Chapter 62

Partial Derivatives

FUNCTIONS OF SEVERAL VARIABLES. If a real number z is assigned to each point (x, y) of a
part (region) of the xy plane, then z is said to be given as a function, z = f(x, y), of the
independent variables x and y. The locus of all points (x, y, z) satisfying z = f(x, y) is a surface
in ordinary space. In a similar manner, functions w = f(x, y, z,...) of several independent
variables may be defined, but no geometric picture is available.

There are a number of differences between the calculus of one and of two variables.
Fortunately, the calculus of functions of three or more variables differs only slightly from that
of functions of two variables. The study here will be limited largely to functions of two
variables.

LIMITS AND CONTINUITY. We say that a function f(x, y) has a limit A as x—x, and y— y,,
and we write lim f(x, y) = A, if, for any € >0, however small, there exists a § >0 such that,
I—'Xo

o
for all (x, y) satisfying

0<Vx—x) +(y—y,) <8 (62.1)

we have | f(x, y) — A] <e. Here, (62.1) defines a deleted neighborhood of (x,, y,), namely, all
points except (x,, yo) lying within a circle of radius & and center (x,, y,).

A function f(x, y) is said to be continuous at (x,, y,) provided f(x,, y,) is defined and
xliol?o f(x, y)= f(xg, yo). (See Problems 1 and 2.)

y=*Yo

PARTIAL DERIVATIVES. Letz = f(x, y) be a function of the independent variables x and y. Since
x and y are independent, we may (1) allow x to vary while y is held fixed, (2) allow y to vary
while x is held fixed, or (3) permit x and y to vary simultaneously. In the first two cases, z is in
effect a function of a single variable and can be differentiated in accordance with the usual
rules.

If x varies while y is held fixed, then z is a function of x; its derivative with respect to x,
_9dz . fix+Ax,y)—flx, y)
e y) = 5 = Aim, Ax

is called the ( first) partial derivative of z = f(x, y) with respect to x.
If y varies while x is held fixed, z is a function of y; its derivative with respect to y,

iz . Ay - fx
£ (x, y)=a—;=;;r30f(‘ y+ AYi fix, y)

is called the ( first) partial derivative of z = f(x, y) with respect to y. (See Problems 3 to 8.)

If z is defined implicitly as a function of x and y by the relation F(x, y, z) =0, the partial
derivatives dz/dx and dz/dy may be found using the implicit differentiation rule of Chapter 11.
(See Problems 9 to 12.)

The partial derivatives defined above have simple geometric interpretations. Consider the
surface z = f(x, y) in Fig. 62-1. Let APB and CPD be sections of the surface cut by planes
through P, parallel to xOz and yOz, respectively. As x varies while y is held fixed, P moves
along the curve APB and the value of dz/dx at P is the slope of the curve APB at P.

Similarly, as y varies while x is held fixed, P moves along the curve CPD and the value of
dz/dy at P is the slope of the curve CPD at P. (See Problem 13.)
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PARTIAL DERIVATIVES OF HIGHER ORDERS. The partial derivative dz/dx of z = f(x, y) may
in turn be differentiated partially with respect to x and y, yielding the second partial derivatives

P £ (%) e Zaenen- 2 (%)

ox
Similarly, from c‘)z/ay we may obtain

é’z 3 (az) 3’z _ _i(£>
31‘6}’ fn( y) ax and (9 2 _fv_v(x’ }’)“ 3

ay ay
If z= f(x, y) and its partial derlvatnves are continuous, the order of differentiation turns out to
a” a’z
be immaterial; that is, AL (See Problems 14 and 15.)
xdy dya

Solved Problems

1. Investigate z = x* + y* for continuity.

For any set of finite values (x, y) =(a,b), we have z=a"+b>. As x—>aand y— b, X’ +y’'—
a’ + b® Hence, the function is continuous everywhere.

2. The following functions are continuous everywhere except at the origin (0, 0), where they are
not defined. Can they be made continuous there?

(@) z=

sin (x + y)
X+y

Let (x, y)— (0, 0) over the line y = mx; then z = Sin(x +y) _ sin(1+ m)x — 1. The function

xty (1+ m)x
. . sin (x + y)
may be made continuous everywhere by redefining it as z = Ty_ for (x, y)#(0.0); z =1 for
(x. y)=(0,0).
Xy
by z=
®) 2= 7

xy

¥ +y’ T 1+m
the particular line chosen. Thus, the function cannot be made continuous at (0, 0).

Let (x. y)— (0, 0) over the line y = mx; the limiting value of z =

5 depends on

In Problems 3 to 7, find the first partial derivatives.
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3. z=2x"-3xy + 4y’
6_z=

Treating y as a constant and differentiating with respect to x yield P

4x —3y.

. . L . ... 0
Treating x as a constant and differentiating with respect to y yield 6_; = —3x + 8y.

2 2
4. =2+ L
y X
. , - . . .0z 2x ¥
Treating y as a constant and differentiating with respect to x yield xo v
/ X
. . — . ., 4,02 xt 2y
Treating x as a constant and differentiating with respect to y yield ay =Gt
y
5. z=sin (2x +3y)
éi—2 (2x + 3y) and r;—z—.’;cos(2 + 3y)
oy - 2cos(2x + 3y n iy - x+ 3y
6. z = arctan x'y + arctan xy’
- ; a ’ 2
9z _ 2x"4ﬁ+ y’4 and ez _ x42+ xy:d
dx  1+x'y° l+xy dy 1+x'y 1 +x%y
7 z=e" "
dz v dz Vi
—=e" """2x+y)=z(2x + y) and =e (x)=xz

dx 5 -

8. The area of a triangle is given by K = absin C. If a =20, b =30, and C = 3(0°, find:
(a) The rate of change of K with respect to a, when b and C are constant.
(b) The rate of change of K with respect to C, when a and b are constant.
(c) The rate of change of b with respect to a, when K and C are constant.

