Directional Derivatives; Maximum and Minimum Values

DIRECTIONAL DERIVATIVES. Through P(x, y, z), any point on the surface z = f(x, y), pass planes parallel to the coordinate planes xOz and yOz cutting the surface in the arcs PR and PS and the plane xOy in the lines P^*M and P^*N , as shown in Fig. 67-1. The partial derivatives $\partial z/\partial x$ and $\partial z/\partial y$ evaluated at $P^*(x, y)$ give, respectively the rates of change of $z = P^*P$ when y is held fixed and when x is held fixed, that is, the rates of change of z in directions parallel to the x and y axes or the slopes of the curves PR and PS at P.

Fig. 67-3

Consider next a plane through P perpendicular to the plane xOy and making an angle θ with the x axis. Let it cut the surface in the curve PQ and the xOy plane in the line P^*L . The directional derivative of f(x, y) at P^* in the direction θ is given by

$$\frac{dz}{ds} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta \tag{67.1}$$

The direction θ is the direction of the vector $(\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$. The directional derivative gives the rate of change of $z = P^*P$ in the direction of P^*L or the slope of the curve PQ at P.

The directional derivative at a point P^* is a function of θ . There is a direction, determined by a vector called the *gradient* of f at P^* (Chapter 68), for which the directional derivative at P^* has a maximum value. That maximum value is the slope of the steepest tangent line that can be drawn to the surface at P. (See Problems 1 to 8.)

For a function w = F(x, y, z), the directional derivative at P(x, y, z) in the direction determined by the angles α , β , γ is given by

$$\frac{dF}{ds} = \frac{\partial F}{\partial x} \cos \alpha + \frac{\partial F}{\partial y} \cos \beta + \frac{\partial F}{\partial z} \cos \gamma$$

By the direction determined by α , β , and γ , we mean the direction of the vector $(\cos \alpha)\mathbf{i} + (\cos \beta)\mathbf{j} + (\cos \gamma)\mathbf{k}$. (See Problem 9.)

RELATIVE MAXIMUM AND MINIMUM VALUES. Suppose that z = f(x, y) has a relative maximum (or minimum) value at $P_0(x_0, y_0, z_0)$. Any plane through P_0 perpendicular to the plane xOy will cut the surface in a curve having a relative maximum (or minimum) point at P_0 ; that is, the directional derivative $\frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$ of z = f(x, y) must equal zero at P_0 , for any value of θ . Thus, at P_0 , $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$.

The points, if any, at which z = f(x, y) has a relative maximum (or minimum) value are among the points (x_0, y_0) for which $\partial f/\partial x = 0$ and $\partial f/\partial y = 0$ simultaneously. To separate the cases, we quote without proof:

Let z = f(x, y) have first and second partial derivatives in a certain region including the point (x_0, y_0, z_0) at which $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$. If $\Delta = \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 - \left(\frac{\partial^2 f}{\partial x^2}\right)\left(\frac{\partial^2 f}{\partial y^2}\right) < 0$ at P_0 , then z = f(x, y) has

A relative minimum at
$$P_0$$
 if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} > 0$

or

A relative maximum at
$$P_0$$
 if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} < 0$

If $\Delta > 0$, P_0 yields neither a maximum nor a minimum value; if $\Delta = 0$, the nature of the critical point P_0 is undetermined. (See Problems 10 to 15.)

Solved Problems

1. Derive (67.1).

In Fig. 67-1, let $P_1^*(x + \Delta x, y + \Delta y)$ be a second point on P^*L and denote by Δs the distance $P^*P_1^*$. Assuming that z = f(x, y) possesses continuous first partial derivatives, we have, by Problem 20 of Chapter 63,

$$\Delta z = \frac{\partial z}{\partial x} \, \Delta x + \frac{\partial z}{\partial y} \, \Delta y + \epsilon_1 \, \Delta x + \epsilon_2 \, \Delta y$$

where ϵ_1 and $\epsilon_2 \to 0$ as Δx and $\Delta y \to 0$. The average rate of change of z between the points P^* and P_1^* is

$$\frac{\Delta z}{\Delta s} = \frac{\partial z}{\partial x} \frac{\Delta x}{\Delta s} + \frac{\partial z}{\partial y} \frac{\Delta y}{\Delta s} + \epsilon_1 \frac{\Delta x}{\Delta s} + \epsilon_2 \frac{\Delta y}{\Delta s}$$
$$= \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta + \epsilon_1 \cos \theta + \epsilon_2 \sin \theta$$

where θ is the angle that the line $P^*P_1^*$ makes with the x axis. Now let $P_1^* \to P^*$ along P^*L ; the instantaneous rate of change of z, or the directional derivative at P^* , is

$$\frac{dz}{ds} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta$$

2. Find the directional derivative of $z = x^2 - 6y^2$ at $P^*(7,2)$ in the direction (a) $\theta = 45^\circ$, (b) $\theta = 135^\circ$.

