x? and the x-axis.

(a) Subdivide the region into rectangles as in the figure on Y
Page 90. A typical rectangle is shown in the adjoining
Fig. 5-8. Then < Axy [~
Required area = lim T &) Axy
n—00 ; L *F
) N\
— 1 _ g2 : |
= nll{lgo ;(4 é/c) Axk : T:'
2 ! v}
32 i )
| @-a=3 L\ T
) I =
I BN
(b) Assuming unit density, the moment of inertia about the y- 5 é 3 0*
axis of the typical rectangle shown above is & f(£,) Ax,. 20 v (20

Then Fig. 5-8

n n
Required moment of inertia = lim Z £ /(&) Axy = lim Z E1(4 — &) Axy
n—00 =1 n—00 =1

128

2
2 2
= 4— ) de = =2
lex( x7)dx 15

5.26. Find the length of arc of the parabola y = x* from x =0 to x = 1.

1 1
Required arc length = [ V1 + (dy/dx)? dx = [ V14 (2x) dx
Jo JOo
1 1 2
:J \/1+4x2dx:§J. V14w du
0 0
:%{%u 1+u2+%ln(u+\/1+u2)}|(2):%\/§+}11n(2+\/§)

5.27. (a) (Disk Method) Find the volume generated by revolving the region of Problem 5.25 about the
X-axis.
n 2
Required volume = lim ) " myiAxy = nj (4 — x*)? dx = 5127/15.
n—00 — )

(b) (Disk Method) Find the volume of the frustrum of a paraboloid obtained by revolving f(x) = vkx,
0 < a £ x £ b about the x-axis.
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ﬂ—k(bz —d).

b
V= kxdx =
b4 Ja X dx 2

(¢) (Shell Method) Find the volume obtained by orbiting the region of part (b) about the y-axis.
Compare this volume with that obtained in part (b).
b
V= 2nJ x(kx) dx = 27k’ /3
0

The solids generated by the two regions are different, as are the volumes.

MISCELLANEOUS PROBLEMS

2

b b
< J VP dxj (g0 dx

5.28 If f(x) and g(x) are continuous in [a, b], prove Schwarz’s inequality for integrals:
We have

b
(J S0 ) dx)
b

b b b
[ )+ Ag()) dx = j O dx + 2AJ () g0) dx + AZJ ()P dx 2 0

a

for all real values of A. Hence by Problem 1.13 of Chapter 1, using (/) with

b b b
£ = [ () dx, Bzzj V@Pdn,  C= [ S g(x)dx

we find C* < 4%B%, which gives the required result.

5.29. Prove that lim

— 00

J M dx o

0 X4 + 4 o 8

We have x* +4 = x* +4x7 +4 —4x? = (¥ +2)* — (20 = (¥ + 2+ 20)(x% +2 — 2x).
According to the method of partial fractions, assume

I Ax+B | Cx+D
X447 X2 42x+2 ¥ —2x+2
Then 1=(A+ C)x* + (B — 24 +2C + D)x* + (24 — 2B+ 2C + 2D)x + 2B + 2D

sothat 44+ C=0,B—-24+2C+D=0,24—-2B+2C+2D=0,2B+2D =1

Solving simultaneously, 4 =4, B=4, C=—4 D=4 Thus

J dx 71J x+2 dx ljxi%dx
44T 8) P 4H2x 42 8)xr—2x+2

1 x+1 1 dx 1 x—1 dx
= | ————dx+ — ——dx 4o [ ———
8)(x+ 1) +1 8J(x+ 12 +1 8J(x—17+1 8)J(x—17+1
:Tléln(x2+2x+2)+%tan*‘(x+1)—%111()2—2x+2)+étan*‘(x—1)+C

Then

M dx 1 (M*+2m+2\ 1 1 7
li =lim{—In|——"—"" ") 4_tan”' M+ D+-tan” (M - 1)} ==
M‘L‘LL a1 e o o) telan (M DA gtan (M =D =3

00

We denote this limit by J ﬁ, called an improper integral of the first kind. Such integrals are considered
0 X

further in Chapter 12. See also Problem 5.74.
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5.30.

5.31.

Jo sin £dt

7 .