K1y e ovein o < 13
(a) a—a—ibsmC—z(TsO)(sm?&O)— >
oK 1 1
(b) -3 ab cos C = 5 (20)(30)(cos 30°) = 150V3
N be 2K and ab 2K 2iabsinC) b 3
(€) " asinC an da  a’sinC asinC a2

In Problems 9 to 11, find the first partial derivatives of z with respect to the independent variables x
and y.

9. Xy =25
Solution 1: Solve for z to obtain z = =\/25 - x* — y°. Then
9z —y __Y

éf -x

= ——— . — P d = e—_—,—_—_—m—m—me— e =
ax  +\25-x - y° o 8y  =\25-x" -y’ z

Solution 2: Differentiate implicitly with respect to x, treating y as a constant, to obtain

NOI=

dz
2x +2z — =0 or — =-=
ax
Then differentiate implicitly with respect to y, treating x as a constant:

dz
2y + 2z — = —~=-Z
y+2 3 0 or
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10. X’y +32)+ y’(3x —4z) + z2°(x —2y) = xyz

The procedure of Solution 1 of Problem 9 would be inconvenient here. Instead, differentiating
implicitly with respect to x yields

2£ 2 _ 22 _ E 2 _ E
2x(2y +3z) + 3x 6x+3y 4y ax+2z(x 2y) 6x+z =yz+xy Ix

9z _  Axy+6xz+3y +2 —y2
dx 3x? —4y* + 2xz —4yz — xy

so that

Differentiating implicitly with respect to y yields

d d 9z
2x7 + 3x° 3—; +2y(3x — 4z) — 4y’ 5 +22z(x - 2y) 5 -2 =xz+xy Iy
hat dz _ 2x’ +6xy~8yz—22 - xz
s0 tha dy 3x* — 4y’ + 2xz —4yz — xy
1. xy+yz+zx=1
. - . . Jz dz _ dz _ y+z
Differentiating with respect to x yields y + y x ¥ tiT 0 and x- x+y
. I . . Jz az _ dz _ x+z
Differentiating with respect to y yields x + y 3y +z+x 3y 0 and 3y x+y
. . . ar dr 40 46 2,
12.  Considering x and y as independent variables, find —, —, —, — when x= e’ cos 0,

ax dy dx dy

y=e" sin 6.

First differentiate the given relations with respect to x:

, 0 ;. [/} ;. J , J0
1=2¢¥ cos @ 2L — ¢ sinf = and  0=3¢"sin0 <L + e cosf =
ax ax ox Jx

Then solve simultaneously to obtain or_ __cos0 and 90 ____3sin8
y ox  eM(Z+sini0) "Cax eF(2+sin6)
Now differentiate the given relations with respect to y:

J . 7] ) a a0
0=2e2'c059—r—e2'sm0—0 and 1=3¢"sin8 2 + e" cos § —
dy ay ay ay

Then solve simultaneously to obtain I _ L and 8_0 = ﬂ
y dy e (2+sin0) "3y e'(2+sin6)

13.  Find the slopes of the curves cut from the surface z = 3x° + 4y’ — 6 by planes through the

point (1,1, 1) and parallel to the coordinate planes xOz and yO-:.

The plane x =1, parallel to the plane yOz, intersects the surface in the curve z=4y> —3, x = 1.
Then dz/dy =8y =8 X 1 =8 is the required slope.

The plane y = 1, parallel to the plane xOz, intersects the surface in the curve z=3x" -2, y=1.
Then dz/dx = 6x =6 is the required slope.

In Problems 14 and 15, find all second partial derivatives of z.
4. z=x"+3xy+)°

dz %z 6(62) d’z d {dz

— =2x+3 —=Z(Z2}=3 =_(_)=

ax y axt  9x \ox dydx dy \dx 3
2

d a
—£=3x+2y —§=—6—
dy dy ay
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15.

16.

17.

18.

19.

Z=XCOS y— ycCosX

ax
o _ 3 (2
dy dx dy \dx

PARTIAL DERIVATIVES

Jz .
— =cosy+ ysinx

)=—siny+sinx=

E——xsin —COos X &—

ay ¥ ax’
o' 2’ _
ax dy ay’

Supplementary Problems

Xl

2l

oy

z) c
=ycosx
< y

;)

= —XCOSy

[CHAP. 62

[nvestngatc each of the followmg to determine whether or not it can be made continuous at (0, 0):

y*

3
X

x+y

(@) 77—, (b)

X+ y x+y’

xX—Yy (C

27()

4y

Ans.

(a) no; () no; (c) yes; (d) no

For each of the following functions, find dz/dx and dz/4dy.

(@) z=x"+3xy+y°

X

(b) z= = -

>
e

(¢) z=sin3xcos4y

(d) z = arctan ‘i.

(e) x> —4y" +92° =36

(f) ' =3x"y +6xyz=0

(g) yz+xz+xy=0

(@) If z=Vx*+y°, show thatxj

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

0z

By Ifz=InVx +y° showthatx—+y

(¢) If z=¢""sin ; +e’

(d) If z =(ax + by)> + e**** +sin (ax + by), show that b 5 =a—

'* cos X
x

Find the equation of the line tangent to
(a) The parabola z = 2x° —3y y =1 at the point (-2, 1,5)
(b) The parabola z = 2x* — 3y*, x = -2 at the point (-2, 1, 5)
(c) The hyperbola z = 2x* — 3y% z =35 at the point (-2, 1, 5)
Show that these three lines lie in the plane 8x + 6y + z + 5= 0.

