CHAPTER 2
First Order Equations

IN THIS CHAPTER we study first order equations for which there are general methods of solution.

SECTION 2.1 deals with linear equations, the simplest kind of first order equations. In this section we
introduce the method of variation of parameters. The idea underlying this method will be a unifying
theme for our approach to solving many different kinds of differential equations throughout the book.

SECTION 2.2 deals with separable equations, the simplest nonlinear equations. In this section we intro-
duce the idea of implicit and constant solutions of differential equations, and we point out some differ-
ences between the properties of linear and nonlinear equations.

SECTION 2.3 discusses existence and uniqueness of solutions of nonlinear equations. Although it may
seem logical to place this section before Section 2.2, we presented Section 2.2 first so we could have
illustrative examples in Section 2.3.

SECTION 2.4 deals with nonlinear equations that are not separable, but can be transformed into separable
equations by a procedure similar to variation of parameters.

SECTION 2.5 covers exact differential equations, which are given this name because the method for
solving them uses the idea of an exact differential from calculus.

SECTION 2.6 deals with equations that are not exact, but can made exact by multiplying them by a
function known called integrating factor.
29



30 Chapter 2 First Order Equations

2.1 LINEAR FIRST ORDER EQUATIONS

A first order differential equation is said to be linear if it can be written as

V' +px)y = fx). 2.1.1)

A first order differential equation that can’t be written like this is nonlinear. We say that (2.1.1) is
homogeneous if f = 0; otherwise it’s nonhomogeneous. Since y = 0 is obviously a solution of the
homgeneous equation

y' +px)y =0,

we call it the trivial solution. Any other solution is nontrivial.

Example 2.1.1 The first order equations

x2y +3y = x2,
xy' —8x%y = sinx,
xy'+(nx)y = 0,
y/ — x2y _2’

are not in the form (2.1.1), but they are linear, since they can be rewritten as

/ 3 _ 1
y + ;y - )
, sin x
y —8xy = ,
by
,  Inx
y+—y =0
X
y —x%y = -2.

Example 2.1.2 Here are some nonlinear first order equations:

xy +3y? = 2x (because y is squared),
yy = 3 (because of the product yy’),
y +xe? = 12 (because of e”).

General Solution of a Linear First Order Equation

To motivate a definition that we’ll need, consider the simple linear first order equation

L1
Y= (2.1.2)
X

From calculus we know that y satisfies this equation if and only if
1
y=——+c, (2.1.3)
X

where ¢ is an arbitrary constant. We call ¢ a parameter and say that (2.1.3) defines a one—parameter
family of functions. For each real number c, the function defined by (2.1.3) is a solution of (2.1.2) on
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(—00, 0) and (0, co0); moreover, every solution of (2.1.2) on either of these intervals is of the form (2.1.3)
for some choice of ¢. We say that (2.1.3) is the general solution of (2.1.2).
We’ll see that a similar situation occurs in connection with any first order linear equation

Y+ px)y = fx); (2.1.4)

that is, if p and f are continuous on some open interval (a, b) then there’s a unique formula y = y(x, ¢)
analogous to (2.1.3) that involves x and a parameter ¢ and has the these properties:

e For each fixed value of ¢, the resulting function of x is a solution of (2.1.4) on (a, b).

e If y is a solution of (2.1.4) on (a, b), then y can be obtained from the formula by choosing ¢
appropriately.

We’ll call y = y(x, ¢) the general solution of (2.1.4).
When this has been established, it will follow that an equation of the form

Po(x)y" + Pi(x)y = F(x) (2.1.5)

has a general solution on any open interval (a, b) on which Py, P;, and F are all continuous and Py has
no zeros, since in this case we can rewrite (2.1.5) in the form (2.1.4) with p = Py/Py and f = F/ Py,
which are both continuous on (a, b).

To avoid awkward wording in examples and exercises, we won’t specify the interval (a, b) when we
ask for the general solution of a specific linear first order equation. Let’s agree that this always means
that we want the general solution on every open interval on which p and f are continuous if the equation
is of the form (2.1.4), or on which Py, P1, and F are continuous and Py has no zeros, if the equation is
of the form (2.1.5). We leave it to you to identify these intervals in specific examples and exercises.

For completeness, we point out that if Py, Py, and F are all continuous on an open interval (a, b), but
Py does have a zero in (a, b), then (2.1.5) may fail to have a general solution on (a, b) in the sense just
defined. Since this isn’t a major point that needs to be developed in depth, we won’t discuss it further;
however, see Exercise 44 for an example.

Homogeneous Linear First Order Equations

We begin with the problem of finding the general solution of a homogeneous linear first order equation.
The next example recalls a familiar result from calculus.

Example 2.1.3 Let a be a constant.
(a) Find the general solution of
y —ay = 0. (2.1.6)

(b) Solve the initial value problem

y'—ay =0, y(xo) = yo.

SOLUTION(a) You already know from calculus that if ¢ is any constant, then y = ce®” satisfies (2.1.6).
However, let’s pretend you’ve forgotten this, and use this problem to illustrate a general method for
solving a homogeneous linear first order equation.

We know that (2.1.6) has the trivial solution y = 0. Now suppose y is a nontrivial solution of (2.1.6).
Then, since a differentiable function must be continuous, there must be some open interval / on which y

has no zeros. We rewrite (2.1.6) as
/

Yy _
—=uq
y
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Figure 2.1.1 Solutions of y' —ay =0, y(0) = 1

for x in /. Integrating this shows that

In|y| =ax +k, so |y|=eFe®,

where k is an arbitrary constant. Since e%”* can never equal zero, y has no zeros, so y is either always
positive or always negative. Therefore we can rewrite y as

y = ce?” 2.1.7)
where
ek ify >0,
C = k .
—e* ify <0.

This shows that every nontrivial solution of (2.1.6) is of the form y = ce®* for some nonzero constant c.
Since setting ¢ = 0 yields the trivial solution, all solutions of (2.1.6) are of the form (2.1.7). Conversely,
(2.1.7) is a solution of (2.1.6) for every choice of ¢, since differentiating (2.1.7) yields y’ = ace®* = ay.
SoLuTioN(b) Imposing the initial condition y(xp) = yo yields yo = ce?*0, so ¢ = yge 40 and

—axp ,ax a(x—xgp)

Y = Yoe = Yoe€
Figure 2.1.1 show the graphs of this function with xo = 0, yo = 1, and various values of a.
Example 2.1.4 (a) Find the general solution of

xy +y=0. (2.1.8)

(b) Solve the initial value problem
xy'+y=0, y()=3. (2.1.9)
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SOLUTION(a) We rewrite (2.1.8) as
1
y + -y =0, (2.1.10)
X

where x is restricted to either (—oo, 0) or (0, c0). If y is a nontrivial solution of (2.1.10), there must be
some open interval I on which y has no zeros. We can rewrite (2.1.10) as

/

y 1
y  x
for x in /. Integrating shows that
ek
In|ly|=—In|x|+k, so |y|=—.
|x|
Since a function that satisfies the last equation can’t change sign on either (—oo, 0) or (0, 00), we can
rewrite this result more simply as

c
y=- (2.1.11)
X
where
ek ify >0,
C = k .
—e* ify <0.

We’ve now shown that every solution of (2.1.10) is given by (2.1.11) for some choice of c¢. (Even though
we assumed that y was nontrivial to derive (2.1.11), we can get the trivial solution by setting ¢ = 0 in
(2.1.11).) Conversely, any function of the form (2.1.11) is a solution of (2.1.10), since differentiating
(2.1.11) yields

y = T
X
and substituting this and (2.1.11) into (2.1.10) yields
, 1 c lc
y+-y = —=+-=
X X X X
2 + 2 0.

Figure 2.1.2 shows the graphs of some solutions corresponding to various values of ¢
SoLuTION(b) Imposing the initial condition y(1) = 3 in (2.1.11) yields ¢ = 3. Therefore the solution
of (2.1.9) is
y==.
X
The interval of validity of this solution is (0, co).
The results in Examples 2.1.3(a) and 2.1.4(b) are special cases of the next theorem.

Theorem 2.1.1 If p is continuous on (a, b), then the general solution of the homogeneous equation
y + p(x)y =0 (2.1.12)

on (a,b)is
y =ce P™,
where

P(x) =/p(x)dx (2.1.13)
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Figure 2.1.2 Solutions of xy’ + y = 0 on (0, co) and (—o0, 0)
is any antiderivative of p on (a, b); that is,
P'(x) = p(x), a<x<bh. (2.1.14)

Proof If y = ce P™, differentiating y and using (2.1.14) shows that

—P() _ —P() _

y' =—P'(x)ce —p(x)ce —px)y,

so ¥y + p(x)y = 0; that is, y is a solution of (2.1.12), for any choice of c.

Now we’1l show that any solution of (2.1.12) can be written as y = ce~F®) for some constant c. The
trivial solution can be written this way, with ¢ = 0. Now suppose y is a nontrivial solution. Then there’s
an open subinterval I of (a, b) on which y has no zeros. We can rewrite (2.1.12) as

y_’ =—p(x) (2.1.15)
y

for x in 7. Integrating (2.1.15) and recalling (2.1.13) yields
In|y| =—-P(x) +k,

where k is a constant. This implies that

y] = eke @,

Since P is defined for all x in (a, b) and an exponential can never equal zero, we can take I = (a, b), so
y has zeros on (a, b) (a,b), so we can rewrite the last equation as y = ce” ™ where

ek ify >0on(a,b),

CT ek if y <Oon (a,b).
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REMARK: Rewriting a first order differential equation so that one side depends only on y and y’ and the
other depends only on x is called separation of variables. We did this in Examples 2.1.3 and 2.1.4, and
in rewriting (2.1.12) as (2.1.15).We’llapply this method to nonlinear equations in Section 2.2.

Linear Nonhomogeneous First Order Equations

We’ll now solve the nonhomogeneous equation

Y+ px)y = fx). (2.1.16)

When considering this equation we call

Y +px)y=0

the complementary equation.

We’ll find solutions of (2.1.16) in the form y = uy;, where y; is a nontrivial solution of the com-
plementary equation and u is to be determined. This method of using a solution of the complementary
equation to obtain solutions of a nonhomogeneous equation is a special case of a method called variation
of parameters, which you’ll encounter several times in this book. (Obviously, u can’t be constant, since
if it were, the left side of (2.1.16) would be zero. Recognizing this, the early users of this method viewed
u as a “parameter” that varies; hence, the name “variation of parameters.”)

If

y =uyi, then y =u'y; +uyl.

Substituting these expressions for y and y’ into (2.1.16) yields
w'yr +u(yy + p()y) = f(x),

which reduces to
W'y = f(x), 2.1.17)

since y; is a solution of the complementary equation; that is,
yi+p)y1 =0.

In the proof of Theorem 2.2.1 we saw that y; has no zeros on an interval where p is continuous. Therefore
we can divide (2.1.17) through by y; to obtain

u' = f(x)/y1(x).

We can integrate this (introducing a constant of integration), and multiply the result by y; to get the gen-
eral solution of (2.1.16). Before turning to the formal proof of this claim, let’s consider some examples.

Example 2.1.5 Find the general solution of

y 42y = x3e2*. (2.1.18)

By applying (a) of Example 2.1.3 with a = —2, we see that y; = e~2¥ is a solution of the com-

plementary equation y’ 4+ 2y = 0. Therefore we seek solutions of (2.1.18) in the form y = ue 2%, so
that

Y =u'e ™ —2ue™® and Y +2y =u'e > —2ue 4 2ue” =u'e™ . (2.1.19)

Therefore y is a solution of (2.1.18) if and only if

/e—2x — 3 —2x 3

u x’e or, equivalently, u = x°.



36 Chapter 2 First Order Equations

224 dd
S
[ A
AT
24 4ds
a2 24ds
a4 4ds
[/
[/
N d244ds
a2 24ds
a2 44ds
224 4ds
a4 4ds
AT
A
[
a2 44ds
[
[T
A A

s

I T U S S SN

Yy gw e v ¥ &
V2947 4/ ddddd
VY Y/ a4 e e dds
/ Viva44daddds
I A r

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
?
/

SRS e e e e S S P e e e

V& & v & € (s
Y

A - - -~

P A A A A A A
A A A A A A A A A A A A
SFAAAAAAAAAAAAAAAA A
-1 AAAAAAAAAAAAAAAA A
G AR A AR A A A S S S S ST IS
o o A A o A A A A A R A s
‘ O A A A R s
B\ A o S A N A A S S S S
Il A S S Sl S S Sl SV SRV SR SR Sl SRV SR SRV Sl SRV Sl Sl S S S ol
N A A A N o B N N A A N A A
PN 7 N NN EEEEEEEE NN
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Figure 2.1.3 A direction field and integral curves for y’ + 2y = x2e™2*
Therefore
4
X Lo
U=— ,
4
and .
X
y=ue ¥ == +¢
4
is the general solution of (2.1.18).
Figure 2.1.3 shows a direction field and some integral curves for (2.1.18).
Example 2.1.6
(a) Find the general solution
¥’ + (cotx)y = x csc x. (2.1.20)
(b) Solve the initial value problem
¥y + (cotx)y = xcscx, y(n/2)=1. (2.1.21)

SoLUTION(a) Here p(x) = cotx and f(x) = x csc x are both continuous except at the points x = r,
where r is an integer. Therefore we seek solutions of (2.1.20) on the intervals (r7, (r + 1)7). We need
a nontrival solution y; of the complementary equation; thus, y; must satisfy y| + (cot x)y; = 0, which

we rewrite as ,

y
—1=—cotx=— - .
Y1 sin x

COsS X

(2.1.22)

Integrating this yields
In|y;| = —In|sinx]|,
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where we take the constant of integration to be zero since we need only one function that satisfies (2.1.22).
Clearly y; = 1/ sinx is a suitable choice. Therefore we seek solutions of (2.1.20) in the form

u
y = . )
sin x
so that
, u U COS X
Yy == "5 (2.1.23)
sin x sin” x
and
, u' UCOSX  ucotx
Y+ (cotx)y = ——-—— -
sinx  sinZx sin x
i
u UCOSX  UCOSX
T b s (2.1.24)
sinx  sin” x sin” x
u/

sinx’
Therefore y is a solution of (2.1.20) if and only if
u'/sinx = xcscx = x/sinx or, equivalently, u’ = x.