Evaluate lim
x—0 X

The conditions of L’Hospital’s rule are satisfied, so that the required limit is

L 4 gin
S Cosiny® 7 GIY) 32e0sx
lim = lim 3 = lim *= = lim >— =
x—0 i(x4) x—0 4x x—0 1(4‘;3) x—0 12x 4
dx dx

b
Prove that if f(x) is continuous in [a, b] then J f(x) dx exists.

a
Leto = Z f (&) Axy, using the notation of Page 91. Since f(x) is continuous we can find numbers M},

and my, repreggrllting the Lu.b. and g.1l.b. of f(x) in the interval [x;_;, x;], i.e., such that my < f(x) £ M.
We then have

n n
mb —a) < S:kaAxk <o = ZMkAxk:Sé Mb —a) @)
le=1 l=1
where m and M are the g.1.b. and L.u.b. of f(x) in [a, b]. The sums s and S are sometimes called the lower and
upper sums, respectively.
Now choose a second mode of subdivision of [a, b] and consider the corresponding lower and upper
sums denoted by s" and S’ respectively. We have must

s <8 and N @)

To prove this we choose a third mode of subdivision obtained by using the division points of both the first
and second modes of subdivision and consider the corresponding lower and upper sums, denoted by 7 and 7,
respectively. By Problem 5.84, we have

s<t<T LS and s’

IIA

t T

IIA
IIA

N )

which proves (2).

From (2) it is also clear that as the number of subdivisions is increased, the upper sums are monotonic
decreasing and the lower sums are monotonic increasing.  Since according to (/) these sums are also
bounded, it follows that they have limiting values which we shall call s and S respectively. By Problem
5.85,5 < S. In order to prove that the integral exists, we must show that § = S.

Since f(x) is continuous in the closed interval [a, ], it is uniformly continuous. Then given any € > 0,
we can take each Ax;, so small that M, — my; < €/(b — a). 1t follows that

n

€ n
S—s= Z(M/( —mp)Ax, < m; Ax, =€ “

k=1

Now S —s=(S —8) + (S —5) + (5§ — s) and it follows that each term in parentheses is positive and so is less
than € by (4). In particular, since S — 5 is a definite number it must be zero, i.e., S = 5. Thus, the limits of
the upper and lower sums are equal and the proof is complete.

Supplementary Problems

DEFINITION OF A DEFINITE INTEGRAL
1

5.32.

5.33.

(a) Express J x*dx as a limit of a sum. (b) Use the result of (a) to evaluate the given definite integral.
(¢) Interpret the result geometrically.
Ans. (b) %

2 6
Using the definition, evaluate (a) J GBx+ dx, (b) J (x2 —4x)dx.
Ans. (a) 8, (b) 9 0 3



112 INTEGRALS

. n n n b
5.34. Prove that nll)ﬂ(}@{m+m++m} —Z

5.35. Prove that lim

n—oo

17427 430 ... 40l 1].
= if p>—1.
n]1+1 p+l

b
5.36. Using the definition, prove that [ Fdx=e — e

Ja

5.37. Work Problem 5.5 directly, using Problem 1.94 of Chapter 1.

5.38. Prove that lim

1 1 1
+ ot =In(l ++2).
n%oo{ /n2 + 12 /n2 +22 /n2 _,’_HZ}

R n tan”'x
5.39. Prove that nll>r§o ;m = if x #0.

PROPERTIES OF DEFINITE INTEGRALS
5.40. Prove (a) Property 2, (b) Property 3 on Pages 91 and 92.

b ¢ b
5.41. If f(x) is integrable in (a, ¢) and (¢, b), prove that J f(x)dx = J f(x)dx +J f(x)dx.

a a

b b
5.42. If f(x) and g(x) are integrable in [a, b] and f(x) < g(x), prove that J

a a

5.43. Prove that | —cosx = xz/rr for0 < x < 7/2.

1
5.44. Prove that [ cosnx dx| < In2 for all n.
Jo X
V3 X
5.45. Prove that J ﬂdx =< L.
X+ 12¢

MEAN VALUE THEOREMS FOR INTEGRALS
5.46. Prove the resultb(5), Page 92. [Hint: If m < f(x) < M, then mg(x) < f(x)g(x) < Mg(x).
and divide by J g(x)dx. Then apply Theorem 9 in Chapter 3.

a

5.47. Prove that there exist values & and & in 0 < x < 1 such that

Jl sin wx . — 2 —zsinnf
o241 @41 4 2

Hint: Apply the first mean value theorem.

T

F(x)dx < J 2(x) d.

[CHAP. 5

Now integrate

5.48. (a) Prove that there is a value £ in 0 < x < msuch that | ¢ *cosxdx = sin&. (b) Suppose a wedge in the

0
shape of a right triangle is idealized by the region bound by the x-axis, f(x) = x, and x = L.