For each of the following functions, find j

EE: 3’z
"dxdy’ dydx’

3%z
d —
and ——

dz
j—=2x+3y,a———3x+2y
dz 1 2y dz 2x |
vl T s Bonti i S
ax y x T dy yx
9z dz
x =3¢ os3xcos4y,—; —4sin3xsin 4y
9z _ _—y 9z _ X
ax x2+y2! ay_x2+y2
dz __x 9z _4y
dx 9z’ dy 9z
dz _2y(x—z) dz _ x(x-2z)
dx z2+2xy'c9y 2"+ 2xy
dz y+z 9z X+ 2z
dx  x+y’dy x+y
+ 9z _
yay z.
dz
dy =1.
dz dz
h h — =0.
sowtatxa +ydy =0
dz
dy’

Ans. Bx+z+11=0,y=1
Ans, 6y+z—-11=0,x=-2
Ans.

4x+3y+5=0,z=5
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21,

(@) z=2x*-5xy+y* Ans. %—4'%—%-—5;3—;=2

(¢) z =sin 3x cos 4y Ans. a—:=—9z;3‘%=%-——12cos3xsm4y,—2
(d)z=arctan§ Ans. a—;§=—‘;—;§—(x 2:};) ai;y—a‘;vzsz(j:-:;;)z
(a) Ifz— y , show that x* gl— + 2xy ax;y+y2‘;—;§=0.

(b) If z=¢e"" cos By and B = *a, show thatj—}i + 55; =0.

%z 9%z 9z

(¢) If z=e""(sin x + cos y), show that Py + a_yz =2
2
(d) If z=sin ax sin by sin ktVa® + b*, show that — kz( 0xz Zyi)

a
For the gas formula (p + -—2)(0 — b) = ct, where a, b, and ¢ are constants, show that
v

dp _2a(v-b)—(p+alv’)v’ du _ o’

dv v’(v—b) at  (p+aiv’)v’—2a(v-b)
ot _v=b  apav
0p c dv dt dp

[For the last result, see Problem 11 of Chapter 64.]



Chapter 63

Total Differentials and
Total Derivatives

TOTAL DIFFERENTIALS. The differentials dx and dy for the function y = f(x) of a single

independent variable x were defined in Chapter 28 as
dx = Ax and dy = f'(x) dx = % dx

Consider the function z = f(x, y) of the two independent variables x and y, and define
dx = Ax and dy = Ay. When x varies while y is held fixed, z is a function of x only and the

partial differential of z with respect to x is defined as d, z = f (x, y) dx = ﬁ dx. Similarly, the
partial differential of z with respect to y is defined as d,z = f (x, y) dy = a_y dy. The total
differential dz is defined as the sum of the partial differentials,

0z 0z
dz—b—xdx+-6-)*’dy (63.1)
For a function w= F(x, y, z, ..., ), the total differential dw is defined as
ow ow ow w
dW——a—d +§;dy+72—d2+"'+ﬁdt (632)

(See Problems 1 and 2.)

As in the case of a function of a single variable, the total differential of a function of several
variables gives a good approximation of the total increment of the function when the
increments of the several independent variables are small.

a a
EXAMPLE 1: When z = xy, dz = ;i drx + a—; dy = y dx + x dy; and when x and y are given increments
Ax = dx and Ay = dy, the increment Az taken on by z is

Az=(x+Ax)(y+Ay)—xy=xAy + yAx + Ax Ay
=xdy+ ydx+ dxdy

A geometric interpretation is given in Fig. 63-1: dz and Az differ by the rectangle of area Ax Ay = dx dy.

(See Problems 3 to 9.)

a x4y Ax Ay
y Xy y Ax
x Ax
Fig. 63-1

THE CHAIN RULE FOR COMPOSITE FUNCTIONS. If z = f(x, y) is a continuous function of the
variables x and y with continuous partial derivatives dz/dx and dz/dy, and if x and y are

386
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differentiable functions x = g(t) and y = h(t) of a variable ¢, then z is a function of ¢ and dz/dt,
called the total derivative of z with respect to ¢, is given by

dz _dz dx Jdz dy

@ ox iV ay di (63.3)
Similarly, if w= f(x, y,z,...) is a continuous function of the variables x, y, z,... with
continuous partial derivatives, and if x, y, z, . . . are differentiable functions of a variable ¢, the

total derivative of w with respect to t is given by

dw dw dx oJw dy  dw dz
=27 - L 4 — = PN
dt dx dt * dy dt Jdz dt * (63.4)

(See Problems 10 to 16.)

If z=f(x, y) is a continuous function of the variables x and y with continuous partial
derivatives dz/dx and 9z/dy, and if x and y are continuous functions x = g(r, s) and y = h(r, 5)
of the independent variables r and s, then z is a function of r and s with

dz dz dx dz dy dz dz dx dz dy
— == —+=-= — ===+ == :
araxar Tayar ™ T e s T oy us (63.5)
Similarly, if w=f(x, y,z,...) is a continuous function of the variables x, y, z,... with
continuous partial derivatives dw/dx, dw/dy, dw/dz,..., and if x, y, z,... are continuous
functions of the independent variables r, s, t,. .., then
dw  Jdw dx dw dy odw dz
— = 4+ — = 4+ — = 4
ar dx dr dy dr dz or
(63.6)

dw _ 9w dx  dw dy  Ow dz
as dx os 0dy o5 dz 0Js

(See Problems 17 to 19.)