Integrating this yields

2 u X2 C

u="4e¢, ad y= - = 4+ ° (2.1.25)
2 sin x 2sinx sin x

is the general solution of (2.1.20) on every interval (rr, (r + 1)) (r =integer).

SoLuTIiON(b) Imposing the initial condition y(;r/2) = 1 in (2.1.25) yields
| 72 . | 72
=—+4c or c=1——.
8 8
Thus,
x2 1—-n2/8
T ( . /8)
2sinx sin x
is a solution of (2.1.21). The interval of validity of this solution is (0, ); Figure 2.1.4 shows its graph.

y=

15

10

\
x

Figure 2.1.4 Solution of y" + (cotx)y = xcscx, y(n/2) = 1
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REMARK: It wasn’t necessary to do the computations (2.1.23) and (2.1.24) in Example 2.1.6, since we
showed in the discussion preceding Example 2.1.5 that if y = uy; where y] + p(x)y1 = 0, then
¥+ p(x)y = u'y;. We did these computations so you would see this happen in this specific example. We
recommend that you include these “unnecesary” computations in doing exercises, until you’re confident
that you really understand the method. After that, omit them.

We summarize the method of variation of parameters for solving

Y+ p)y = fx) (2.1.26)
as follows:
(a) Find a function y; such that
y/
= = —p(x).
1
For convenience, take the constant of integration to be zero.
(b) Write
y =uyi (2.1.27)

to remind yourself of what you’re doing.
(¢) Write u’y; = f and solve for u’; thus, u’ = f/y;.
(d) Integrate u’ to obtain u, with an arbitrary constant of integration.

(e) Substitute u into (2.1.27) to obtain y.

To solve an equation written as
Po(x)y" + Pi(x)y = F(x),

we recommend that you divide through by Py(x) to obtain an equation of the form (2.1.26) and then
follow this procedure.

Solutions in Integral Form

Sometimes the integrals that arise in solving a linear first order equation can’t be evaluated in terms of
elementary functions. In this case the solution must be left in terms of an integral.

Example 2.1.7
(a) Find the general solution of
y —2xy =1.
(b) Solve the initial value problem
y —2xy =1, y(0) = yo. (2.1.28)

SOLUTION(a) To apply variation of parameters, we need a nontrivial solution y; of the complementary
equation; thus, yi —2xy; = 0, which we rewrite as

i
h=2x.

1
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Integrating this and taking the constant of integration to be zero yields
1 — 2 — x2
n|yil =x% so |yi|=e"".

We choose y; = ¢~ and seek solutions of (2.1.28) in the form y = uexz, where

Therefore

u=c+ /e_xzdx,

but we can’t simplify the integral on the right because there’s no elementary function with derivative
equal to e~*. Therefore the best available form for the general solution of (2.1.28) is

y = ue® = e* (C + /e_xzdx) . (2.1.29)

SOLUTION(b) Since the initial condition in (2.1.28) is imposed at xo = 0, it is convenient to rewrite

(2.1.29) as
x? Yo : 0 —t2
=e c+ e '"dt ), since e ' dt =0.
0 0

Setting x = 0 and y = y¢ here shows that ¢ = yg. Therefore the solution of the initial value problem is

y=e¥ (yo + / e"zdr). (2.1.30)
0

For a given value of y and each fixed x, the integral on the right can be evaluated by numerical methods.
An alternate procedure is to apply the numerical integration procedures discussed in Chapter 3 directly to
the initial value problem (2.1.28). Figure 2.1.5 shows graphs of of (2.1.30) for several values of yj.

<

Figure 2.1.5 Solutions of y' —2xy =1, y(0) = yo
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An Existence and Uniqueness Theorem

The method of variation of parameters leads to this theorem.

Theorem 2.1.2 Suppose p and f are continuous on an open interval (a, b), and let y1 be any nontrivial
solution of the complementary equation

y' 4+ p(x)y =0

on (a,b). Then:
(a) The general solution of the nonhomogeneous equation

Y+ p)y = f(x) (2.1.31)
on (a,b)is
y = y(x) (c + / f(x)/yl(x)dx) . (2.1.32)
(b) If xo is an arbitrary pointin (a, b) and yq is an arbitrary real number, then the initial value problem

V' +px)y = f(x), y(xo)=yo

has the unique solution

y=y1(X)( Yo 4 xf(t)dr)

y1(x0)  Jxo 1(2)
on (a,b).
Proof (a) To show that (2.1.32) is the general solution of (2.1.31) on (a, b), we must prove that:
(i) If ¢ is any constant, the function y in (2.1.32) is a solution of (2.1.31) on (a, b).

(ii) If y is a solution of (2.1.31) on (a, b) then y is of the form (2.1.32) for some constant c.
To prove (i), we first observe that any function of the form (2.1.32) is defined on (a, b), since p and f
are continuous on (a, b). Differentiating (2.1.32) yields

T ( + [ r@me dx) 0.

Since y; = —p(x)y1, this and (2.1.32) imply that

Vo= —pmi ) ( + [ re@me dx) )
—p(x)y(x) + f(x),

which implies that y is a solution of (2.1.31).
To prove (ii), suppose y is a solution of (2.1.31) on (a, b). From the proof of Theorem 2.1.1, we know
that y; has no zeros on (a, b), so the functionu = y/y; is defined on (a, b). Moreover, since

y'=-py+f and y; =-py1.

;oY =y
"
nEpy+ ) —CEeydy _ f
J’% 1




Section 2.1 Linear First Order Equations 41

Integrating u’ = f/y; yields
u=(c+ [ romwax).

which implies (2.1.32), since y = uy;.
(b) We’ve proved (a), where [ f(x)/y1(x) dx in (2.1.32) is an arbitrary antiderivative of f/y;. Now
it’s convenient to choose the antiderivative that equals zero when x = xp, and write the general solution

of (2.1.31) as
_ T f@)
y = y1(x) (C + o 1) dt) .

Since

y(x0) = y1(x0) (C + RriU) df) = cy1(xo),
X0 yl([)

we see that y(xg) = yo if and only if ¢ = yo/y1(x0).

2.1 Exercises

In Exercises 1-5 find the general solution.

1. y’ + ay = 0 (a=constant) 2. Yy +3x2y=0
3. xy'+(nx)y=0 4. xy'+3y=0
5. x2y/+y=0

In Exercises 6—11 solve the initial value problem.

1+ x
y’+(T)y=0, y(1) =1

1
7. xy’+(1+1—)y=0, ye) =1

&

nx

8. xy +(1+xcotx)y =0, y(%):Z

2x
9. AN =0 0)=2
Y (1 + x2) Y - 20
.k
10. y'+—-y =0, y(l)=3 (k=-constant)
x
11. y' + (tankx)y =0, y(0) =2 (k = constant)

In Exercises 12 —15 find the general solution. Also, plot a direction field and some integral curves on the
rectangular region {—2 < x <2, =2 <y <2j.

12. [C/G]y +3y=1 13. y’+(%_1)y=_§

14. |C/G|y +2xy = xe / 2x _ e
15. Y+ 1_'_)€2y 1

+ x2
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In Exercises 16 =24 find the general solution.

4 1 sin x

7 ,
L 17. _
16. y'+—y=—+3 Y T T ey T o

2
/ —_—
18. xy' +(1+ 2x2)y _ x3e_x2 19. xy' +2y= = +1

sin x

20. y'+ (tanx)y =cosx 21, (1+x)y +2y =
14+ x

22 (x=2)(x—=1)y' —(@dx =3)y = (x —2)3

23. y' + (2sinxcosx)y = e~ S°x¥ 24, x%y 4 3xy =e*

In Exercises 25-29 solve the initial value problem and sketch the graph of the solution.

25. y +7y =e3*, y0)=0
2
26. (1 + xz)y/ + 4Xy = 1+—2’ y(O) =1
X
2
27. |C/G "+3y= —, —-1)=0
[z Y
2. [CG] Y + @otxyy =cosx, y(F) =1
1 2
29. [C/Gly +-y=S+1 y1)=0
X X

In Exercises 30-37 solve the initial value problem.

30, (x—1)y 43y = — 4 S0¥ ©0) =1
TR T e YT
3. xy' +2y =8x2, y(1)=3
32. xy—2y=-x2, y()=1
33. y+2xy=x, y(0)=3
1 — 1) sec?
3. (r— 1)y 43y = LEO T DS
(x—1)?3
1+ 2x2
5. 2)y 44y = —— _ 1) =2
35. (x+2)y +4y G2 y(=1)

36. (x2—1)y —2xy=x(x%2-1), y(0)=4
37. (x2-95)y —2xy =-2x(x2-5), y2) =7

In Exercises 38—42 solve the initial value problem and leave the answer in a form involving a definite
integral. (You can solve these problems numerically by methods discussed in Chapter 3.)

38. Yy +2xy=x2, y(0)=3

1 sin x

9. yV+-y=—-, y)=2
X X
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e Ftanx
40. y’+y=f, y(1) =0
2x _ e*
1+x2) T 1+ 222
42. xy'+(x+1y= e, y() =2
43. Experiments indicate that glucose is absorbed by the body at a rate proportional to the amount of
glucose present in the bloodstream. Let A denote the (positive) constant of proportionality. Now

suppose glucose is injected into a patient’s bloodstream at a constant rate of r units per unit of
time. Let G = G(¢) be the number of units in the patient’s bloodstream at time ¢ > 0. Then

41. ' +

y(©0) =1

G =—-AG +r,

where the first term on the right is due to the absorption of the glucose by the patient’s body and
the second term is due to the injection. Determine G for ¢ > 0, given that G(0) = Gy. Also, find

44. (a) Plot a direction field and some integral curves for
xy —2y =-—1 (A)

on the rectangular region {—1 < x < 1,—.5 < y < 1.5}. What do all the integral curves
have in common?

(b) Show that the general solution of (A) on (—o0, 0) and (0, 00) is

1 2
y—§+cx.

(c) Show that y is a solution of (A) on (—oo, co) if and only if
L e x20
—+c1x°, x>0,
3 1

y= 1
2
§+62x, x <0,

where ¢ and ¢, are arbitrary constants.

(d) Conclude from (c) that all solutions of (A) on (—oco, 00) are solutions of the initial value
problem

1
xy =2y =—1, y(0) = 3
(e) Use (b) to show that if x¢ # 0 and yy is arbitrary, then the initial value problem
xy' =2y =—1, y(x0) = yo

has infinitely many solutions on (—oo, co). Explain why this does’nt contradict Theorem 2.1.1(b).
45. Suppose f is continuous on an open interval (a, b) and « is a constant.

(a) Derive a formula for the solution of the initial value problem

V' +ay = f(x), y(xo) = yo. (A)

where x¢ is in (a, b) and yy is an arbitrary real number.
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46.

47.

48.

49.

(b) Suppose (a,b) = (a,00), v > 0and lim f(x) = L. Show that if y is the solution of (A),
X—>00
then lim y(x) = L/a.
X—>00
Assume that all functions in this exercise are defined on a common interval (a, b).

(a) Prove: If y; and y, are solutions of

YV +px)y = fix)
and
Y+ px)y = fa(x)
respectively, and c¢; and ¢, are constants, then y = ¢1y; + ¢332 is a solution of

Y+ p()y =c1filx) + 2 fo(x).

(This is theprinciple of superposition.)
(b) Use (a) to show that if y; and y, are solutions of the nonhomogeneous equation

Y+ px)y = fx), (A)

then y; — y, is a solution of the homogeneous equation
Y+ px)y =0. (B)
(¢) Use (a) to show that if y; is a solution of (A) and y, is a solution of (B), then y; + y, is a

solution of (A).
Some nonlinear equations can be transformed into linear equations by changing the dependent
variable. Show that if
gy +p)g) = f(x)
where y is a function of x and g is a function of y, then the new dependent variable z = g(y)
satisfies the linear equation

7+ p)z = f(x).

Solve by the method discussed in Exercise 47.

2 1
(a) (sec? y)y’ —3tany = —1 (b) e’ (zyy’ + ‘) =2
X X
xy' 5 y' 1 3
¢c)— +2Iny = 4x d — =——
© g DTy iy~ w2
We’ve shown that if p and f are continuous on (a, b) then every solution of
Y+ p)y = fx) (A)
on (a,b) can be written as y = uy;, where y; is a nontrivial solution of the complementary

equation for (A) and v’ = f/y;. Now suppose f, f’, ..., f and p, p/, ..., pV are
continuous on (a, b), where m is a positive integer, and define

Jo = £
fi fioo+pfic, 1<j<m.

Show that
U+ = ﬁ, 0<j=<m.
1
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2.2 SEPARABLE EQUATIONS

A first order differential equation is separable if it can be written as

h(y)y" = g(x), 22.1)

where the left side is a product of y’ and a function of y and the right side is a function of x. Rewriting
a separable differential equation in this form is called separation of variables. In Section 2.1 we used
separation of variables to solve homogeneous linear equations. In this section we’ll apply this method to
nonlinear equations.
To see how to solve (2.2.1), let’s first assume that y is a solution. Let G(x) and H (y) be antiderivatives
of g(x) and h(y); that is,
H'(y) =h(y) and G'(x) = g(x). (2.2.2)

Then, from the chain rule,

d
EH(y(X)) = H'(y(x))y' (x) = h(y)y' (x).