The directional derivative at any point $P^*(x, y)$ in the direction θ is

$$\frac{dz}{ds} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta = 2x\cos\theta - 12y\sin\theta$$

- (a) At $P^*(7,2)$ in the direction $\theta = 45^\circ$, $dz/ds = 2(7)(\frac{1}{2}\sqrt{2}) 12(2)(\frac{1}{2}\sqrt{2}) = -5\sqrt{2}$.
- (b) At $P^*(7,2)$ in the direction $\theta = 135^\circ$, $dz/ds = 2(7)(-\frac{1}{2}\sqrt{2}) 12(2)(\frac{1}{2}\sqrt{2}) = -19\sqrt{2}$.
- Find the directional derivative of $z = ve^x$ at $P^*(0,3)$ in the direction (a) $\theta = 30^\circ$, (b) $\theta = 120^\circ$. 3.

Here, $dz/ds = ye^x \cos \theta + e^x \sin \theta$.

- (a) At (0,3) in the direction $\theta = 30^{\circ}$, $dz/ds = 3(1)(\frac{1}{2}\sqrt{3}) + \frac{1}{2} = \frac{1}{2}(3\sqrt{3} + 1)$. (b) At (0,3) in the direction $\theta = 120^{\circ}$, $dz/ds = 3(1)(-\frac{1}{2}) + \frac{1}{2}\sqrt{3} = \frac{1}{2}(-3 + \sqrt{3})$.
- The temperature T of a heated circular plate at any of its points (x, y) is given by 4. $T = \frac{64}{x^2 + y^2 + 2}$, the origin being at the center of the plate. At the point (1, 2) find the rate of change of T in the direction $\theta = \pi/3$.

We have

$$\frac{dT}{ds} = -\frac{64(2x)}{(x^2 + y^2 + 2)^2}\cos\theta - \frac{64(2y)}{(x^2 + y^2 + 2)^2}\sin\theta$$

At (1, 2) in the direction $\theta = \frac{\pi}{3}$, $\frac{dT}{ds} = -\frac{128}{49} \cdot \frac{1}{2} - \frac{256}{49} \cdot \frac{\sqrt{3}}{2} = -\frac{64}{49} \cdot (1 + 2\sqrt{3})$.

The electrical potential V at any point (x, y) is given by $V = \ln \sqrt{x^2 + y^2}$. Find the rate of 5. change of V at the point (3,4) in the direction toward the point (2,6).

Here,

$$\frac{dV}{ds} = \frac{x}{x^2 + y^2} \cos \theta + \frac{y}{x^2 + y^2} \sin \theta$$

Since θ is a second-quadrant angle and $\tan \theta = (6-4)/(2-3) = -2$, $\cos \theta = -1/\sqrt{5}$ and $\sin \theta = 2/\sqrt{5}$. Hence, at (3, 4) in the indicated direction, $\frac{dV}{ds} = \frac{3}{25} \left(-\frac{1}{\sqrt{5}} \right) + \frac{4}{25} \frac{2}{\sqrt{5}} = \frac{\sqrt{5}}{25}$.

6. Find the maximum directional derivative for the surface and point of Problem 2.

At $P^*(7, 2)$ in the direction θ , $dz/ds = 14\cos\theta - 24\sin\theta$.

To find the value of θ for which $\frac{dz}{ds}$ is a maximum, set $\frac{d}{d\theta}\left(\frac{dz}{ds}\right) = -14\sin\theta - 24\cos\theta = 0$. Then $\tan\theta = -\frac{24}{14} = -\frac{12}{7}$ and θ is either a second- or fourth-quadrant angle. For the second-quadrant angle, $\sin\theta = 12/\sqrt{193}$ and $\cos\theta = -7/\sqrt{193}$. For the fourth-quadrant angle, $\sin\theta = -12/\sqrt{193}$ and $\cos\theta = -12/\sqrt{193}$

Since $\frac{d^2}{d\theta^2} \left(\frac{dz}{ds} \right) = \frac{d}{d\theta} \left(-14 \sin \theta - 24 \cos \theta \right) = -14 \cos \theta + 24 \sin \theta$ is negative for the fourth-quadrant angle, the maximum directional derivative is $\frac{dz}{ds} = 14 \left(\frac{7}{\sqrt{103}} \right) - 24 \left(-\frac{12}{\sqrt{103}} \right) = 2\sqrt{193}$, and the direction is $\theta = 300^{\circ}15'$.

7. Find the maximum directional derivative for the function and point of Problem 3,

At $P^*(0,3)$ in the direction θ , $dz/ds = 3\cos\theta + \sin\theta$.