Solved Problems

In Problems 1 and 2, find the total differential.

1.

z= x“y + Jrzy2 + er3

ﬂ_ 2 2 3 E_ K 2 2
We have 51—3xy+2xy +y and ay_x +2x°y + 3xy
_E 2 _ 2 2 3 3 2 2
Then dz—axdx+aydy—(3xy+2xy +y)dx + (x" +2x°y + 3xy°) dy
z=xsiny—ysinx
a9z . dz .
We have 3y Siny-ycosx and ay =xcos y—sinx
az 0z . .
Then dz=a—xdx+5dy=(smy—ycosx)dx+(xcosy—smx)dy

Compare dz and Az, given z = x* + 2xy — 3y~
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az dz
— =2x+2y and — =2x—6y. So dz =2(x + y) dx +2(x —3y) dy
ox ay
Also, Az =[(x + dx)® +2(x + dx)(y + dy) — 3(y + dy)*] — (x* + 2xy — 3y?)

=2(x + y) dx + 2(x — 3y) dy + (dx)* + 2 dx dy — 3(dy)*
Thus dz and Az differ by (dx)’ + 2 dx dy — 3(dy)’.

Approximate the area of a rectangle of dimensions 35.02 by 24.97 units.

. . . 4A dA .
For dimensions x by y, the area is A = xy so that dA = Ix dx + E dy =ydx + xdy. With x =35,

dx =0.02, y =25, and dy = —0.03, we have A =35(25) =875 and dA = 25(0.02) + 35(—0.03) = —0.55.
The area is approximately A + dA = 874.45 square units.

Approximate the change in the hypotenuse of a right triangle of legs 6 and 8 inches when the
shorter leg is lengthened by § inch and the longer leg is shortened by  inch.

Let x, y, and z be the shorter leg, the longer leg, and the hypotenuse of the triangle. Then

3 8z X dz y dz=a—z-dx+£dy=“h+ydy

ax Xty 3)’_1/x2+y2 ax ay ‘/x2+y2

Wh =6, y=8, dr =} d dy=—14, the dz=w=i'nch']‘h the hypote i
en x =0, y =09, = i, and ay 8, n \/m 201 . us ypotenuse is

z= x2+y

lengthened by approximately 3 inch.

The power consumed in an electrical resistor is given by P = E*/R (in watts). If E = 200 volts
and R = 8 ohms, by how much does the power change if E is decreased by 5 volts and R is
decreased by 0.2 ohm?

aP 2E aP E’ 2E E’
GE-R - g PR IE- R

When E =200, R=8, dE = -5, and dR = —0.2, then

dP = 2—(21@ (-5) - (3;9) (-0.2) = —250 + 125 = —125

We have

The power is reduced by approximately 125 watts.

The dimensions of a rectangular block of wood were found to be 10, 12, and 20 inches, with a
possible error of 0.05 in in each of the measurements. Find (approximately) the greatest error
in the surface area of the block and the percentage error in the area caused by the errors in
the individual measurements.
The surface area is S =2(xy + yz + zx); then
as
dz
The greatest error in S occurs when the errors in the lengths are of the same sign, say positive. Then
dS = 2(12 + 20)(0.05) + 2(10 + 20)(0.05) + 2(12 + 10)(0.05) = 8.4 in’

The percentage error is (error/area)(100) = (8.4/1120)(100) = 0.75%.

d5=%-§dx+%§dy+ dz=2(y+2)dx+2(x+ z) dy +2(y + x) dz

For the formula R = E/C, find the maximum error and the percentage error if C = 20 with a
possible error of 0.1 and E = 120 with a possible error of 0.05.
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10.

11.

12.

13.

14.

éR aR 1 E
Here dR_:?EdE-F&_CdCAEdE_FdC
. . 0.05 120
The maximum error will occur when dE = 0.05 and dC = -0.1: then dR = >0~ 200 (—0.1) =0.0325

is the approximate maximum error. The percentage error is dTR (100) = 0.08325 (100) = 0.4062S5 =

0.41%.

Two sides of a triangle were measured as 150 and 200 ft, and the included angle as 60°. If the
possible errors are 0.2 ft in measuring the sides and 1° in the angle, what is the greatest
possible error in the computed area?

1 . dA 1 | dA 1 | A 1
Here A—ixysmﬂ E—iysmﬂ E_EXS"”) —tﬁ—ixycosﬂ
1 1
and dA=5ysin6dx+%xsinsdy+ixycosﬂd6

When x =150, y =200, 8 =60°, dx = 0.2, dy = 0.2, and d8 = 1° = /180, then
dA = }(200)(sin 60°)(0.2) + 3(150)(sin 60°)(0.2) + }(150)(200)(cos 60°)(=/180) = 161.21 ft*

Find dz/dt, given z = x> + 3xy + 5y*; x =sin , y = cos 1.