Therefore (2.2.1) is equivalent to
d d
—H = — .
P (r(x)) de(X)

Integrating both sides of this equation and combining the constants of integration yields
H(y(x)) = G(x) +c. (2.2.3)

Although we derived this equation on the assumption that y is a solution of (2.2.1), we can now view it
differently: Any differentiable function y that satisfies (2.2.3) for some constant c¢ is a solution of (2.2.1).
To see this, we differentiate both sides of (2.2.3), using the chain rule on the left, to obtain

H'(y(x))y'(x) = G'(x),
which is equivalent to
h(y(x)y'(x) = g(x)

because of (2.2.2).
In conclusion, to solve (2.2.1) it suffices to find functions G = G(x) and H = H(y) that satisfy
(2.2.2). Then any differentiable function y = y(x) that satisfies (2.2.3) is a solution of (2.2.1).

Example 2.2.1 Solve the equation

Y =x(1+y%).
Solution Separating variables yields
Yy
T+y2 "
Integrating yields
1 x2
t = —
an "y ) +c
Therefore
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Example 2.2.2
(a) Solve the equation
[ (2.2.4)
y
(b) Solve the initial value problem
Y=-2 yn=1 (2.2.5)
y
(c) Solve the initial value problem
= ‘? y(1) = 2. (2.2.6)

SOLUTION(a) Separating variables in (2.2.4) yields

/

yy' = —x.

Integrating yields

2 X2
5 =77 + ¢, or, equivalently, x?+ y? = 2c.

The last equation shows that ¢ must be positive if y is to be a solution of (2.2.4) on an open interval.
Therefore we let 2¢ = a? (with @ > 0) and rewrite the last equation as

x2 +y? =a. (2.2.7)

This equation has two differentiable solutions for y in terms of x:

y= ~a%?—-x2, —-a<x<a, (2.2.8)
and
y=—+va?—-x2, —a<x<a. (2.2.9)

The solution curves defined by (2.2.8) are semicircles above the x-axis and those defined by (2.2.9) are
semicircles below the x-axis (Figure 2.2.1).

SOLUTION(b) The solution of (2.2.5) is positive when x = 1; hence, itis of the form (2.2.8). Substituting
x = land y = 1 into (2.2.7) to satisfy the initial condition yields a? = 2; hence, the solution of (2.2.5)

is
y=+v2-x2, —/2<x<+2

SOLUTION(¢) The solution of (2.2.6) is negative when x = 1 and is therefore of the form (2.2.9).
Substituting x = 1 and y = —2 into (2.2.7) to satisfy the initial condition yields a> = 5. Hence, the

solution of (2.2.6) is
y=—-v5-x2, —/5<x <5
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Figure 2.2.1 @)y = V2 —x2, —v/2<x<+/2; b))y =—-/5-x2, -/5<x <+/5

Implicit Solutions of Separable Equations

In Examples 2.2.1 and 2.2.2 we were able to solve the equation H(y) = G(x) + ¢ to obtain explicit
formulas for solutions of the given separable differential equations. As we’ll see in the next example,
this isn’t always possible. In this situation we must broaden our definition of a solution of a separable
equation. The next theorem provides the basis for this modification. We omit the proof, which requires a
result from advanced calculus called as the implicit function theorem.

Theorem 2.2.1 Suppose g = g(x) is continous on (a, b) and h = h(y) are continuous on (c,d). Let G
be an antiderivative of g on (a,b) and let H be an antiderivative of h on (c,d). Let xo be an arbitrary
point in (a, b), let yo be a pointin (¢, d) such that h(yo) # 0, and define

¢ = H(yo) — G(xo). (2.2.10)

Then there’s a function y = y(x) defined on some open interval (a1, by), where a < ay < xo < by < b,
such that y(x¢) = yo and
H(y)=Gkx)+c¢ (2.2.11)

foray < x < by. Therefore y is a solution of the initial value problem
h(y)y" = g(x). y(xo) = xo. (2.2.12)

It’s convenient to say that (2.2.11) with ¢ arbitrary is an implicit solution of h(y)y’ = g(x). Curves
defined by (2.2.11) are integral curves of 4(y)y’ = g(x). If ¢ satisfies (2.2.10), we’ll say that (2.2.11) is
an implicit solution of the initial value problem (2.2.12). However, keep these points in mind:

e For some choices of ¢ there may not be any differentiable functions y that satisfy (2.2.11).
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e The function y in (2.2.11) (not (2.2.11) itself) is a solution of 4(y)y’ = g(x).

Example 2.2.3
(a) Find implicit solutions of
; 2x +1 2.2.13)
Y ESarT 2
(b) Find an implicit solution of
N (2.2.14)

SOLUTION(a) Separating variables yields

Gy*+ 1)y =2x + 1.
Integrating yields the implicit solution

yV+y=x2+x+ec. (2.2.15)
of (2.2.13).

SoLuTION(b) Imposing the initial condition y(2) = 1in (2.2.15) yields 1 +1 =442+ ¢, s0 ¢ = —4.
Therefore
V4+y=x+x—4
is an implicit solution of the initial value problem (2.2.14). Although more than one differentiable func-
tion y = y(x) satisfies 2.2.13) near x = 1, it can be shown that there’s only one such function that
satisfies the initial condition y(1) = 2.
Figure 2.2.2 shows a direction field and some integral curves for (2.2.13).

Constant Solutions of Separable Equations

An equation of the form
Y =2gx)p(y)

is separable, since it can be rewritten as

1 /
——) =g).
r()
However, the division by p(y) is not legitimate if p(y) = 0 for some values of y. The next two examples
show how to deal with this problem.

Example 2.2.4 Find all solutions of
y' = 2xy% (2.2.16)

Solution Here we must divide by p(y) = y? to separate variables. This isn’t legitimate if y is a solution
of (2.2.16) that equals zero for some value of x. One such solution can be found by inspection: y = 0.
Now suppose y is a solution of (2.2.16) that isn’t identically zero. Since y is continuous there must be an
interval on which y is never zero. Since division by y? is legitimate for x in this interval, we can separate
variables in (2.2.16) to obtain )

% = 2x.
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Figure 2.2.2 A direction field and integral curves for y’ =
54 +1
Integrating this yields
1
——=x2+c,
which is equivalent to
1
=—— (2.2.17)
Y x2+c

We’ve now shown that if y is a solution of (2.2.16) that is not identically zero, then y must be of the
form (2.2.17). By substituting (2.2.17) into (2.2.16), you can verify that (2.2.17) is a solution of (2.2.16).
Thus, solutions of (2.2.16) are y = 0 and the functions of the form (2.2.17). Note that the solution y = 0
isn’t of the form (2.2.17) for any value of c.

Figure 2.2.3 shows a direction field and some integral curves for (2.2.16)

Example 2.2.5 Find all solutions of
1
Y= 5x(1=y?), (2.2.18)

Solution Here we must divide by p(y) = 1 — y? to separate variables. This isn’t legitimate if y is a
solution of (2.2.18) that equals 1 for some value of x. Two such solutions can be found by inspection:
y = land y = —1. Now suppose y is a solution of (2.2.18) such that 1 — y2 isn’t identically zero. Since
1 — y? is continuous there must be an interval on which 1 — y? is never zero. Since division by 1 — y? is

legitimate for x in this interval, we can separate variables in (2.2.18) to obtain
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Figure 2.2.3 A direction field and integral curves for y’ = 2xy?

A partial fraction expansion on the left yields

[ 1 1 i|,
- — y=_x’
y—1 y+1

and integrating yields

hence,
y=- ! = eke_xz/z.
y+1
Since y(x) # %1 for x on the interval under discussion, the quantity (y — 1)/(y + 1) can’t change sign
in this interval. Therefore we can rewrite the last equation as
y—1 e—xz/ 2

y+1

El

where ¢ = +ek, depending upon the sign of (y — 1)/(y + 1) on the interval. Solving for y yields

1 —x2/2
_ _fee (2.2.19)

r = 1 —ce—x*/2"

We’ve now shown that if y is a solution of (2.2.18) that is not identically equal to £1, then y must be
as in (2.2.19). By substituting (2.2.19) into (2.2.18) you can verify that (2.2.19) is a solution of (2.2.18).
Thus, the solutions of (2.2.18) are y = 1, y = —1 and the functions of the form (2.2.19). Note that the
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constant solution y = 1 can be obtained from this formula by taking ¢ = 0; however, the other constant
solution, y = —1, can’t be obtained in this way.
Figure 2.2.4 shows a direction field and some integrals for (2.2.18).
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Differences Between Linear and Nonlinear Equations

Theorem 2.1.2 states that if p and f are continuous on (a, b) then every solution of

Y+ px)y = fx)

on (a, b) can be obtained by choosing a value for the constant ¢ in the general solution, and if x¢ is any
pointin (a, b) and yy is arbitrary, then the initial value problem

Y+ px)y = f(x). y(xo) = o

has a solution on (a, b).

The not true for nonlinear equations. First, we saw in Examples 2.2.4 and 2.2.5 that a nonlinear
equation may have solutions that can’t be obtained by choosing a specific value of a constant appearing
in a one-parameter family of solutions. Second, it is in general impossible to determine the interval
of validity of a solution to an initial value problem for a nonlinear equation by simply examining the
equation, since the interval of validity may depend on the initial condition. For instance, in Example 2.2.2
we saw that the solution of

dy X
il y(xXo0) = yo
X y

is valid on (—a, a), where a = ,/xg + yg.
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Example 2.2.6 Solve the initial value problem

y' =2xy%, y(0) = yo

and determine the interval of validity of the solution.

Solution First suppose yo # 0. From Example 2.2.4, we know that y must be of the form

1
= — . 2.2.20
Y= (2.2.20)
Imposing the initial condition shows that ¢ = —1/y. Substituting this into (2.2.20) and rearranging
terms yields the solution
_ Yo
YEIC yox2’

This is also the solution if yo = 0. If yo < 0, the denominator isn’t zero for any value of x, so the the
solution is valid on (—o0, 00). If yo > 0, the solution is valid only on (—1/./y¢, 1/./Y0)-

2.2 Exercises

In Exercises 1-6 find all solutions.

3x2 42 1
1. y’=% 2. (sinx)(siny) + (cosy)y’ =0
y—
3. xy+y2+y=0 4. y'ln|y|+x*y =0
2 1
5. (3y3+3ycosy+1)y/+w=o
1+ x2

6. x?yy' =(?-1D¥?

In Exercises 7-10 find all solutions. Also, plot a direction field and some integral curves on the indicated
rectangular region.

7. Y=xP1+y{-lsx<1 -1<y<1

8. [C/G]y(1+x®)+xy=0;{2<x<2 -1<y<l}

9. V=@ =D =Dy -2 {-25x <2 3=y =<3
10. [C/G](y—1)%y =2x+3: {-2<x<2, -2<y <5
In Exercises 11 and 12 solve the initial value problem.

x243x+2
TSy =4
y—2

12. YV +x0%+y)=0, y2) =1

11. Y =

In Exercises 13-16 solve the initial value problem and graph the solution.

13. (3y2 +4y)y’ +2x +cosx =0, y(0) =1



14.

15.
16.
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1 —1 -2

Y42 +1)=0, y0) =2
v =2xy(1+y?), y0) =1

In Exercises 17-23 solve the initial value problem and find the interval of validity of the solution.

17.
18.

19.

21.
22,
23.

24,

25.

26.

27.

28.

29.

30.

Y2 +2)+4x(2+2y+1) =0, y(1)=-1
¥y =-2x(y*-3y+2), y0) =3

2x
=T
x+yy' =0 y3) =-4
VX2 +Dr-27=0, y@) =2
(x+Dx -2y +y=0 y(l)=-3
Solve y' = 8:::75;; explicitly. HINT: Use the identity tan(A + B) = %.

Solve y'vV/1 — x2 + /1 — y2 = 0 explicitly. HINT: Use the identity sin(A — B) = sin A cos B —
cos Asin B.

cos x
sin y
the periodicity of the cosine.

/

y y(2) =0 20. Yy =2y—y% y(0)=1

Solve y’' = , y(m) = % explicitly. HINT: Use the identity cos(x + n/2) = —sinx and

Solve the initial value problem

y'=ay—by* y(0) = yo.
Discuss the behavior of the solution if (a) yo > 0; (b) yo < 0.

The population P = P(t) of a species satisfies the logistic equation
P'=aP( —aP)
and P(0) = Py > 0. Find P for ¢ > 0, and find lim; o P ().

An epidemic spreads through a population at a rate proportional to the product of the number of
people already infected and the number of people susceptible, but not yet infected. Therefore, if
S denotes the total population of susceptible people and / = I(¢) denotes the number of infected
people at time ¢, then

I'=rI(S-1),
where r is a positive constant. Assuming that /(0) = Iy, find I(¢) for ¢ > 0, and show that
lim;oo I(2) = S.

The result of Exercise 29 is discouraging: if any susceptible member of the group is initially
infected, then in the long run all susceptible members are infected! On a more hopeful note,
suppose the disease spreads according to the model of Exercise 29, but there’s a medication that
cures the infected population at a rate proportional to the number of infected individuals. Now the
equation for the number of infected individuals becomes

I'=rI(S—1)—ql (A)

where ¢ is a positive constant.
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31.

32.

33.

Chapter 2 First Order Equations

(a) Choose r and S positive. By plotting direction fields and solutions of (A) on suitable rectan-

gular grids
R={0<t<T, 0<1I<d}

inthe (¢, I)-plane, verify thatif I is any solution of (A) such that /(0) > 0, then lim; oo I(2) =
S —q/rifqg <rS andlimyo I(t) =0ifg > rS.

(b) To verify the experimental results of (a), use separation of variables to solve (A) with initial
condition 7(0) = Iy > 0, and find lim;_, o, I(¢). HINT: There are three cases to consider:
(i)g <rS; () g >rS; (iii))g =rS.

Consider the differential equation

i 2
y =ay—by~—q, (A)
where a, b are positive constants, and ¢ is an arbitrary constant. Suppose y denotes a solution of
this equation that satisfies the initial condition y(0) = yy.