To find the value of θ for which $\frac{dz}{ds}$ is a maximum, set $\frac{d}{d\theta} \left(\frac{dz}{ds} \right) = -3 \sin \theta + \cos \theta = 0$. Then $\tan \theta = \frac{1}{3}$ and θ is either a first- or third-quadrant angle.

Since $\frac{d^2}{d\theta^2} \left(\frac{dz}{ds} \right) = \frac{d}{d\theta} \left(-3 \sin \theta + \cos \theta \right) = -3 \cos \theta - \sin \theta$ is negative for the first-quadrant angle, the maximum directional derivative is $\frac{dz}{ds} = 3 \frac{3}{\sqrt{10}} + \frac{1}{\sqrt{10}} = \sqrt{10}$, and the direction is $\theta = 18^{\circ}26'$.

8. In Problem 5, show that V changes most rapidly along the set of radial lines through the origin.

At any point (x_1, y_1) in the direction θ , $\frac{dV}{ds} = \frac{x_1}{x_1^2 + y_1^2} \cos \theta + \frac{y_1}{x_1^2 + y_1^2} \sin \theta$. Now V changes most rapidly when $\frac{d}{d\theta} \left(\frac{dV}{ds} \right) = -\frac{x_1}{x_1^2 + y_1^2} \sin \theta + \frac{y_1}{x_1^2 + y_1^2} \cos \theta = 0$, and then $\tan \theta = \frac{y_1/(x_1^2 + y_1^2)}{x_1/(x_1^2 + y_1^2)} = \frac{y_1}{x_1}$. Thus, θ is the angle of inclination of the line joining the origin and the point (x_1, y_1) .

9. Find the directional derivative of $F(x, y, z) = xy + 2xz - y^2 + z^2$ at the point (1, -2, 1) along the curve x = t, y = t - 3, $z = t^2$ in the direction of increasing z.

A set of direction numbers of the tangent to the curve at (1, -2, 1) is [1, 1, 2]; the direction cosines are $[1/\sqrt{6}, 1/\sqrt{6}, 2/\sqrt{6}]$. The directional derivative is

$$\frac{\partial F}{\partial x}\cos\alpha + \frac{\partial F}{\partial y}\cos\beta + \frac{\partial F}{\partial z}\cos\gamma = 0 \frac{1}{\sqrt{6}} + 5\frac{1}{\sqrt{6}} + 4\frac{2}{\sqrt{6}} = \frac{13\sqrt{6}}{6}$$

10. Examine $f(x, y) = x^2 + y^2 - 4x + 6y + 25$ for maximum and minimum values.

The conditions $\partial f/\partial x = 2x - 4 = 0$ and $\partial f/\partial y = 2y + 6 = 0$ are satisfied when x = 2, y = -3. Since $f(x, y) = (x^2 - 4x + 4) + (y^2 + 6y + 9) + 25 - 4 - 9 = (x - 2)^2 + (y + 3)^2 + 12$, it is evident that f(2, -3) = 12 is a minimum value of the function.

Geometrically, (2, -3, 12) is the minimum point of the surface $z = x^2 + y^2 - 4x + 6y + 25$.

11. Examine $f(x, y) = x^3 + y^3 + 3xy$ for maximum and minimum values.

The conditions $\partial f/\partial x = 3(x^2 + y) = 0$ and $\partial f/\partial y = 3(y^2 + x) = 0$ are satisfied when x = 0, y = 0 and when x = -1, y = -1.

At (0,0), $\frac{\partial^2 f}{\partial x^2} = 6x = 0$, $\frac{\partial^2 f}{\partial x \partial y} = 3$, and $\frac{\partial^2 f}{\partial y^2} = 6y = 0$. Then $\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 - \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} = 9 > 0$, and (0,0) yields neither a maximum nor minimum.

At (-1, -1), $\frac{\partial^2 f}{\partial x^2} = -6$, $\frac{\partial^2 f}{\partial x \partial y} = 3$, and $\frac{\partial^2 f}{\partial y^2} = -6$. Then $\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 - \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} = -27 < 0$, and $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} < 0$. Hence, f(-1, -1) = 1 is the maximum value of the function.

12. Divide 120 into three parts such that the sum of their products taken two at a time is a maximum.

Let x, y, and 120 - (x + y) be the three parts. The function to be maximized is S = xy + (x + y)(120 - x - y), and

$$\frac{\partial S}{\partial x} = y + (120 - x - y) - (x + y) = 120 - 2x - y \qquad \frac{\partial S}{\partial y} = x + (120 - x - y) - (x + y) = 120 - x - 2y$$

Setting $\frac{\partial S}{\partial x} = \frac{\partial S}{\partial y} = 0$ yields 2x + y = 120 and x + 2y = 120. Simultaneous solution gives x = 40, y = 40, and 120 - (x + y) = 40 as the three parts, and $S = 3(40^2) = 4800$. For x = y = 1, S = 237; hence, S = 4800 is the maximum value.