. 9z _ 8z dx _ dy .
Since o 2x + 3y 3y 3x + 10y 7 ~cost 4 = Csint

dz _ dz dx  dz dy _ .
we have 4 " 3 di + 3y dr =(2x +3y)cost— (3x + 10y) sin¢

Find dz/dt, given z=In (x> + y*); x=¢"', y=¢"

Since 9z _ 2 gz _ 2y e ., dy
ax x2+y2 ¢S'y_x2+y2 dr € dr

dz _Jdzdx dzdy  2x . 2y Lyl —xe

we have dt ~ ox dr+&y dt_x2+y2( )+ 29‘27_‘7

Let z = f(x, y) be a continuous function of x and y with continuous partial derivatives dz/dx
and dz/dy, and let y be a differentiable function of x. Then z is a differentiable function of x.
Find a formula for dz/dx.
dz _of dx of dy _of  of dy
dx éx dx dy dx Jx Jdy dx

The shift in notation from z to f is made here to avoid possible confusion arising from the use of
dz/dx and 4z/dx in the same expression.

By (63.3),

Find dz/dx, given z = f(x, y) = x> + 2xy + 4y’ y = e

E_a_f a_fQ_ = ax
dx_ax+ay dx—(2x+2y)+(2x+8y)ae =2(x + y) + 2a(x + 4y)e

Find (a) dz/dx and (b) dz/dy, given z = f(x, y) =xy’ + x’y, y=In x.
(a) Here x is the independent variable:

dz_é'_f ifdy__ 2 2 1_ 2
dx_ax+¢9y dx—(y +2xy)+(2xy+x)x—y +2xy+2y+x
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(b) Here y is the independent variable:

dz df dx 4

d_y af dy f—(y +2xy)x + (2xy + X°) = xy’ +2x°y + 2xy + x°

15.  The altitude of a right circular cone is 15 inches and is increasing at 0.2 in/min. The radius of
the base is 10 inches and is decreasing at 0.3 in/min. How fast is the volume changing?

Let x be the radius, and y the altitude of the cone (Fig. 63-2). From V = { 7x’y, considering x and y
as functions of time ¢, we have

dv._dV dx 4V dy 17(2 dx 2dy)

dt ~ ox di " ay dt 3 *

= T [2(10)(15)(- 0.3) + 10%(0.2)] = —707/3 in*/min
dt di 3

2 2

16. A point P is moving along the curve of intersection of the paraboloid ';—6 - % = z and the

cylinder x* + y> =5, with x, y, and z expressed in inches. If x is increasing at 0.2 in/min, how
fast is z changing when x =27

2 2
xr _y odz _dzdx dzdy xdx 2y dy . 2 .2 _ _
From z = 6 9 we obtain 4" ax dr + 3y di _8 @ o @ Since x*+y =5, y==*1
when x = 2; also, differentiation yields x ? +y ‘;': 0.
x dx _ dz 2 2 5 . .
When y =1 =TV a ((] 2)=-0.4 and X8 0.2) — < (—().4) = 3% in/min.
dy _xde o dz 2 _ S
When y = —1, iy =0.4 and % (0.2) ( 1)(0.4) = m/mm

17.  Find dz/9r and dz/ds, given z=x"+xy +y*; x=2r+s, y=7r—2s.

0z 0z Jx ox 6y dy
- = + — =x+ = = _ = 1 —_ = =
Here 3 2x +y 3 x+2y ar 2 75 1 ar s 2

0z dz dx 3z ¢
Then = " 3x ar T 3y 3y h =2x+y)(2) + (x +2y)(1) = 5x + 4y

:92 :92 ¢9x Eﬂ_ o
and 5 ax s dy s =(2x + y)(1) + (x + 2y)(-2)

, Ju  du du . 2 2 2 . . .
1. Find —, —, and — iven u=x"+2y°+2z° x=psin Bcosh y=psin B siné,
nd o 38 29’ B y psin B y=psin B
z=pcos B.
du _du dx  Jdu dy

ou 0z
= — — 4+ — — = M 1 1
b dx ap +¢9y a0 ¥ 9z 3 2xsin B cos @ + 4y sin Bsin 8 + 4z cos B
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19.

20.

21.

du du ox dJu dy oJdu oz . .
—_—=— —t — =+ — —= = 8+4 0s nég—4 n
9B ox o8 "oy ap ez B 2x p cos B cos y pcos Bsi zpsin B
Ju Ju ox Ju dy oJu 9z . . .
—=— =+ — =+ — —=-2 8+4 2
36 ax ay 9z 26 x p sin 8 sin y psin B cos

Find du/dx, given u = f(x, y, z)=xy + yz + zx; y=1/x, z = x°.

From (63.6),

du_of , of dy  of dz
dx ~ ox Ay dx gz dx

=(y+z)-|—(x+z)(—%)+(y+Jr)2Jr=y+z+2.wc(.wc+y)—x-::z

If z = f(x, y) is a continuous function of x and y possessing continuous first partial derivatives
dz/dx and dz/dy, derive the basic formula

dz ¥4
Az—an+3;Ay+e,Ax+esz (1)

where €, and €,— 0 as Ax and Ay— 0.
When x and y are given increments Ax and Ay respectively, the increment given to z is
Az = f(x + Ax, y + Ay) — f(x, y)
=[flx+8x, y +Ay) = flx, y + Ay)] + [ flx. y + By) = flx. y)] (2)
In the first bracketed expression, only x changes; in the second, only y changes. Thus, the law of the
mean (26.5) may be applied to each:
flx+Ax,y +Ay)—f(x,y + Ay)=Ax f (x + 8, Ax. y + Ay) (3)
flx, y +4y) = flx, y) = Ay f(x. y + 6, Ay) (4)
where 0< 8, <1 and 0< 8, < 1. Note that here the derivatives involved are partial derivatives.
Since dz/dx = f,(x, y) and dz/3y = f (x, y) are, by hypothesis, continuous functions of x and y,

Jim f(x+6 Ax,y+Ay)=f(x,y) and  lim f(x.y+86,4y)=f(x.y)

Ay—0 Ayv—D

Then f(x+6 Ax,y +Ay)=f(x,y) +¢€ and fx.y+6,8y)=f(x.¥) +¢,

where €, =0 and €,— 0 as Ax and Ay — 0.
After making these replacements in (3) and (4) and then substituting in (1), we have, as required,

Az =[f.(x, )+ €] Ax +[f,(x, y) + €] Ay = f.(x. y) Ax + f.(x. y) Ay + €, Ax + €, Ay

Note that the total derivative dz is a fairly good approximation of the total increment Az when |Ax| and
|Ay| are small.