(a) Choose a and b positive and ¢ < a?/4b. By plotting direction fields and solutions of (A) on
suitable rectangular grids

R={0=<t=<T c=<y=dj (B)
in the (¢, y)-plane, discover that there are numbers y; and y, with y; < y, such that if
yo > y1 thenlimy_, o ¥(¢) = ya, and if yo < yp then y(t) = —oo for some finite value of ¢.

(What happens if yo = y17)

(b) Choose a and b positive and ¢ = a?/4b. By plotting direction fields and solutions of (A)
on suitable rectangular grids of the form (B), discover that there’s a number y; such that if
Yo > yi then limy— y(¢) = y1, while if yg < y; then y(t) = —oo for some finite value
of t.

(¢) Choose positive a, b and ¢ > a?/4b. By plotting direction fields and solutions of (A) on
suitable rectangular grids of the form (B), discover that no matter what yg is, y(f) = —oo
for some finite value of 7.

(d) Verify your results experiments analytically. Start by separating variables in (A) to obtain

/

Y

ay —by>—q
To decide what to do next you’ll have to use the quadratic formula. This should lead you to
see why there are three cases. Take it from there!
Because of its role in the transition between these three cases, go = a2/4b is called a
bifurcation value of q. In general, if g is a parameter in any differential equation, gy is said
to be a bifurcation value of ¢ if the nature of the solutions of the equation with ¢ < ¢g is
qualitatively different from the nature of the solutions with ¢ > ¢g.

By plotting direction fields and solutions of

y'=qy -y
convince yourself that go = 0 is a bifurcation value of ¢ for this equation. Explain what makes
you draw this conclusion.

Suppose a disease spreads according to the model of Exercise 29, but there’s a medication that
cures the infected population at a constant rate of ¢ individuals per unit time, where g > 0. Then
the equation for the number of infected individuals becomes

I'=rI(S—-1)—q.

Assuming that 7(0) = Iy > 0, use the results of Exercise 31 to describe what happens as t — oo.
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34. Assuming that p s 0, state conditions under which the linear equation

Y+ px)y = fx)

is separable. If the equation satisfies these conditions, solve it by separation of variables and by
the method developed in Section 2.1.

Solve the equations in Exercises 35-38 using variation of parameters followed by separation of variables.

2xe™* , x©
! = 36. xy' —2y=——
3. y+y R e
(x + e~ xe?*
3. YV -y="—es 38, y-—2y=—"—
i e R Vo= s

39. Use variation of parameters to show that the solutions of the following equations are of the form
y = uyi, where u satisfies a separable equation u’ = g(x)p(u). Find y; and g for each equation.

(@ ' + y = h(x)p(x) (b) xy' —y = h(x)p (%)
(© )y +y=nh(x)p*y) (d) xy" +ry = h(x)p(x"y)
@y + 2 b w)y)

v(x)

2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR EQUATIONS

Although there are methods for solving some nonlinear equations, it’s impossible to find useful formulas
for the solutions of most. Whether we’re looking for exact solutions or numerical approximations, it’s
useful to know conditions that imply the existence and uniqueness of solutions of initial value problems
for nonlinear eauations. In this section we state such a condition and illustrate it with examples.

Figure 2.3.1 An open rectangle
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Some terminology: an open rectangle R is a set of points (x, ) such that
a<x<b and c<y<d

(Figure 2.3.1). We’ll denote this setby R : {a < x < b,c < y < d}. “Open” means that the boundary
rectangle (indicated by the dashed lines in Figure 2.3.1) isn’t included in R .

The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value
problems for first order nonlinear differential equations. We omit the proof, which is beyond the scope of
this book.

Theorem 2.3.1
(@) If f is continuous on an open rectangle
R:{a<x<bc<y<d}
that contains (xo, yo) then the initial value problem

y = fx,y).  y(xo) = yo (2.3.1)

has at least one solution on some open subinterval of (a, b) that contains x.

(b) Ifboth f and f, are continuous on R then (2.3.1) has a unique solution on some open subinterval
of (a, b) that contains xy.

It’s important to understand exactly what Theorem 2.3.1 says.

e (a) is an existence theorem. It guarantees that a solution exists on some open interval that contains
X0, but provides no information on how to find the solution, or to determine the open interval on
which it exists. Moreover, (a) provides no information on the number of solutions that (2.3.1) may
have. It leaves open the possibility that (2.3.1) may have two or more solutions that differ for values
of x arbitrarily close to xo. We will see in Example 2.3.6 that this can happen.

o (b) is a uniqueness theorem. It guarantees that (2.3.1) has a unique solution on some open interval
(a,b) that contains xo. However, if (a,b) # (—o0, 00), (2.3.1) may have more than one solution
on a larger interval that contains (a, b). For example, it may happen that b < co and all solutions
have the same values on (a, b), but two solutions y; and y, are defined on some interval («, by)
with by > b, and have different values for b < x < by; thus, the graphs of the y; and y, “branch
off” in different directions at x = b. (See Example 2.3.7 and Figure 2.3.3). In this case, continuity
implies that y1(b) = y,(b) (call their common value y), and y; and y, are both solutions of the
initial value problem

y=fey), yb)=y (2.3.2)
that differ on every open interval that contains b. Therefore f or f, must have a discontinuity
at some point in each open rectangle that contains (b, y), since if this were not so, (2.3.2) would
have a unique solution on some open interval that contains . We leave it to you to give a similar
analysis of the case where a > —oo.

Example 2.3.1 Consider the initial value problem

/ X2 )2
= = 9. 2.3.3
S y(x0) = yo (2.33)
Since ) ) ( )
xX“—y 2y(1 + 2x7)
fx,y) = m and  fy(x,y) =

(14 x2 + y2)2
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are continuous for all (x, y), Theorem 2.3.1 implies that if (x¢, yo) is arbitrary, then (2.3.3) has a unique
solution on some open interval that contains xg.

Example 2.3.2 Consider the initial value problem

X2 _ y2
= = 9. 234
M S y(xXo0) = yo (2.3.4)
Here ) ) )
xXc—y 4x°y
k] = 5 d ’ = T 5
f('x y) x2 + y2 an fy(x y) (x2 + y2)2

are continuous everywhere except at (0, 0). If (xg, yo) # (0, 0), there’s an open rectangle R that contains
(x0, yo) that does not contain (0, 0). Since f and f, are continuous on R, Theorem 2.3.1 implies that if
(x0, ¥o) # (0,0) then (2.3.4) has a unique solution on some open interval that contains xg.

Example 2.3.3 Consider the initial value problem

p_ Xty

Y= . y(xo) = yo. (2.3.5)
X—y
Here N 5
X+Yy X
fx.y)=—= ad fi(x.y)=——35
xX—y (x =)

are continuous everywhere except on the line y = x. If yg # x¢, there’s an open rectangle R that contains
(x0, yo) that does not intersect the line y = x. Since f and f) are continuous on R, Theorem 2.3.1
implies that if yo # X9, (2.3.5) has a unique solution on some open interval that contains xg.

Example 2.3.4 In Example 2.2.4 we saw that the solutions of
y = 2xy® (2.3.6)

are
1

x2+c’

where c¢ is an arbitrary constant. In particular, this implies that no solution of (2.3.6) other than y = 0

can equal zero for any value of x. Show that Theorem 2.3.1(b) implies this.

y=0 and y=-—

Solution We’ll obtain a contradiction by assuming that (2.3.6) has a solution y; that equals zero for some
value of x, but isn’t identically zero. If y; has this property, there’s a point x¢ such that y; (x¢) = 0, but
¥1(x) # 0 for some value of x in every open interval that contains xo. This means that the initial value
problem

y =2xy%, y(x0) =0 (2.3.7)

has two solutions y = 0 and y = y; that differ for some value of x on every open interval that contains
Xo. This contradicts Theorem 2.3.1(b), since in (2.3.6) the functions

flx,y) = 2xy2 and  fy(x,y) = 4xy.

are both continuous for all (x, y), which implies that (2.3.7) has a unique solution on some open interval
that contains xg.
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Example 2.3.5 Consider the initial value problem

10
y = ?xyz/s, y(x0) = yo. (2.3.8)

(a) For what points (xg, yo) does Theorem 2.3.1(a) imply that (2.3.8) has a solution?

(b) For what points (xg, yo) does Theorem 2.3.1(b) imply that (2.3.8) has a unique solution on some
open interval that contains xo?

SOLUTION(a) Since
flx.y) = —xy°

is continuous for all (x, y), Theorem 2.3.1 implies that (2.3.8) has a solution for every (xo, yo).

10
3

SOLUTION(b) Here
4
frlxy) = 3xy 35

is continuous for all (x, y) with y # 0. Therefore, if yo # 0 there’s an open rectangle on which both
f and f, are continuous, and Theorem 2.3.1 implies that (2.3.8) has a unique solution on some open
interval that contains xg.

If y = Othen f)(x, y) is undefined, and therefore discontinuous; hence, Theorem 2.3.1 does not apply
to (2.3.8) if yo = 0.

Example 2.3.6 Example 2.3.5 leaves open the possibility that the initial value problem

10
Y= y(0) =0 (2.3.9)

has more than one solution on every open interval that contains xo = 0. Show that this is true.

Solution By inspection, y = 0 is a solution of the differential equation

10
y = ?xyz/s. (2.3.10)
Since y = 0 satisfies the initial condition y(0) = 0, it’s a solution of (2.3.9).
Now suppose y is a solution of (2.3.10) that isn’t identically zero. Separating variables in (2.3.10)
yields
—2/5 . 10

YUY =

on any open interval where y has no zeros. Integrating this and rewriting the arbitrary constant as 5¢ /3

yields

5 5

gys/s _ g(xz +o).
Therefore

y=@x2+c)3 2.3.11)

Since we divided by y to separate variables in (2.3.10), our derivation of (2.3.11) is legitimate only on
open intervals where y has no zeros. However, (2.3.11) actually defines y for all x, and differentiating
(2.3.11) shows that

10 10
y = ?x(x2 +¢)?3 = ?xyz/s, —00 < X < 00.
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\j
>

Figure 2.3.2 Two solutions (y = 0 and y = x'/?) of (2.3.9) that differ on every interval containing
Xo = 0

Therefore (2.3.11) satisfies (2.3.10) on (—o0, 00) even if ¢ < 0, so that y(y/|c]) = y(—+/|¢]) = 0. In
particular, taking ¢ = 01in (2.3.11) yields

— 10/3

y=x

as a second solution of (2.3.9). Both solutions are defined on (—oc0, 00), and they differ on every open
interval that contains xo = O (see Figure 2.3.2.) In fact, there are four distinct solutions of (2.3.9) defined
on (—o0, 00) that differ from each other on every open interval that contains xo = 0. Can you identify
the other two?

Example 2.3.7 From Example 2.3.5, the initial value problem

10
y = ?xy2/5, y(0) = —1 (2.3.12)

has a unique solution on some open interval that contains xo = 0. Find a solution and determine the
largest open interval (a, b) on which it’s unique.

Solution Let y be any solution of (2.3.12). Because of the initial condition y(0) = —1 and the continuity
of y, there’s an open interval / that contains xo = 0 on which y has no zeros, and is consequently of the
form (2.3.11). Setting x = 0and y = —1in (2.3.11) yields ¢ = —1, so

y=x2=1)°73 (2.3.13)

for x in I. Therefore every solution of (2.3.12) differs from zero and is given by (2.3.13) on (-1, 1);
that is, (2.3.13) is the unique solution of (2.3.12) on (—1, 1). This is the largest open interval on which
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(2.3.12) has a unique solution. To see this, note that (2.3.13) is a solution of (2.3.12) on (—o0, c0). From
Exercise 2.2.15, there are infinitely many other solutions of (2.3.12) that differ from (2.3.13) on every
open interval larger than (—1, 1). One such solution is

(x2-1)%3, —-1<x<1,

0, |x| > 1.

y=

(Figure 2.3.3).

Figure 2.3.3 Two solutions of (2.3.12) on (—o0, 00)
that coincide on (—1, 1), but on no larger open
interval Figure 2.3.4 The unique solution of (2.3.14)

Example 2.3.8 From Example 2.3.5, the initial value problem
10
y' = ?xyﬂs, y(0) =1 (2.3.14)

has a unique solution on some open interval that contains xo = 0. Find the solution and determine the
largest open interval on which it’s unique.

Solution Let y be any solution of (2.3.14). Because of the initial condition y(0) = 1 and the continuity
of y, there’s an open interval / that contains xo = 0 on which y has no zeros, and is consequently of the
form (2.3.11). Settingx = 0and y = 1 in(2.3.11) yields ¢ = 1, so

y=@*+1)°3 (2.3.15)

for x in I. Therefore every solution of (2.3.14) differs from zero and is given by (2.3.15) on (—o0, 00);
that is, (2.3.15) is the unique solution of (2.3.14) on (—o00, 00). Figure 2.3.4 shows the graph of this
solution.

2.3 Exercises

In Exercises 1-13 find all (xg, y¢) for which Theorem 2.3.1 implies that the initial value problem y’ =
f(x,), y(xo) = yo has (a) a solution (b) a unique solution on some open interval that contains x¢.



11.

13.
14.

15.
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,_x2+y2 2 y,=€x+y
= sin x x2 4+ y2
y' = tanxy 4y = x2+y2

Inxy
y/ = (X2 + y2)y1/3 6. y’ = 2xy
2x + 3y

/ = 2 2 8. ! =
y' =In(l 4+ x° + y°) y x4y
y/ — (X2 + y2)1/2 10. y/ — x(y2 _ 1)2/3
y = (x%+y?)? 12. Y =(@x+y'?