Let the weight

distribution for the wedge be defined by W(x) = x> + 1. Use the generalized mean value theorem to show

. . . 3L L*+2
that the point at which the weighted value occurs is — 2—+
4 L°+3



CHAP. 5] INTEGRALS 113

CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

in "tan™' ¢ 3 dx esch’/u

5.49. Evaluate: J,“'”cs%z, b Jidt, Ji d J du,

valuate: (a) |x“e osx” dx, (b) g (¢) Vo (d) Ji u

O [ s

) 16—X2.
Ans. (a) %esm"'}—kc, (b) 7732, (¢) n/3, (d) —2cothJu+c, (e) 1In3.
! dx V3 dx X2 —1

5.50. Show that (a) Lm_ﬁ, (b) Jx2 =7~ +c.

5.51. Prove that (a) J\/uziazdu:%ux/uz:I:az:l:%azln\u+«/u2:|:a2|
(b) J\/az—uzdu:%u«/az—u2+%a2sin71u/a+c, a> 0.

. d.
5.52. FdeL. Ans. VX2 +2x+5—In|x+1+vVx>+2x+ 5] +c.
VX2 4+2x+5

5.53. Establish the validity of the method of integration by parts.

T

5.54. Evaluate (a)J

xcos3xdx, (b) [x%fl‘ dx. Ans. (a) =2/9, (b)) —Le™™(@x’ +637 +6x+3)+c
0 .

1 1 11
2 -1 11
5.55. Show that (a) Jox tan” xdx = T 6—|—61n2
2 VT 33 3 (5427
Vxl4+x+ldx=——+""421 .
(b) J_z x>+ x4+ ldx y) + ) +8 n<2ﬁ_3)

5.56. (a) If u=f(x) and v = g(x) have continuous nth derivatives, prove that
Juv(") dx = up™ D — D oy (=1 Ju(")v dx

called generalized integration by parts. (b) What simplifications occur if «™ = 0? Discuss. (¢) Use (a) to
o

evaluate J xtsinxdx. Ans. (¢c) 7t — 1277 +48
0

1

5.57.  Show that J ydy | _m—2
0o(x+ 12 +1) 8

. . . . X A B Cx+D
[Hint: Use partial fractions, i.e., assume +

= + +
(x+12x2+1) (x+1)7 x+1 ¥P+1

and find 4, B, C, D]

T
5.58. Prove that J & _ T el
0 —COSX o —1

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

1
5.59. Evaluate J dx
0 1+ x
Compare with the exact value, In2 = 0.6931.

approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, taking n = 4.

err/2
5.60. Using (a) the trapezoidal rule, (b) Simpson’s rule evaluate J sin® x dx by obtaining the values of sin® x
0
at x =0°,10°...,90° and compare with the exact value /4.

5.61. Prove the (a) rectangular rule, (b) trapezoidal rule, i.e., (16) and (1/7) of Page 98.

5.62. Prove Simpson’s rule.
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5.63. Evaluate to 3 decimal places using numerical integration: (a) J L (b) J cosh x? dx.
1 R 0
Ans. (a) 0.322, (b) 1.105.
APPLICATIONS
5.64. Find the () area and (b) moment of inertia about the y-axis of the region in the xy plane bounded by
y=sinx, 0 < x < 7 and the x-axis, assuming unit density.
Ans. (a) 2, (b) ©* —4
5.65. Find the moment of inertia about the x-axis of the region bounded by y = x* and y = x, if the density is
proportional to the distance from the x-axis.
Ans. %M, where M = mass of the region.
5.66. (a) Show that the arc length of the catenary y = coshx fromx =0tox =1n2is 4 (b) Show that the length
ofarcof y=x%, 2 < x < 5is P - 2/2117%
5.67. Show that the length of one arc of the cycloid x = a(@ — sin6), y = a(l — cosh), (0 < 6 < 27) is 8a.
5.68. Prove that the area bounded by the ellipse x*/a* + 1*/b* = 1 is 7ab.
5.69. (a) (Disk Method) Find the volume of the region obtained by revolving the curve y =sinx, 0 < x < 7
about the x-axis. Ans. (a) 72
(b) (Disk Method)  Show that the volume of the}7 frustrum of a paraboloid obtained by revolving
f(x) =+vkx, 0 <a < x < b, about the x-axis is nJ kx dx _—(b2 @*). (¢) Determine the volume
obtained by rotating the region bound by f(x) =3, g(x) =5 — x> on —v2 < x £ /2. (d) (Shell Method)
A spherical bead of radius a has a circular cylindrical hole of radius b, b < a, through the center. Find the
volume of the remaining solid by the shell method. (e) (Shell Method) Find the volume of a solid whose
outer boundary is a torus (i.e., the solid is generated by orbiting a circle (x — a)> + y* = b* about the y-axis
(a > b).
5.70. Prove that the centroid of the region bounded by y = va*> — x?>, —a £ x < a and the x-axis is located at
(0, 4a/3m).
5.71. (a) If p = f(¢) is the equation of a curve in polar coordinates, show that the area bounded by this curve and
1 (%2
the lines ¢ = ¢; and ¢ = ¢, is —J p°d¢.  (b) Find the area bounded by one loop of the lemniscate
p° = d*cos 2¢ 4
Ans. (b) d?
()
5.72.  (a) Prove that the arc length of the curve in Problem 5.71(a) is [ Vo2 + (dp/dp)* dp. (b) Find the length