Supplementary Problems

Find the total differential, given:

(@) z=x"y +2xy’ Ans. dz =(3x" +2y")y dx + (x* + 6y*)x dy
(b) 8 = arctan (y/x) Ans. df = xdyz_dex

X +y
(c) z= &Y Ans. dz=2z(xdx - ydy)

-1 dx—xd
(d) z=x(x*+y*)""? Ans. dz=w
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22.

27.
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The fundamental frequency of vibration of a string or wire of circular section under tension T is

1 T
"2 N7d ‘
approximate effect of changing / by a small amount dl, (b) the effect of changing T by a small amount
dT, and (c) the effect of changing / and T simultaneously.

Ans.  (a) —(n/) dl; (b) (n/2T) dT; (¢) n(-dl/l + dT/2T)

where / is the length, r the radius, and d the density of the string. Find (a) the

Use differentials to compute (a) the volume of a box with square base of side 8.005 and height 9.996 ft;
(b) the diagonal of a rectangular box of dimensions 3.03 by 5.98 by 6.01 ft.

Ans.  (a) 640.544 ft*; (b) 9.003 ft

Approximate the maximum possible error and the percentage of error when z is computed by the given
formula:

(@) z=wrh, r=5=0.05, h=12=*0.1 Ans. 8.5m; 2.8%
(b)Y l/z=1t/f+1/g. f=420.01, g=8=x0.02 Ans. 0.0067; 0.25%
(¢) z=y/x; x=1820.1,y=24=>0.1 Ans. 0.13; 10%

Find the approximate maximum percentage of error in:
(a) w =\/g/b if there is a possible 1% error in measuring g and a possible % error in measuring b.

e = L o — I py. 92 = L d_g_@). d_gi_ |48 _
(Hmt. Inw=4i(ng-Inb); o (g 5 1% =0.01; B —0.005) Ans. 0.005

3
(b) g =2s/t’ if there is a possible 1% error in measuring s and ;% error in measuring 1.
Ans. 0.015

Find du/d:, given:
(a) u=x’y"; x=20 y=31° Ans.  6xy’1(2yt + 3x)
(b) u=xcosy+ ysinx; x=sin2{, y=cos2t
Ans. 2(cos y + y cos x) cos 2t — 2(—x sin y + sin x) sin 2¢
() u=xy+yz+zxsx=e,y=e ' z=¢+e' Ans. (x+2y+2)e' -~ (2x+y+ 2)e’’

At a certain instant the radius of a right circular cylinder is 6 inches and is increasing at the rate
0.2 in/sec, while the altitude is 8 inches and is decreasing at the rate 0.4 in/s. Find the time rate of
change (a) of the volume and (b) of the surface at that instant.

Ans. (a) 4.87 in*/sec; (b) 3.27 in'/sec

A particle moves in a plane so that at any time { its abscissa and ordinate are given by x =2+ 3¢,
y=1"+4 with x and y in feet and ¢ in minutes. How is the distance of the particle from the origin
changing when t=1?  Ans. S$/V2 ft/min

A point is moving along the curve of intersection of x° + 3xy + 3y’ = z* and the plane x — 2y + 4=10.
When x =2 and is increasing at 3 units/sec, find (a) how y is changing. (&) how z is changing, and (c)
the speed of the point.

Ans. (a) increasing 3/2 units/sec; (b) increasing 75/14 units/sec at (2,3,7) and decreasing 75/
14 units/sec at (2,3, —7); (¢) 6.3 units/sec

Find @z/as and &z/41t, given:

(@) z=x" -2y’ x=35+2t, y=3s— 2 Ans. 6(x —2y); 4(x + 2y)

(b) z=x"+3xy+y’, x=sins+cost, y=sins—cos Ans. 5(x+ y)coss; (x — y)sin¢
() z=x"+2y":x=¢—¢,y=¢e"+¢' Ans. 2(x +2y)e’; 2(2y — x)e'

(d) z=sin(dx+5y); x=s5s+t, y=s5—1 Ans. 9cos(4x + 5y); —cos(4x +5y)

(€) z=e"; x=5 +2st, y=2st+ 1 Ans. 2e"[tx + (s + t)y]; 2¢™"[(s + )x + sy]
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31

32,

33.

35.