, tan y
y =

x—1

Apply Theorem 2.3.1 to the initial value problem

Y+ p()y =q(x). y(xo) = yo
for a linear equation, and compare the conclusions that can be drawn from it to those that follow
from Theorem 2.1.2.
(a) Verify that the function
(x2—1)°3, —1<x<l,

y =
0, x| > 1,

is a solution of the initial value problem

10
Y=t y(0) =1

on (—o00, 00). HINT: You’ll need the definition

y(x) — y(X)

Y'(¥) = lim
X—>X X —X

to verify that y satisfies the differential equation atx = *1.
(b) Verify thatife; = 0or1fori = 1,2 and a, b > 1, then the function

e1(x2—a?®)%3, —oo<x < —a,
0, —a <x<-1,
y=91 2-1%3 —l<x<l,
0, 1<x<b,
€(x? —b2)5/3, b < x < oo,

is a solution of the initial value problem of (a) on (—o0, 00).
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16.

17.

18.

19.

20.

21.

Use the ideas developed in Exercise 15 to find infinitely many solutions of the initial value problem

Yy =y y0)=1

on (—00, 00).

Consider the initial value problem

¥ =3x(y = D3, y(xo) = yo. (A)

(a) For what points (x¢, yo) does Theorem 2.3.1 imply that (A) has a solution?

(b) For what points (xo, yo) does Theorem 2.3.1 imply that (A) has a unique solution on some
open interval that contains x¢?

Find nine solutions of the initial value problem
Y =3x(p - y0) =1
that are all defined on (—o0, 00) and differ from each other for values of x in every open interval

that contains x¢o = 0.

From Theorem 2.3.1, the initial value problem
Y =3x(p =D y(0) =9
has a unique solution on an open interval that contains xo = 0. Find the solution and determine

the largest open interval on which it’s unique.

(a) From Theorem 2.3.1, the initial value problem
Y =3x(y =D y@) =7 (A)

has a unique solution on some open interval that contains xo = 3. Determine the largest such
open interval, and find the solution on this interval.

(b) Find infinitely many solutions of (A), all defined on (—o0, 00).
Prove:

(a) If
f(x,y0) =0, a<x<b, (A)

and x¢ isin (a, b), then y = yy is a solution of
Y= fx.y). y(xo) =yo

on (a, b).
(b) If f and f, are continuous on an open rectangle that contains (xo, y9) and (A) holds, no
solution of y' = f(x, y) other than y = yq can equal yg at any pointin (a, b).

2.4 TRANSFORMATION OF NONLINEAR EQUATIONS INTO SEPARABLE EQUATIONS

In Section 2.1 we found that the solutions of a linear nonhomogeneous equation

y4+px)y = fx)
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are of the form y = uy;, where y; is a nontrivial solution of the complementary equation
Y +p(x)y =0 (2.4.1)

and u is a solution of
w'yr(x) = f(x).
Note that this last equation is separable, since it can be rewritten as

’_ S(x)
u = .
y1(x)

In this section we’ll consider nonlinear differential equations that are not separable to begin with, but can
be solved in a similar fashion by writing their solutions in the form y = wuy;, where y; is a suitably
chosen known function and u satisfies a separable equation. We’llsay in this case that we transformed
the given equation into a separable equation.

Bernoulli Equations

A Bernoulli equation is an equation of the form

Y+ p(x)y = f(x)y", (2.42)
where r can be any real number other than 0 or 1. (Note that (2.4.2) is linear if and only if r = 0
or r = 1.) We can transform (2.4.2) into a separable equation by variation of parameters: if y; is a

nontrivial solution of (2.4.1), substituting y = uy; into (2.4.2) yields

w'yr+u(yy + p()y) = f()uy),

which is equivalent to the separable equation

/

Wy (x) = FO) Qi) W or == f@) ()
since y| + p(x)y1 =0.
Example 2.4.1 Solve the Bernoulli equation
Y=y =xy2 (2.4.3)

Solution Since y; = e* is a solutionof y’ —y = 0, we look for solutions of (2.4.3) in the form y = ue”*,

where

u'e® = xu?e?*  or, equivalently, u’ = xuZe”.

Separating variables yields

and integrating yields
1
—— =(x—-De* +ec.
u

Hence,
1

(x—1e*+c
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Figure 2.4.1 A direction field and integral curves for y' — y = xy?

and
1

x—14ce>*

Figure 2.4.1 shows direction field and some integral curves of (2.4.3).

y ==

Other Nonlinear Equations That Can be Transformed Into Separable Equations

We’ve seen that the nonlinear Bernoulli equation can be transformed into a separable equation by the
substitution y = uy; if y; is suitably chosen. Now let’s discover a sufficient condition for a nonlinear
first order differential equation

y'=f(x,) (2.4.4)

to be transformable into a separable equation in the same way. Substituting y = uy; into (2.4.4) yields

' y1(x) +uyy(x) = f(x,uyi(x)),
which is equivalent to
w'yr(x) = £ uyi(x)) —uy(x). (24.5)
If
fluyi(x) = q)yi (x)

for some function ¢, then (2.4.5) becomes

u'y1(x) = (q(u) —u)yi(x). (2.4.6)

which is separable. After checking for constant solutions # = u¢ such that g(u¢) = ug, we can separate

variables to obtain ,

o n®)
qu) —u  yi(x)’
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Homogeneous Nonlinear Equations

In the text we’ll consider only the most widely studied class of equations for which the method of the
preceding paragraph works. Other types of equations appear in Exercises 44-51.

The differential equation (2.4.4) is said to be homogeneous if x and y occur in f in such a way that
f(x,y) depends only on the ratio y/x; that is, (2.4.4) can be written as

y' =q(y/x), (2.4.7)

where ¢ = ¢(u) is a function of a single variable. For example,

r_ Y 4 xe Y/* _y PO

and

are of the form (2.4.7), with
gu)=u+e™ and q)=u>+u—1,

respectively. The general method discussed above can be applied to (2.4.7) with y; = x (and therefore
¥7 = 1). Thus, substituting y = ux in (2.4.7) yields

u'x +u=qu),
and separation of variables (after checking for constant solutions u = uq such that g(ug) = ug) yields

u' 1

qu) —u  x’
Before turning to examples, we point out something that you may’ve have already noticed: the defini-
tion of homogeneous equation given here isn’t the same as the definition given in Section 2.1, where we
said that a linear equation of the form
Y+ px)y =0
is homogeneous. We make no apology for this inconsistency, since we didn’t create it historically, homo-
geneous has been used in these two inconsistent ways. The one having to do with linear equations is the
most important. This is the only section of the book where the meaning defined here will apply.
Since y/x is in general undefined if x = 0, we’ll consider solutions of nonhomogeneous equations
only on open intervals that do not contain the point x = 0.

Example 2.4.2 Solve
oy +xex
= » .

/

(2.4.8)

Solution Substituting y = ux into (2.4.8) yields

, ux + xe ux/x —u
Ux+u=——=u+e "
X

Simplifying and separating variables yields
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Integrating yields e = In|x| + c. Therefore u = In(In |x| + ¢) and y = ux = x In(In |x| + ¢).

Figure 2.4.2 shows a direction field and integral curves for (2.4.8).
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AR RO OO ORI
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3.5

y 4+ xe V/*

Figure 2.4.2 A direction field and some integral curves for y’ =

Example 2.4.3

(a) Solve

(2.4.9)

x?y = y* 4+ xy — x>

(b) Solve the initial value problem

(2.4.10)

y(1) =2.

El

— 2 4 xy —x2

x2y/

= 0. We can

t contain x

k)

SOLUTION(a) We first find solutions of (2.4.9) on open intervals that don

rewrite (2.4.9) as

+xy—x2

y2

/

ux yields

for x in any such interval. Substituting y

u2+u—1,

(ux)? + x(ux) — x?

u'x +u

SO

(2.4.11)

wWx =u?-1.
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By inspection this equation has the constant solutions ¥ = 1 and u = —1. Therefore y = x and y = —x
are solutions of (2.4.9). If u is a solution of (2.4.11) that doesn’t assume the values +1 on some interval,
separating variables yields

or, after a partial fraction expansion,

1 1 1 , 1
- - u = —.
2lu—1 u+1 X
Multiplying by 2 and integrating yields
u—1
In =2In|x| + k,
u+1
or
u-—1
= ek x2,
u—+1
which holds if
u—1 2
=cx (2.4.12)
u+1
where c is an arbitrary constant. Solving for u yields
1 4 cx?
U= ——->-.
1 —cx?
y
y
2 t tttt S A
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Figure 2.4.3 A direction field and integral curves for Figure 2.4.4 Solutions of x2y’ = y2 + xy — x2,
/
X2y =y? 4+ xy —x? y(1) =2
Therefore )
x(1+ cx?)
y=ux = > (2.4.13)
1 —cx

is a solution of (2.4.10) for any choice of the constant c¢. Setting ¢ = 0 in (2.4.13) yields the solution
y = x. However, the solution y = —x can’t be obtained from (2.4.13). Thus, the solutions of (2.4.9) on
intervals that don’t contain x = 0 are y = —x and functions of the form (2.4.13).
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The situation is more complicated if x = 0 is the open interval. First, note that y = —x satisfies (2.4.9)
on (—o00, 00). If ¢1 and ¢, are arbitrary constants, the function

1 2
%, 4<x <0,
— —C1X
y= ) (2.4.14)
1
XA+eXT) o
1 —cpx2
is a solution of (2.4.9) on (a, b), where
! ifci >0 ! ifco >0
-——  ifc , —  ifc ,
a= N3 ! and b= JC2 2
—00 ifc;1 <0, o'} if ¢, <0.

We leave it to you to verify this. To do so, note that if y is any function of the form (2.4.13) then y(0) = 0
and y'(0) = 1.
Figure 2.4.3 shows a direction field and some integral curves for (2.4.9).

SoLuTION(b) We could obtain ¢ by imposing the initial condition y(1) = 2 in (2.4.13), and then solving
for c. However, it’s easier to use (2.4.12). Since u = y/x, the initial condition y(1) = 2 implies that
u(1) = 2. Substituting this into (2.4.12) yields ¢ = 1/3. Hence, the solution of (2.4.10) is

_ x(14x2/3)
 1—-x2/3

The interval of validity of this solution is (—+/3, +/3). However, the largest interval on which (2.4.10)
has a unique solution is (0, +/3). To see this, note from (2.4.14) that any function of the form

1 2
x( +cx)’ a<x<0,
y i (11‘+ 6;22 ) (2.4.15)
0<x<43
e x < /3,

is a solution of (2.4.10) on (a, v/3), where a = —1//cif¢ > 0ora = —oo if ¢ < 0. (Why doesn’t this
contradict Theorem 2.3.17)

Figure 2.4.4 shows several solutions of the initial value problem (2.4.10). Note that these solutions
coincide on (0, +/3).

In the last two examples we were able to solve the given equations explicitly. However, this isn’t always
possible, as you’ll see in the exercises.

2.4 Exercises

In Exercises 1-4 solve the given Bernoulli equation.

i 'x2
1. y/+y=y2 2. 7)Cy _2y=_ﬁ
1
3. X2y 42y =2el/xy1/2 4. (1+x)y +2xy=———
y y y ( )y y I +x2)y

In Exercises 5 and 6 find all solutions. Also, plot a direction field and some integral curves on the
indicated rectangular region.
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5. [CG]y —xy=x%3% {-3<x<32<y>2

1
6. Y’—¥y=y4; {-2=x=2,-2=y=<2}

In Exercises T—11 solve the initial value problem.
y=2y=xy% y(0)=2v2
Y—xy=xy2 (1) =4

9. xy'+y=x%t y1)=1/2
10. y —2y =2yY2 y0)=1

48x
1. y -4y = R y(0) =1

In Exercises 12 and 13 solve the initial value problem and graph the solution.

12. X2y +2xy =y3, y() =1/v2

13. Y —y=xy2 y0)=4
14. You may have noticed that the logistic equation

P'=aP(l —aP)
from Verhulst’s model for population growth can be written in Bernoulli form as

P' —aP = —aaP?.
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This isn’t particularly interesting, since the logistic equation is separable, and therefore solvable
by the method studied in Section 2.2. So let’s consider a more complicated model, where a is
a positive constant and « is a positive continuous function of ¢ on [0, c0). The equation for this

model is
P'—aP = —aa(t)P?,

a non-separable Bernoulli equation.

(a) Assuming that P(0) = Py > 0, find P fort > 0. HINT: Express your result in terms of the

integral fot a(t)e?*dr.

(b) Verify that your result reduces to the known results for the Malthusian model where ¢ = 0,

and the Verhulst model where « is a nonzero constant.
(c) Assuming that

t
lim e_‘”/ a(r)e’dt =L
0

—>00

exists (finite or infinite), find lim;_, o, P (Z).

In Exercises 15—18 solve the equation explicitly.

2
y°+2xy
15. y’=y:x 16. y'="—73—
17. xy3y = y* +x* 18. y’=X+secX

X X
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In Exercises 19-21 solve the equation explicitly. Also, plot a direction field and some integral curves on
the indicated rectangular region.

19. [C/G]x%y =xy+x2+)% {-8<x<8-8<y<8
20. [C/G]xyy' =x2+2y% {—4=<x=4—4<y=4)

292 & x2e—/x)?
21. [C/G]y == +;e ; {-8<x=<8,-8<y<8}
Xy

In Exercises 22-27 solve the initial value problem.

xy +y?
22. y'= 2 y=1) =2

3 y?
By =5 v =3
24, xyy +x24y2=0, y(l)=2

2 2

y°—3xy —5x

250y =L 0 v =

26. x2y =2x2+4+y2+4xy, y()=1
27. xyy =3x2+4y2, y(1) =3

In Exercises 28-34 solve the given homogeneous equation implicitly.

28, y=217 29. (y'x—y)(n|y| —In|x|) = x
xX=y
3 2 2 3 2

30 y,=y +2xy° +x°y +x 3. y,=x+ y

2. y=_2 P i
y_zx ° y _x3+x2y+xy2

X34 x2y 4393

34. =
Y x3 4+ 3xy?