of arc of the cardioid p = a(1 — cos ¢). 4
Ans. (b) 8a

MISCELLANEOUS PROBLEMS

5.73.

5.74.

5.75.

Establish the mean value theorem for derivatives from the first mean value theorem for integrals. [Hint: Let
f(x) = F'(x) in (4), Page 93.]

== and give a geo-

dme dx 3 d
Prove that (a) lim J =4, (b) lim J — =6, (¢) lim
0o V1—x* 2

( dx
e—~>0+ V4 —x e~0+ )¢ \3/} e—~>0+

metric interpretation of the results.

Jl_‘ dx T

4 dx 3 dx !
[These limits, denoted usually by J J and J respectively, are called impro-

dx
ovVA=x" Jox 0v1—x?
per integrals of the second kind (see Problem 5.29) since the integrands are not bounded in the range of
integration. For further discussion of improper integrals, see Chapter 12.]

M 2—e dx T
Prove that (a hm J Xe¥dx=4=24, (b) lim J - =
( ) M—oo Jo ( ) 0+ ) m 2
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5.76.

5.77.

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.84.

5.85.

5.86.

5.87.

5.88.

5.89.

5.90.

5.91.

5.92.

00 /2 : 00
Evaluate (a) J Ay (b) J % x,  (¢) J L
o 1+ x 0 (sinx)¥ 0 x+vx24+1
27
Ans. (@) —= (b) 3 (c) does not exist
(a) 373 b 3 (o)

2 /2 sint
— 4 dt
Evaluate lim ex’/m —em/4+ L ¢ .
x—7/2 1+ cos2x

Ans. e/2w

X2

Prove: (a i A P4+ dt:3x3+x5—2x3+3x2—2x, b i cos 2 dt = 2xcosx* — cos x°.
d d
x )2 x

X

T /2
Prove that (a) J VI¥sinxdx=4, (b) J S SR TRV, S
0

0 sinx 4 cos x

U dx _ 'dy

glx2 _L 1+ )2

But 7 = tan"!(1) — tan"!(=1) = n/4 — (—7/4) = 7/2. Thus 7/2 = 0.

Explain the fallacy: [ = J = —1, using the transformation x = 1/y. Hence I = 0.

(12 cos mx 1 1
Prove that J = dx < - tan”' =
0 /1+ X2 4 2

vo+l+/n+24+--++/2n—-1

B2

Evaluate lim { } Ans. 22v2-1)
n—o0

1 if x is irrational

Prove that f(x) = {0 if x is rational

is not Riemann integrable in [0, 1].
[Hint: In (2), Page 91, let &, k = 1,2, 3, ..., n be first rational and then irrational points of subdivision and
examine the lower and upper sums of Problem 5.31.]

Prove the result (3) of Problem 5.31. [Hint: First consider the effect of only one additional point of
subdivision.]

In Problem 5.31, prove that § < S. [Hint: Assume the contrary and obtain a contradiction.]

b
If f(x) is sectionally continuous in [a, b], prove that [ f(x)dx exists. [Hint: Enclose each point of disconti-

Ja
nuity in an interval, noting that the sum of the lengths of such intervals can be made arbitrarily small. Then
consider the difference between the upper and lower sums.

2x 0<x<l )
If f(x)=13 x=1 , find J f(x)dx. Interpret the result graphically. Ans. 9
bx—1 1<x<2 0
3
Evaluate | {x —[x]+ %} dx where [x] denotes the greatest integer less than or equal to x. Interpret the result

0
graphically. Ans. 3

77/2 s m
sin” x T
(a) Prove that ——————— dx =— for all real values of m.
o sin” x4+ cos™x 4

27
(b) Prove that J L“ =7
o 1+tan*x

/2 o
sin x .
Prove that J —— dx exists.

0 X

05 tan™! x

Show that J ——— dx = 0.4872 approximately.
0 X

xdx e

Show that —_ =
ow tha Ll—i—coszx 22