(a) If u=f(x, y) and x = rcos 8, y = rsin 8, show that

(%) (2 -(2) + 2 (%)

(b) If u=f(x, y) and x = rcosh s, y = rsinh s, show that

(5 -(5) -G -5(5)

2

W
N
B
N

|

2
(a) If z = f(x + ay) + g(x — ay), show that Lz . (Hint: Write z = f(u) + g(v), u=x+ ay,

XV
W

' a’ay’
v=x-—ay.)
(b) If z = x"f(y/x), show that x 3z/dx + y dz/dy = nz.
(¢) If z=f(x, y) and x = g(1), y = h(t), show that, subject to continuity conditions
dz ’ " n
T L@ Y g AL (WY + g

(d) If z = f(x, y); x = g(r, 5), y = h(r, 5), show that, subject to continuity conditions

32
pyl =fu(8) +2f,8.h + [, (h) + f.8. + fh,

02
ar as f;zgrg; +f1y(grh1 + gshr) +fy\ ’ : + f;gn + j:yhrs

2

S2 = fxx(gs )2 + zfxygshs + f;'y(h;)z + f;gn + f;hss

A function f(x, y) is called homogeneous of order n if f(x, ty) = t"f(x, y). (For example, f(x, y)=
x® +2xy + 3y’ is homogeneous of order 2; f(x, y) = x sin (y/x) + y cos ( y/x) is homogeneous of order
1.) Differentiate f(tx, ty) = t"f(x, y) with respect to ¢ and replace ¢ by 1 to show that xf, + yf, = nf. Venify
this formula using the two given examples. See also Problem 32(b).

g v v

If z=¢(u, v), where u = f(x, y) and v = g(x, y), and if o ay d ay I’ show that
u 3w v ' ’¢ 3¢ ou\’ (ov\\(d' o'

@ —m+-7=-3+-5=0 (b)'_z""_T:{(_) +(—)}(—z+—z)
ax ay ax ay ax ay ax ax ou ov

Use (1) of Problem 20 to derive the chain rules (63.3) and (63.5). (Hint: For (63.3), divide by At.)



Chapter 64

Implicit Functions

THE DIFFERENTIATION of a function of one variable, defined implicitly by a relation f(x, y) =0,

was treated intuitively in Chapter 11. For this case, we state without proof:

Theorem 64.1: If f(x, y) is continuous in a region including a point (x,. y,) for which f(x,, y,) =0, if
dfldx and dfléy are continuous throughout the region, and if df/dy #0 at (x,, y,). then there is a
neighborhood of (x,. ¥,) in which f(x, y) = 0 can be solved for y as a continuous differentiable function of

phortood of (x. dy _ oflox
x, y = &(x), with y, = ¢(x,) and dx afldy”

(See Problems 1 to 3.)
Extending this theorem, we have the following:

Theorem 64.2: If F(x,y,z) is continuous in a region including a point (x,, y,.2,) for which

.. 0F @F aF . . .
F(x,, ¥,. 2,) =0, if —, —, and <, are continuous throughout the region, and if dF/8z#0 at

X
(Xy. ¥o. 2,). then there is a neighborhood of (x,, y,. z,) in which F(x, v, z) =0 can be solved for z/as a
JdF/dx

. . . . . 0z
continuous differentiable function of x and y, z = ¢(x, y). with z,= ¢(x,. y,) and - 3Fiaz

az dFidy

ay dFlaz’
(See Problems 4 and 5.)

Theorem 64.3: If f(x, y. u, v) and g(x, y, u, v) are continuous in a region including the point (x,, y,,
u,, v,) for which f(x,, yo. tg, U,) =0 and g(x,, ¥4, Uy, U,) =0, if the first partial derivatives of f and

f.g)E

of g are continuous throughout the region, and if at (x,. y,, u4,, U,) the determinant J(—
‘afmu ofidv #(), then there is a neighborhood of (x u,, v,) in which fi u_,(!; and
dgldu dglov » the € 15 a neig or Ya» Hq, Ug) i ch f(x, y, u. v) an
g(x, y, u, v) =0 can be solved simultaneously for 4 and v as continuous differentiable functions of x and

y, u=d@¢(x,y) and v=y(x,y). If at (x,, y,. u,, v,) the determinant J(ii)#(], then there is a

neighborhood of (x,, y,. 4y, U,) in which f(x, y, u, v) =0 and g(x, y, u, v) =0 can be solved for x and y as
continuous differentiable functions of u and v, x = h(u, v) and y = k(u, v).

(See Problems 6 and 7.)

Solved Problems

Use Theorem 64.1 to show that x* + y*> - 13=0 defines y as a continuous differentiable
function of x in any neighborhood of the point (2, 3) that does not include a point of the x
axis. Find the derivative at the point.

Set f(x, y)=x"+y’—13. Then f(2,3) =0, while in any neighborhood of (2,3) in which the
function is defined, its partial derivatives df/dx = 2x and 3f/3y = 2y are continuous, and df/dy # 0. Then

G Ay oy I x_ 2

ax  dy dx n dx afidy  y

Find dy/dx, given f(x, y)=y' +xy —12=0,

- , R dy __dfldx ___ y
We have oY and ay—Sy +x. So d = " 3flay 3+ x

394
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3.

Find dy/dx, given e*siny + e’ sinx =1.
dy __offox __e'siny+e cosx
dx 3fldy e cosy+e sinx’

Put f(x, y) =e"sin y + ¢” sinx — 1. Then

Find dz/dx and dz/dy, given F(x, y,z) =x"+3xy =2y’ +3xz + 2" =0.