3s.
(a) Find a solution of the initial value problem
X2y =y +ay—4x® y(=1)=0 (A)

on the interval (—oo, 0). Verify that this solution is actually valid on (—o0, c0).
(b) Use Theorem 2.3.1 to show that (A) has a unique solution on (—o0, 0).
(c) Plot a direction field for the differential equation in (A) on a square

{-r=x=r-r=<y=rj

where r is any positive number. Graph the solution you obtained in (a) on this field.
(d) Graph other solutions of (A) that are defined on (—o0, 00).



36.

37.

38.

39.

(e)

(a)

(b)

(c)

(d)

(a)

(b)
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Graph other solutions of (A) that are defined only on intervals of the form (—o0, a), where is
a finite positive number.

Solve the equation

xyy' =x*—xy +y? (A)
implicitly.
Plot a direction field for (A) on a square

0<x=<r0=<y=r
y

where 7 is any positive number.

Let K be a positive integer. (You may have to try several choices for K.) Graph solutions of
the initial value problems

kr
xyy' =x?—xy+y* y(r/2)= i

fork = 1,2, ..., K. Based on your observations, find conditions on the positive numbers
Xxo and yo such that the initial value problem

xyy' =x*=xy+y%  y(xo0) = yo. (B)

has a unique solution (i) on (0, co) or (ii) only on an interval (a, 0c0), where a > 0?
What can you say about the graph of the solution of (B) as x — oco0? (Again, assume that
X0 > 0and yp > 0.)

Solve the equation
2y% — xy + 2x2

/
== 7 = A
Y xy + 2x2 )

implicitly.
Plot a direction field for (A) on a square

{-r<x<r—-r<y<r}

where r is any positive number. By graphing solutions of (A), determine necessary and
sufficient conditions on (xg, yo) such that (A) has a solution on (i) (—oo, 0) or (ii) (0, co)
such that y(x¢) = yo.

Follow the instructions of Exercise 37 for the equation

,_xy+x24y?
=TT

Pick any nonlinear homogeneous equation y’ = ¢(y/x) you like, and plot direction fields on
the square {—r < x <r, —r < y < r}, where r > 0. What happens to the direction field as you
vary r? Why?
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40. Prove: If ad — bc # 0, the equation

, ax+by+ua

Cex+dy+B
can be transformed into the homogeneous nonlinear equation

dY aX + bY

dX ~ c¢X +dY

by the substitutionx = X — Xo, y = Y — Yy, where Xy and Yy are suitably chosen constants.

In Exercises 41-43 use a method suggested by Exercise 40 to solve the given equation implicitly.

—6 -3 2 1
T e 2y Byt
x—y—1 x+2y—4
43 ,  —x+3y—14
S x+y-—2

In Exercises 44-51 find a function y such that the substitution y = uy, transforms the given equation
into a separable equation of the form (2.4.6). Then solve the given equation explicitly.

44. 3xy%y' =y3 4+ x 45. xyy' =3x°+ 6y?
46. X’y =2(y> +x%y —x*) 47. y = y2e™ + 4y +2¢*
48 , y2 4+ ytanx + tan® x 49. x(Inx)?y’ = —4(nx)?> + ylnx + y?
.y = —
sin” x

50. 2x(y +2VX)y =+ VX 5L (y + )y =2x(12 4 ye¥ + e2*)
52. Solve the initial value problem

2 3x%y* 4+ 6xy+42

/
+Zy = , 2) =2.
YTy x2(2xy +3) Yo
53. Solve the initial value problem
3 3x4y? 4+ 10x%y + 6
V4 oy=E 5o .oy =1
X x3(2x2%y +5)

54. Prove: If y is a solution of a homogeneous nonlinear equation y’ = ¢(y/x), sois y1 = y(ax)/a,
where a is any nonzero constant.

55. A generalized Riccati equation is of the form

¥ = P(x) + 0(x)y + R(x)y>. (A)

(If R = —1, (A) is a Riccati equation.) Let y; be a known solution and y an arbitrary solution of
(A).Let z = y — y1. Show that z is a solution of a Bernoulli equation withn = 2.
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In Exercises 56-59, given that y1 is a solution of the given equation, use the method suggested by Exercise
55 to find other solutions.

56. Yy =1+x—(1+2x)y+xy% yi=1
57. Yy =e>* +(1-2e%y +y% y=e*

5. xy=2—x+Q2x—-2)y —xy% y =1
59. xy =x34+(1-2xY)y +xy% y =x

2.5 EXACT EQUATIONS
In this section it’s convenient to write first order differential equations in the form
M(x,y)dx + N(x,y)dy =0. (2.5.1)
This equation can be interpreted as
M(x,y) + N(x,y) Z—i} =0, (25.2)

where x is the independent variable and y is the dependent variable, or as
dx
M(x, y) ot N(x.y) =0, (2.5.3)

where y is the independent variable and x is the dependent variable. Since the solutions of (2.5.2) and
(2.5.3) will often have to be left in implicit, form we’ll say that F(x, y) = c is an implicit solution of
(2.5.1) if every differentiable function y = y(x) that satisfies F(x, y) = c is a solution of (2.5.2) and
every differentiable function x = x(y) that satisfies F(x, y) = c is a solution of (2.5.3).

Here are some examples:

Equation (2.5.1) Equation (2.5.2) Equation (2.5.3)

d d
3x2y2dx +2x3ydy =0 3x2y2+2x3y£ =0 3x2y2%+2x3y=0

d
(x2 4+ y?)dx +2xydy =0 (x2+y2)+2xy—y

dx
=0 24 92) 27 425y =0
e (X+y)dy+xy

3ysinxdx —2xycosxdy =0 3ysinx—2xycosxd—y =0 3ysinxd—x —2xycosx =0
X y

Note that a separable equation can be written as (2.5.1) as
M(x)dx + N(y)dy = 0.

We’ll develop a method for solving (2.5.1) under appropriate assumptions on M and N. This method
is an extension of the method of separation of variables (Exercise 41). Before stating it we consider an
example.
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Example 2.5.1 Show that
x4y 4 x2S 4 2xy =¢ (2.5.4)

is an implicit solution of

(4x3y3 +2xy° + 2y)dx + 3x*y? +5x%y* +2x)dy = 0. (2.5.5)

Solution Regarding y as a function of x and differentiating (2.5.4) implicitly with respect to x yields
3.3 5 4.2 2.4 dy
(4x°y” + 2xy°> +2y) + 3x"y= 4+ 5x°y +2x)E=O.
Similarly, regarding x as a function of y and differentiating (2.5.4) implicitly with respect to y yields
3.3 5 dx 4.2 2.4
(4x7y” + 2xy +2y)E+(3xy +5x7y" +2x) = 0.

Therefore (2.5.4) is an implicit solution of (2.5.5) in either of its two possible interpretations. |

You may think this example is pointless, since concocting a differential equation that has a given
implicit solution isn’t particularly interesting. However, it illustrates the next important theorem, which
we’ll prove by using implicit differentiation, as in Example 2.5.1.

Theorem 2.5.1 If F = F(x, y) has continuous partial derivatives Fy and Fy, then

F(x,y)=c (c=constant), (2.5.6)
is an implicit solution of the differential equation

Fx(x,y)dx + Fy(x,y)dy = 0. (2.5.7)

Proof Regarding y as a function of x and differentiating (2.5.6) implicitly with respect to x yields

d
Fer.y) + Fy(x.y) 22 = 0.

On the other hand, regarding x as a function of y and differentiating (2.5.6) implicitly with respect to y
yields

dx
Fx(x’y)E +Fy(X,J’) =O

Thus, (2.5.6) is an implicit solution of (2.5.7) in either of its two possible interpretations. |
We’ll say that the equation
M(x,y)dx + N(x,y)dy =0 (2.5.8)

is exact on an an open rectangle R if there’s a function F = F(x, y) such Fy and Fy are continuous, and
Fe(x.y) = M(x.y) and Fy(x.y) = N(x.7) (2.5.9)
for all (x, y) in R. This usage of “exact” is related to its usage in calculus, where the expression
Fx(x,y)dx + F,(x,y)dy

(obtained by substituting (2.5.9) into the left side of (2.5.8)) is the exact differential of F'.
Example 2.5.1 shows that it’s easy to solve (2.5.8) if it’s exact and we know a function F that satisfies
(2.5.9). The important questions are:
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QUESTION 1. Given an equation (2.5.8), how can we determine whether it’s exact?

QUESTION 2. If (2.5.8) is exact, how do we find a function F satisfying (2.5.9)?

To discover the answer to Question 1, assume that there’s a function F that satisfies (2.5.9) on some
open rectangle R, and in addition that F has continuous mixed partial derivatives Fy, and Fyx. Then a
theorem from calculus implies that

Fyy = Fyx. (2.5.10)

If Fx = M and F, = N, differentiating the first of these equations with respect to y and the second with
respect to x yields
Fyy =M, and F),x = Ny. (2.5.11)

From (2.5.10) and (2.5.11), we conclude that a necessary condition for exactness is that M, = N,. This
motivates the next theorem, which we state without proof.

Theorem 2.5.2 [The Exactness Condition] Suppose M and N are continuous and have continuous par-
tial derivatives M, and Ny on an open rectangle R. Then

M(x,y)dx + N(x,y)dy =0

is exact on R if and only if
My (x,y) = Nx(x,y) (2.5.12)

forall (x,y)inR..

To help you remember the exactness condition, observe that the coefficients of dx and dy are differ-
entiated in (2.5.12) with respect to the “opposite” variables; that is, the coefficient of dx is differentiated
with respect to y, while the coefficient of dy is differentiated with respect to x.

Example 2.5.2 Show that the equation
3x2ydx +4x3dy =0

is not exact on any open rectangle.

Solution Here
M(x,y) =3x%y and N(x,y) = 4x>

)
My(x,y) =3x% and Ny(x,y) = 12x%

Therefore M, = N, on the line x = 0, but not on any open rectangle, so there’s no function F' such that
Fx(x,y) = M(x,y) and Fy(x,y) = N(x, y) forall (x, y) on any open rectangle. ]

The next example illustrates two possible methods for finding a function F' that satisfies the condition
Fxy=Mand F), = N if M dx + N dy = 0is exact.

Example 2.5.3 Solve
(4x3y® +3x2)dx + 3x*y? + 6y%)dy = 0. (2.5.13)
Solution (Method 1) Here

M(x.y) = 4x3y® + 322 N(x.y) =3x%? +6y%,
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and
My (x, y) = Nx(x,y) = 12x%y?

for all (x, y). Therefore Theorem 2.5.2 implies that there’s a function F such that
Fr(x,y) = M(x,y) = 4x3y3 + 3x2 (2.5.14)

and
Fy(x.y) = N(x,y) = 3x*y* + 6y° (2.5.15)

for all (x, y). To find F, we integrate (2.5.14) with respect to x to obtain
F(x,y) =x*° + 2> +4(). (25.16)

where ¢(y) is the “constant” of integration. (Here ¢ is “constant” in that it’s independent of x, the
variable of integration.) If ¢ is any differentiable function of y then F satisfies (2.5.14). To determine ¢
so that F also satisfies (2.5.15), assume that ¢ is differentiable and differentiate F with respect to y. This
yields
Fy(x.y) = 3x* +¢'(9).

Comparing this with (2.5.15) shows that

¢'(y) = 6y
We integrate this with respect to y and take the constant of integration to be zero because we’re interested
only in finding some F that satisfies (2.5.14) and (2.5.15). This yields

¢(y) =2y
Substituting this into (2.5.16) yields

F(x,y) = x*y® + x3 +2y3 (2.5.17)
Now Theorem 2.5.1 implies that
33y =c

is an implicit solution of (2.5.13). Solving this for y yields the explicit solution
c— .X3 1/3
y= (2 + x4) ’

Solution (Method 2) Instead of first integrating (2.5.14) with respect to x, we could begin by integrating
(2.5.15) with respect to y to obtain

F(x,y) =x*y? +2y° + ¥ (x), (2.5.18)

where v is an arbitrary function of x. To determine v, we assume that v is differentiable and differentiate
F with respect to x, which yields

Fe(x.y) = 4x%y° + 9/ (x).
Comparing this with (2.5.14) shows that

V' (x) = 3x2.
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Figure 2.5.1 A direction field and integral curves for (4x3y3 + 3x2)dx + (3x*y? + 6y?)dy =0

Integrating this and again taking the constant of integration to be zero yields
V(x) = x3.

Substituting this into (2.5.18) yields (2.5.17).

Figure 2.5.1 shows a direction field and some integral curves of (2.5.13),

Here’s a summary of the procedure used in Method 1 of this example. You should summarize procedure
used in Method 2.

Procedure For Solving An Exact Equation

Step 1. Check that the equation
M(x,y)dx + N(x,y)dy =0 (2.5.19)

satisfies the exactness condition M, = N,. If not, don’t go further with this procedure.

Step 2. Integrate

dF (x,y)
% — M(x.y)
X
with respect to x to obtain
F(x,y) = G(x,y) + ¢(3). (2.5.20)

where G is an antiderivative of M with respect to x, and ¢ is an unknown function of y.
Step 3. Differentiate (2.5.20) with respect to y to obtain

dF(x,y) _ 9G(x,y)
dy

+¢'(y).
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Step 4. Equate the right side of this equation to N and solve for ¢’; thus,

aG(x,y)

——— +9¢'(y)) =N(x.y). so ¢'(y) =N(x,y)—

aG(x,y)
dy '

dy

Step 5. Integrate ¢’ with respect to y, taking the constant of integration to be zero, and substitute the
result in (2.5.20) to obtain F(x, y).

Step 6. Set F(x, y) = ¢ to obtain an implicit solution of (2.5.19). If possible, solve for y explicitly as
a function of x.

It’s a common mistake to omit Step 6. However, it’s important to include this step, since F isn’t itself
a solution of (2.5.19).

Many equations can be conveniently solved by either of the two methods used in Example 2.5.3. How-
ever, sometimes the integration required in one approach is more difficult than in the other. In such cases
we choose the approach that requires the easier integration.

Example 2.5.4 Solve the equation

(ye* tanx + ™ sec? x) dx + xe* tanx dy = 0. (2.5.21)

Solution We leave it to you to check that M, = N, on any open rectangle where tan x and sec x are
defined. Here we must find a function F such that

Fr(x,y) = ye™ tanx + e* sec? x (2.5.22)

and
Fy(x,y) = xe™’ tanx. (2.5.23)

It’s difficult to integrate (2.5.22) with respect to x, but easy to integrate (2.5.23) with respect to y. This
yields
F(x,y) = e tanx + ¢ (x). (2.5.24)

Differentiating this with respect to x yields
Fr(x,y) = ye™ tanx + e sec’ x + ¥’ (x).

Comparing this with (2.5.22) shows that ¥'(x) = 0. Hence, ¥ is a constant, which we can take to be
zero in (2.5.24), and
e tanx = ¢

is an implicit solution of (2.5.21). |
Attempting to apply our procedure to an equation that isn’t exact will lead to failure in Step 4, since
the function

won’t be independent of x if M,, # N (Exercise 31), and therefore can’t be the derivative of a function
of y alone. Here’s an example that illustrates this.

Example 2.5.5 Verify that the equation
3x2y?dx 4+ 6x3ydy =0 (2.5.25)

is not exact, and show that the procedure for solving exact equations fails when applied to (2.5.25).
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Solution Here
My(x,y) = 6x%y and Ny(x,y) = 18x2y,
50 (2.5.25) isn’t exact. Nevertheless, let’s try to find a function F such that
Fr(x,y) = 3x2y? (2.5.26)

and
Fy(x,y) = 6x3y. (2.5.27)

Integrating (2.5.26) with respect to x yields
F(x,y) =x°y> + ¢ (),
and differentiating this with respect to y yields
Fy(x,y) =2x°y +¢'(y).
For this equation to be consistent with (2.5.27),
6x’y =2x%y +¢'(),

or
¢'(y) = 4x3y.

This is a contradiction, since ¢’ must be independent of x. Therefore the procedure fails.

2.5 Exercises

In Exercises 1-17 determine which equations are exact and solve them.

1. 6x%y?dx +4x3ydy =0

2. (3ycosx + 4xe® 4+ 2x%e¥)dx + 3sinx +3)dy =0

3. 14x2y3dx +21x2y%dy =0

4. (2x —2y?)dx + (12y? —4xy)dy =0

5. x4+ y)?dx+(x+y)>2dy=0 6. (4x+7y)dx+ Bx+4y)dy =0
7. (=2y%sinx + 3y3 —2x)dx + (4ycosx + 9xy?)dy =0

8. (x+y)dx+Q2y+2x)dy=0

9. (3x2+2xy+4y?)dx + (x2+8xy + 18y)dy =0

10.  (2x% +8xy + y?)dx + (2x2 + xy3/3)dy =0

1 1
11. (— +2x) dx + (— +2y) dy =0
X y
12. (ysinxy + xy?cosxy)dx + (xsinxy 4+ xy?cosxy)dy =0
xdx ydy
13. (x2 + y2)3/2 + (x2 + y2)3/2 =0

14. (ex(xzy2 +2xy?) + 6x) dx + 2x%ye* +2)dy =0

15. (x2ex2+y (2x2 +3) + 4x) dx + (x3eX*+ —12y2)dy = 0
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16.
17.

(e (x*y 4+ 4x3) +3y) dx + (x°e* +3x)dy =0
(3x%cosxy —x3ysinxy 4+ 4x)dx + (8y —x*sinxy)dy =0

In Exercises 18-22 solve the initial value problem.

18.
19.
20.
21.
22,

23.

24,

25.

26.

27.

(4x3y? —6x2y —2x — 3)dx + 2x*y —2x¥)dy =0, y(1) =3

(—4y cosx + 4sinx cosx + sec? x)dx + (4y —4sinx)dy =0, y(r/4) =0
(y2 —De*dx +3y*(e* +1)dy =0, y(0) =0

(sinx — ysinx —2cosx)dx +cosxdy =0, y(0)=1
Cx—D(y—-Ddx+x+2)(x—=3)dy =0, y()=-1

Solve the exact equation

(7x +4y)dx + (4x +3y)dy = 0.
Plot a direction field and some integral curves for this equation on the rectangle

{(-l<x<l,-1<y<1}

Solve the exact equation
e*(x*y? +4x3y? + 1) dx + 2x*ye* +2y)dy = 0.
Plot a direction field and some integral curves for this equation on the rectangle

{(—2<x<2,-1<y<I}L

Plot a direction field and some integral curves for the exact equation
3yt +x)dx + (x*y> +y)dy =0

on the rectangle {—1 < x < 1,—1 < y < 1}. (See Exercise 37(a)).

Plot a direction field and some integral curves for the exact equation
(Bx? 4+ 2y)dx + 2y +2x)dy =0

on the rectangle {—2 < x <2,—2 < y < 2}. (See Exercise 37(b)).

(a) Solve the exact equation
(’y* +2x)dx + (x*y’ +3y)dy =0 (A)

implicitly.
(b) For what choices of (xo, y9) does Theorem 2.3.1 imply that the initial value problem

(3y* +2x)dx + (x*y® +3y)dy = 0. y(x0) = yo, (B)

has a unique solution on an open interval (a, b) that contains x¢?



28.

29.

30.

31.

32.

33.

34.

(c)
(a)

(b)

(c)
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Plot a direction field and some integral curves for (A) on a rectangular region centered at the
origin. What is the interval of validity of the solution of (B)?

Solve the exact equation

(x* +y*)dx +2xydy =0 (A)
implicitly.
For what choices of (xg, yo) does Theorem 2.3.1 imply that the initial value problem

(x*+ y*)dx +2xydy =0, y(xo) = yo. (B)

has a unique solution y = y(x) on some open interval (a, b) that contains x¢?

Plot a direction field and some integral curves for (A). From the plot determine, the interval
(a, b) of (b), the monotonicity properties (if any) of the solution of (B), and limy_, 4+ y(x)
and limy_,5_ y(x). HINT: Your answers will depend upon which quadrant contains (x¢, o).

Find all functions M such that the equation is exact.

(a)
(b)
(c)

M(x,y)dx + (x> = y*)dy = 0
M(x,y)dx +2xysinxcosydy =0
M(x,y)dx + (¢* —e”sinx)dy =0

Find all functions N such that the equation is exact.

(@ (x3y% +2xy +3y2)dx + N(x,y)dy =0

(b) (nxy +2ysinx)dx + N(x,y)dy =0

(¢) (xsinx 4+ ysiny)dx + N(x,y)dy =0

Suppose M, N, and their partial derivatives are continuous on an open rectangle R, and G is an
antiderivative of M with respect to x; that is,

0G

— =M.
0x
Show that if M, # Ny in R then the function
G
N - =
dy

is not independent of x.

Prove: If the equations My dx + N1 dy = 0 and My dx + Nydy = 0 are exact on an open
rectangle R, so is the equation

(My 4+ M3)dx + (N; + N2)dy = 0.

Find conditions on the constants A, B, C, and D such that the equation

(Ax + By)dx + (Cx + Dy)dy =0

is exact.

Find conditions on the constants A, B, C, D, E, and F such that the equation

(Ax? 4+ Bxy + Cy?)dx + (Dx* + Exy + Fy*)dy = 0

is exact.
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35.

36.

37.

38.

39.

40.

41.

42,

43.

Suppose M and N are continuous and have continuous partial derivatives My, and N, that satisfy
the exactness condition M, = N, on an open rectangle R. Show that if (x, y) isin R and

X y
F(x,y) =/ M(s, yo)ds + N(x,t)dt,
X0

Yo

then Fy = M and F, = N.

Under the assumptions of Exercise 35, show that

F(x,y) = /y N(xo,s)ds +/XM(t,y)dt.
y x0

0

Use the method suggested by Exercise 35, with (x¢, yo) = (0, 0), to solve the these exact equa-
tions:

(@) (3y*+x)dx+ (x*y3+y)dy =0
(b) (x2+y?)dx +2xydy =0
(© (3x2+2y)dx + 2y +2x)dy =0

Solve the initial value problem

2 2xy
'+ Sy = 1) = -2.
y+xy x24+2x%2y +1 ¥

Solve the initial value problem

3 2x4(4x3 = 3y)
y—-=-y=

= 2 O sy =1
X 3x5 +3x3 4+ 2y ¥

Solve the initial value problem

2
_2 [3x +2ye”
y +2xy=—e" (W)a y(0) = —1.

Rewrite the separable equation
h(y)y" = g(x) (A)

as an exact equation
M(x,y)dx + N(x,y)dy = 0. (B)

Show that applying the method of this section to (B) yields the same solutions that would be
obtained by applying the method of separation of variables to (A)

Suppose all second partial derivatives of M = M(x,y) and N = N(x,y) are continuous and
Mdx + Ndy = 0 and —N dx + M dy = 0 are exact on an open rectangle R. Show that
Myx + Myy = Nyx + Ny, =0o0n R.

Suppose all second partial derivatives of F' = F(x, y) are continuous and Fyx + F), = 0 onan
open rectangle R. (A function with these properties is said to be harmonic; see also Exercise 42.)
Show that —F), dx + Fydy = 0 is exact on R, and therefore there’s a function G such that
Gy = —F, and G, = F, in R. (A function G with this property is said to be a harmonic
conjugate of F.)
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44. Verity that the following functions are harmonic, and find all their harmonic conjugates. (See
Exercise 43.)

(a) x% — y2 (b) e*cosy (c) x3 — 3xy2
(d) cos x cosh y (e) sinx cosh y

2.6 INTEGRATING FACTORS

In Section 2.5 we saw that if M, N, M, and Ny are continuous and M, = N, on an open rectangle R
then
M(x,y)dx + N(x,y)dy =0 (2.6.1)

is exact on R. Sometimes an equation that isn’t exact can be made exact by multiplying it by an appro-
priate function. For example,
(Bx +2y?)dx +2xydy =0 (2.6.2)

is not exact, since M), (x, y) = 4y # Nx(x,y) = 2y in(2.6.2). However, multiplying (2.6.2) by x yields
(3x% +2xy?)dx +2x%ydy =0, (2.6.3)

which is exact, since My (x, y) = Nx(x,y) = 4xy in (2.6.3). Solving (2.6.3) by the procedure given in
Section 2.5 yields the implicit solution
x3 4+ x? y2 =cC.

A function u = p(x, y) is an integrating factor for (2.6.1) if
px, y)M(x, y)dx + p(x, y)N(x,y)dy =0 (2.6.4)

is exact. If we know an integrating factor u for (2.6.1), we can solve the exact equation (2.6.4) by the
method of Section 2.5. It would be nice if we could say that (2.6.1) and (2.6.4) always have the same
solutions, but this isn’t so. For example, a solution y = y(x) of (2.6.4) such that u(x, y(x)) = 0 on
some interval a < x < b could fail to be a solution of (2.6.1) (Exercise 1), while (2.6.1) may have a
solution y = y(x) such that u(x, y(x)) isn’t even defined (Exercise 2). Similar comments apply if y is
the independent variable and x is the dependent variable in (2.6.1) and (2.6.4). However, if u(x, y) is
defined and nonzero for all (x, y), (2.6.1) and (2.6.4) are equivalent; that is, they have the same solutions.

Finding Integrating Factors

By applying Theorem 2.5.2 (with M and N replaced by uM and uN'), we see that (2.6.4) is exact on an
open rectangle R if uM, uN, (uM),, and (N )y are continuous and

0 0
g(MM) = 5(/”\7) or, equivalently, u,M + uM, = puxN + uNx

on R. It’s better to rewrite the last equation as
WM, — Nx) = uxN — pu, M, (2.6.5)

which reduces to the known result for exact equations; that is, if My, = Ny then (2.6.5) holds with u =1,
so (2.6.1) is exact.

You may think (2.6.5) is of little value, since it involves partial derivatives of the unknown integrating
factor u, and we haven’t studied methods for solving such equations. However, we’ll now show that
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(2.6.5) is useful if we restrict our search to integrating factors that are products of a function of x and a
function of y; that is, u(x, y) = P(x)Q(y). We’re not saying that every equation M dx + Ndy = 0
has an integrating factor of this form; rather, we’re saying that some equations have such integrating
factors.We’llnow develop a way to determine whether a given equation has such an integrating factor,
and a method for finding the integrating factor in this case.

If u(x, y) = P(x)Q(y), then pux(x,y) = P'(x)Q(y) and py(x,y) = P(x)Q'(y), so (2.6.5) be-

comes
P(x)Q(»)(My — Nx) = P'(x)Q(»)N — P(x)Q'(»)M, (2.6.6)
or, after dividing through by P(x)Q(y),

P, 00,

My — Nx = o) 00 (2.6.7)
Now let P(x) 0'0)
X y
= d — s
p(x) P00 and  ¢q(y) 00)
so (2.6.7) becomes
My — Nx = p(x)N —q(y)M. (2.6.8)

We obtained (2.6.8) by assuming that M dx + N dy = 0 has an integrating factor u(x,y) =
P(x)Q(y). However, we can now view (2.6.7) differently: If there are functions p = p(x) andg = ¢g(y)
that satisfy (2.6.8) and we define

P(x) = e/ P®dx and  Q(y) = +el 1M (2.6.9)

then reversing the steps that led from (2.6.6) to (2.6.8) shows that u(x, y) = P(x)Q(y) is an integrating
factor for M dx + N dy = 0. In using this result, we take the constants of integration in (2.6.9) to be
zero and choose the signs conveniently so the integrating factor has the simplest form.

There’s no simple general method for ascertaining whether functions p = p(x) and ¢ = ¢(y) satisfy-
ing (2.6.8) exist. However, the next theorem gives simple sufficient conditions for the given equation to
have an integrating factor that depends on only one of the independent variables x and y, and for finding
an integrating factor in this case.