395

Treating z as a function of x and y defined by the relation and differentiating partially with respect

to x and again with respect to y, we have

dF @oF oz az
—t— — = + — = 1
ax+az ox (2x +3y +32) + (3x + 22) o 0 (1)
dF @F oz az
and E-FE ;;—(3x—4y)+(3x+22)5—0 (2)
ﬂ__aF/ax__2x+3y+3z E__&F/ay__3x—4y
From (1), Gy =~ 9Fiaz = x+2z oM (D G =TGR T 3 2s
Find dz/dx and dz/dy, given sin xy + sin yz + sin zx = 1.
Set F(x, y, z) =sin xy + sin yz +sin zx — 1; then
COS Xy + z COs zX 9F _ COs Xy + z COS yz 9F _ cos yz + X
i y 0s ay-—x sXy+zcosy 5, — Ycosyz+xcosz
d 9z _ 9F/dx _ ycosxy+ zcoszx 8z _ dF/dy  xcosxy+ zcosyz
an ax aFlaz y €COS Yz + X COS 2X dy aFléz y €0s yZ + x cos zx
If u and v are defined as functions of x and y by the equations
fx,y,u,v)=x+y* +2uv=0  g(x, y,u,v)=x"—xy+y +u*+v°=0
find (a) du/dx, dv/dx and (b) dul/dy, dv/dy.
(a) Differentiating f and g partially with respect to x, we obtain
du av ou v
1+2v$+2u£—0 and 2x—y+2ua—+205—0
Solving these relations simultaneously for du/dx and dv/éx, we find
du _ v+ u(y—2x) and v _v(2x—y)-u
ax 2’ - v?) ax  2ur-v?)
(b) Differentiating f and g partially with respect to y, we obtain
du au du av
2y +2v — +2u — =0 and —x+2 +2u—+20— 0
VIR ey T Gy YTy T gy
du _ u(x —2y)+2vy dv  v(2y — x) - 2uy
Th —_—=s,— —_—E —— e
en ay 2w —0Y) and T T - )
du dv du dv dx dy
Given u’ — v +2x +3y=0 and uv + x — 0, find and (b
ox dy - y= (@) x> 3% gy ay 2 ®) 5 G

v’ Juv’

(a) Here x and y are to be considered as independent variables. Differentiate the given equations

partially with respect to x, obtaining

a a
2u—b—‘—20—v+2=0 and v—+u—+1=0
ax ax X
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. . . du u+ d -
Solve these relations simultaneously to obtain — = — 2—02 and L v’ uz .
) . . . . ] u“ +v dx  u +v
Differentiate the given equations partially with respect to y, obtaining
a
2u 28— 20 ——+3 0 and va—u+ua—v—l=0
ay ay dy ay
2v —3u dv _ 2u+3v

du
Solve simultancously to obtain — = ———— — = .
¢ y dy  2u v T dy  2u’ +vY)
(b) Here 1 and v are to be considered as independent variables. Differentiate the given equations
X
partially with respect to u, obtaining 2u+2 — +3 Y _0and v+ Z -2y, Then & =

_2utdv 9y 2w du du du  du du
u_ 5
Diffcrentiate the given equations partially with respect to v, obtaining —2v + 2 - + 3 ay =0
dx dy dx _ 2v—-3u ady 2u(u + v)
and u + Fre =0. Then w5 and —= a0 5

Supplementary Problems

8. Find dy/dx. given

(@) x' xy+xy’—y'=1 (b) xy —€e*siny=0 (¢) In(x* + y*) - arctan y/x =0
3T —2xy+ 7 e'siny-y  2x+y
Ans. - (a) x7 = 2xy +3y*’ ( )x —e‘cosy’ (©) x =2y

9. Find dz/dx and dz/dy, given

(@) 3x’ +4y° = 52" =60 Ans. 0z/0x =3x/5z, dz/dy = 4y/5z
20, B 9z x+y+4z 9z x+y+2z
(b x + ¥ + 2z +2xy+4yz +8zx =20 Ans. ax " ax+ayriiay arvlyez
Jz 2z dz 3z
(@) x+3y+2z=1nz Ans. ax  1-2z° ay 1-2z
12 2 9z -e'sin(y+z
(d) z=¢€"cos(y + 2) Ans, - ¢ . 9z _ - esin(y+z)

dx l1+e'sin(y+2)"dy 1+e"sin(y+2)

(e) sin(x + y)+sin(y+2)+sin(z+x)=1

A dz __cos(x+y)+cos(z+x) dz _ cos(x+y)+cos(y+ z)
g T cos(y+z)+cos(z+x)’ dy cos(y+ z)+cos(z+x)
10. Find all the first and second partial derivatives of z, given x* + 2yz + 2zx = 1.
A 9z _ _xtz dz___z az_x~y+22_0:z_x+2z‘_dz_z_ 2z
ax T T x4y ay xtylaxd  (x+y) Toxdy  (x+y) ay’ (x+y)
dx dy dz _
1. If F(x, y,z)=0 show thdtz 3z ax 1.
of o8 _ of dg
L ‘ N L dz _dxdy dydx 1 (f_g)
12. If z = f(x. v) and g(x, y) = 0, show that tlx_—_a_g -QJ )

ay ay
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of 9g oy _ of 3¢

13. If f(x, y)=0 and g(z, x) =0, show that dy x 9z dx dz°

4. Find the first partial derivatives of u and v with respect to x and y and the first partial derivatives of x
and y with respect to u and v, given 2u —v + x* + xy =0, u +2v + xy — y* =0.

du_ _1 v b w1 o dv_dy-x dx  dy-x
Ans. ax_ 5(4X+3y)’ ax_ 5(2x y)! ay— 5(2y 3x)| ay— 5 ) au— 2(x2_2xy_y2)s
ay _ y—2x ax 3x—2y ay —4x — 3y

du 2(x’—2xy—-y2);5 - 2(x2—2xy—y2); w2 - 2xy - )

15. Ifu=x+y+z,o=x"+y +2z,and w=1x"+y’ + z°, show that
ax yz ay x+tz 9z _ 1

du_ (x-y(x-z) v Ax-y(y-z) ow 3(x-z)(y-2)