Theorem 2.6.1 Let M, N, M,,, and N, be continuous on an open rectangle R. Then:
(@) If(My — Ny)/N isindependent of y on R and we define

M, — Ny
PO = —F
then
p(x) = Lol PO dx (2.6.10)
is an integrating factor for
M(x,y)dx + N(x,y)dy =0 (2.6.11)
on R.
(b) If(Nx — M,)/M is independent of x on R and we define
Ny —M,
) = ——
then
() = el 4D (2.6.12)

is an integrating factor for (2.6.11) on R.
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Proof (a) If (M, — N,)/N isindependent of y, then (2.6.8) holds with p = (M, — Nx)/N and g = 0.
Therefore
P(x) = £/ P4 and  Q(y) = £/ 10D = 10 = 41,

s0 (2.6.10) is an integrating factor for (2.6.11) on R.
(b) If (Nx —My)/ M is independent of x then eqrefeq:2.6.8 holds with p = Oandq = (Nx—M,)/ M,
and a similar argument shows that (2.6.12) is an integrating factor for (2.6.11) on R. |
The next two examples show how to apply Theorem 2.6.1.

Example 2.6.1 Find an integrating factor for the equation
(2xy® —2x3y3 —4xy? + 2x)dx + (3x*y> + 4y)dy =0 (2.6.13)

and solve the equation.

Solution In (2.6.13)
M =2xy® —2x3y3 —dxy? 4+ 2x, N = 3x%y? + 4y,
and
M,y — Ny = (6xy? — 6x3y? — 8xy) — 6xy* = —6x3y? — 8xy,
so (2.6.13) isn’t exact. However,

M, — N 6x%y% +8
y = Na Xyt A8y

N 3x22+4y

is independent of y, so Theorem 2.6.1(a) applies with p(x) = —2x. Since

/p(x)dx = —/2xdx = —x2,

%isan integrating factor. Multiplying (2.6.13) by u yields the exact equation

X

p(x) =e”
e (2xy® —2x3y® —4xy? +2x) dx + e (3x2y% + 4y) dy = 0. (2.6.14)

To solve this equation, we must find a function F such that
Fe(x,y) = e 2xy3 —2x3y% — 4xy? + 2x) (2.6.15)

and 5
Fy(x,y) = e ™ (3x%y? 4 4y). (2.6.16)

Integrating (2.6.16) with respect to y yields

F(x,y) = e (2% +2y%) + ¢ (x). (2.6.17)

Differentiating this with respect to x yields

Fe(x,y) = e_’62(2xy3 —2x3y3 —4xy?) + ¥/ (x).

Comparing this with (2.6.15) shows that ¥/(x) = 2xe™; therefore, we can let Y(x) = —e* in

(2.6.17) and conclude that
2
e (yz(xzy +2)—1)=c¢
is an implicit solution of (2.6.14). It is also an implicit solution of (2.6.13).
Figure 2.6.1 shows a direction field and some integal curves for (2.6.13)
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Figure 2.6.1 A direction field and integral curves for
(2xy3 —2x3y3 —4xy? 4+ 2x) dx + (3x%y% + 4y)dy =0

Example 2.6.2 Find an integrating factor for

2xy3dx + 3x*y* + x*y* + 1)dy =0 (2.6.18)

and solve the equation.

Solution In (2.6.18),
M =2xy®, N =3x%?+x%y* +1,
and
M,y — Ny = 6xy% — (6xy? + 2xy%) = —2xy3,

so (2.6.18) isn’t exact. Moreover,

My — Ny 2xy3

N T 3x2y2 4 x2)2 4+ 1

is not independent of y, so Theorem 2.6.1(a) does not apply. However, Theorem 2.6.1(b) does apply,
since

Ny—M, 2xy?
M T 2xy3

is independent of x, so we can take g(y) = 1. Since

/q(y)dy =/dy

Yy,
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u(y) = e? is an integrating factor. Multiplying (2.6.18) by i yields the exact equation

2xy3e? dx + (3x?y* + x?y* + 1)e? dy = 0. (2.6.19)
To solve this equation, we must find a function F such that
Fr(x,y) = 2xy3e” (2.6.20)
and
Fy(x,y) = 3x*y* + x%y* + e”. (2.621)
Integrating (2.6.20) with respect to x yields
(2.6.22)

F(x,y) = x>y + ¢(y).

Differentiating this with respect to y yields
Fy = (3x%y? +x%y%)e” +¢'(»).

and comparing this with (2.6.21) shows that ¢’(y) = e”. Therefore we set ¢(y) = e” in (2.6.22) and

conclude that
(x2y3+ 1e? =¢

is an implicit solution of (2.6.19). Itis also an implicit solution of (2.6.18). Figure 2.6.2 shows a direction

field and some integral curves for (2.6.18).
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Figure 2.6.2 A direction field and integral curves for 2xy3e” dx + 3x2y% + x2y3 + 1)e? dy = 0

Theorem 2.6.1 does not apply in the next example, but the more general argument that led to Theo-

rem 2.6.1 provides an integrating factor.
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Example 2.6.3 Find an integrating factor for
(Bxy + 6y?) dx + (2x* + 9xy)dy = 0 (2.6.23)

and solve the equation.

Solution In (2.6.23)
M =3xy 4+ 6y%, N =2x2 + 9xy,

and

M, — Ny = (3x + 12y) — (4x + 9y) = —x + 3y.

Therefore
My — Ny —x + 3y d Ny — M, x =3y
= an = s
M 3xy + 6y? N 2x2 + 9xy
so Theorem 2.6.1 does not apply. Following the more general argument that led to Theorem 2.6.1, we
look for functions p = p(x) and ¢ = ¢(y) such that

My — Nx = p(x)N —q(y)M;

that is,
—x 43y = p(x)(2x* + 9xy) —q(»)(3xy + 6y?).

Since the left side contains only first degree terms in x and y, we rewrite this equation as
xp()2x +9y) = yq(y)(3x + 6y) = —x + 3y.

This will be an identity if
xp(x)=A and yq(y) =B, (2.6.24)

where A and B are constants such that
—x +3y =AQ2x +9y) — B(3x + 6y),

or, equivalently,
—x+3y=Q2A—-3B)x + (94 — 6B)y.

Equating the coefficients of x and y on both sides shows that the last equation holds for all (x, y) if

2A-3B = -1
94—-6B = 3,

which has the solution A = 1, B = 1. Therefore (2.6.24) implies that

1 1
plx)=_ and q(y)=;-

Since

/p(x)dx=1n|x| and /q(y)dy=1n|y|,

we can let P(x) = x and Q(y) = y; hence, u(x, y) = xy is an integrating factor. Multiplying (2.6.23)
by u yields the exact equation

(Bx%y? + 6xy3) dx + 2x3y + 9x%y?) dy = 0.
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Figure 2.6.3 A direction field and integral curves for (3xy + 6y2)dx + (2x2 + 9xy)dy = 0

We leave it to you to use the method of Section 2.5 to show that this equation has the implicit solution
x3y? +3x%y3 =c. (2.6.25)

This is also an implicit solution of (2.6.23). Since x = 0 and y = 0 satisfy (2.6.25), you should check to
see that x = 0 and y = 0 are also solutions of (2.6.23). (Why is it necesary to check this?)

Figure 2.6.3 shows a direction field and integral curves for (2.6.23).

See Exercise 28 for a general discussion of equations like (2.6.23).

Example 2.6.4 The separable equation

—ydx+ (x+x%)dy=0 (2.6.26)
can be converted to the exact equation
dx dy
— 4+ = =0 (2.6.27)
x+x6  y

by multiplying through by the integrating factor
1

u(x,y) = m~

However, to solve (2.6.27) by the method of Section 2.5 we would have to evaluate the nasty integral

/ dx
X 4+ x6°

Instead, we solve (2.6.26) explicitly for y by finding an integrating factor of the form p(x, y) = x¢y?.
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Figure 2.6.4 A direction field and integral curves for —y dx + (x + x®)dy =0

Solution In (2.6.26)
M=—y, N=x+x°

and
My — Ny = =1 — (1 4+ 6x°) = —2 — 6x°.

We look for functions p = p(x) and ¢ = ¢g(y) such that
My — Ny = p(xX)N —q(y)M;

that is,
—2—6x° = p(x)(x + x%) +q(y)y. (2.6.28)

The right side will contain the term —6x° if p(x) = —6/x. Then (2.6.28) becomes
—2—-6x° = —6—6x° +q(y)y,
sog(y) =4/y. Since
6 1
/p(x)dx = —/ —dx =—6In|x| =In—,
X X
and

4
/q(y)dy =/;dy =4In|y| = Iny*,
6.,4

we can take P(x) = x % and Q(y) = y*, which yields the integrating factor u(x,y) = x ®y*.
Multiplying (2.6.26) by u yields the exact equation

5 4
—y—dx+(y—+y4) dy =0.
X
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We leave it to you to use the method of the Section 2.5 to show that this equation has the implicit solution
5
(2) +»° =k
x
Solving for y yields
y = kl/Sx(l + xS)—l/S’

which we rewrite as
y=cx(1+ X375
by renaming the arbitrary constant. This is also a solution of (2.6.26).
Figure 2.6.4 shows a direction field and some integral curves for (2.6.26).

2.6 Exercises

1. (a) Verify that u(x, y) = y is an integrating factor for

1
ydx+(2x+—) dy =0 (A)
y
on any open rectangle that does not intersect the x axis or, equivalently, that
y2dx + (2xy +1)dy =0 (B)

is exact on any such rectangle.
(b) Verity that y = 0 is a solution of (B), but not of (A).
(¢) Show that
yxy+1)=c ©)
is an implicit solution of (B), and explain why every differentiable function y = y(x) other
than y = 0 that satisfies (C) is also a solution of (A).

2. (a) Verify that u(x, y) = 1/(x — y)? is an integrating factor for

—y2dx +x%dy =0 (A)
on any open rectangle that does not intersect the line y = x or, equivalently, that
2 2
y X
————dx+ ——=dy=0 (B)
(x —y)? (x—y)?
is exact on any such rectangle.
(b) Use Theorem 2.2.1 to show that
Xy
=c (©)
(x =)

is an implicit solution of (B), and explain why it’s also an implicit solution of (A)
(c) Verify that y = x is a solution of (A), even though it can’t be obtained from (C).

In Exercises 3—16 find an integrating factor; that is a function of only one variable, and solve the given
equation.

3. ydx—xdy=0 4. 3x2ydx+2x3dy=0

5. 2y3dx+3y%dy =0 6. (5xy +2y+5)dx+2xdy=0
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xy+x+2y+Ddx+x+1)dy=0
(27xy? + 8y dx + (18x%y + 12xy?)dy =0
9. (6xy%+2y)dx + (12x%y + 6x +3)dy =0

1
10. y2dx + (xy2 +3xy + —) dy =0
y

1. (12x3y 4+ 24x2y%)dx + (9x* +32x3y + 4y)dy =0
12.  (x%2y +4xy +2y)dx + (x2 +x)dy =0

13. —ydx+ (x*—x)dy =0

14. cosxcosydx + (sinxcosy —sinxsiny + y)dy =0
15.  (2xy + y?)dx + 2xy + x2 —2x2y? —2xy3)dy =0
16. ysinydx + x(siny —ycosy)dy =0

In Exercises 17-23 find an integrating factor of the form u(x,y) = P(x)Q(y) and solve the given
equation.

17. y(1 +5Injx|)dx +4xIn|x|dy =0

18. (ay + yxy)dx + (Bx +38xy)dy =0

19. (3x%y3 —y2 4+ y)dx + (—xy +2x)dy =0

20. 2ydx +3(x%2+x2y3)dy =0

21. (acosxy — ysinxy)dx + (bcosxy —xsinxy)dy =0
22, x*y*dx +x3y3dy =0

23. y(xcosx +2sinx)dx + x(y + 1)sinxdy =0

In Exercises 24-27 find an integrating factor and solve the equation. Plot a direction field and some
integral curves for the equation in the indicated rectangular region.

24, [CG] ()3 +y)dx + Py —x)dy =0; {~1<x<l-1<y=<1}

25. (3xy+2y2+y)dx+(x2+2xy+x+2y)dy=O; {(—2<x<2,-2<y<2}
26. (12xy + 6y3)dx + (9x% + 10xy?)dy =0; {—2<x<2,-2<y<2}

27. [C/G] Bx%y* +2y)dx +2xdy =0; {—4<x<4,—4<y<4

28. Suppose a, b, ¢, and d are constants such that ad — bc # 0, and let m and n be arbitrary real
numbers. Show that

(ax™y + by" T dx + (cx™t + dxy")dy =0

has an integrating factor 1 (x, y) = x®y#.

29. Suppose M, N, M, and N, are continuous for all (x, y), and 4 = p(x, y) is an integrating
factor for
M(x,y)dx + N(x,y)dy = 0. (A)

Assume that t, and p, are continuous for all (x, y), and suppose y = y(x) is a differentiable
function such that p(x, y(x)) = 0 and px(x, y(x)) # O for all x in some interval /. Show that y
is a solution of (A) on /.
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According to Theorem 2.1.2, the general solution of the linear nonhomogeneous equation

Y+ p)y = fx) (A)

is
y=n (et [ rmwax). ®)
where y; is any nontrivial solution of the complementary equation y’ + p(x)y = 0. In this

exercise we obtain this conclusion in a different way. You may find it instructive to apply the
method suggested here to solve some of the exercises in Section 2.1.

(a) Rewrite (A) as
[p(x)y — f(x)]dx + dy = 0. (©)
and show that u = +e/PX)dx jgap integrating factor for (C).

(b) Multiply (A) through by pu = tef/ P dx gpd verify that the resulting equation can be
rewritten as

((x)y) = u(x) f(x).

Then integrate both sides of this equation and solve for y to show that the general solution

of (A)is
1
y = 0 (C + / fo)p(x) dx).

Why is this form of the general solution equivalent to (B)?