13. Find the point in the plane 2x - y + 2z = 16 nearest the origin.

Let (x, y, z) be the required point; then the square of its distance from the origin is $D = x^2 + y^2 + z^2$. Since also 2x - y + 2z = 16, we have y = 2x + 2z - 16 and $D = x^2 + (2x + 2z - 16)^2 + z^2$. Then the conditions $\partial D/\partial x = 2x + 4(2x + 2z - 16) = 0$ and $\partial D/\partial z = 4(2x + 2z - 16) + 2z = 0$ are equivalent to 5x + 4z = 32 and 4x + 5z = 32, and $x = z = \frac{32}{9}$. Since it is known that a point for which D is a minimum exists, $(\frac{32}{9}, -\frac{16}{9}, \frac{32}{9})$ is that point.

14. Show that a rectangular parallelepiped of maximum volume V with constant surface area S is a cube.

Let the dimensions be x, y, and z. Then V = xyz and S = 2(xy + yz + zx).

The second relation may be solved for z and substituted in the first, to express V as a function of xand y. We prefer to avoid this step by simply treating z as a function of x and y. Then

$$\frac{\partial V}{\partial x} = yz + xy \frac{\partial z}{\partial x} \qquad \qquad \frac{\partial V}{\partial y} = xz + xy \frac{\partial z}{\partial y}$$

$$\frac{\partial S}{\partial x} = 0 = 2\left(y + z + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial x}\right) \qquad \frac{\partial S}{\partial y} = 0 = 2\left(x + z + x \frac{\partial z}{\partial y} + y \frac{\partial z}{\partial y}\right)$$

From the latter two equations, $\frac{\partial z}{\partial x} = -\frac{y+z}{x+y}$ and $\frac{\partial z}{\partial y} = -\frac{x+z}{x+y}$. Substituting in the first two yields the conditions $\frac{\partial V}{\partial x} = yz - \frac{xy(y+z)}{x+y} = 0$ and $\frac{\partial V}{\partial y} = xz - \frac{xy(x+z)}{x+y} = 0$, which reduce to $y^2(z-x) = 0$ and $x^2(z-y) = 0$. Thus x = y = z, as required.

Find the volume V of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. 15.

Let P(x, y, z) be the vertex in the first octant. Then V = 8xyz. Consider z to be defined as a function of the independent variables x and y by the equation of the ellipsoid. The necessary conditions for a maximum are

$$\frac{\partial V}{\partial x} = 8\left(yz + xy\frac{\partial z}{\partial x}\right) = 0 \quad \text{and} \quad \frac{\partial V}{\partial y} = 8\left(xz + xy\frac{\partial z}{\partial y}\right) = 0 \tag{1}$$

From the equation of the ellipsoid, obtain $\frac{2x}{a^2} + \frac{2z}{c^2} \frac{\partial z}{\partial x} = 0$ and $\frac{2y}{b^2} + \frac{2z}{c^2} \frac{\partial z}{\partial y} = 0$. Eliminate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ between these relations and (1) to obtain

$$\frac{\partial V}{\partial x} = 8\left(yz - \frac{c^2x^2y}{a^2z}\right) = 0 \quad \text{and} \quad \frac{\partial V}{\partial y} = 8\left(xz - \frac{c^2xy^2}{b^2z}\right) = 0$$

$$\frac{x^2}{a^2} = \frac{z^2}{c^2} = \frac{y^2}{b^2} \tag{2}$$

and, finally,

Combine (2) with the equation of the ellipsoid to get $x = a\sqrt{3}/3$, $y = b\sqrt{3}/3$, and $z = c\sqrt{3}/3$. Then $V = 8xyz = (8\sqrt{3}/9)abc$ cubic units.

Supplementary Problems

- 16. Find the directional derivative of the given function at the given point in the indicated direction:
 - (a) $z = x^2 + xy + y^2$, (3, 1), $\theta = \pi/3$ (b) $z = x^3 + y^3 3xy$, (2, 1), $\theta = \arctan 2/3$ (c) $z = y + x \cos xy$, (0, 0), $\theta = \pi/3$ (d) $z = 2x^2 + 3xy y^2$, (1, -1), toward (2, 1)

Ans. (a) $\frac{1}{2}(7+5\sqrt{3})$; (b) $21\sqrt{13}/13$; (c) $\frac{1}{2}(1+\sqrt{3})$; (d) $11\sqrt{5}/5$

17. Find the maximum directional derivative for each of the functions of Problem 16 at the given point.

Ans. (a) $\sqrt{74}$; (b) $3\sqrt{10}$; (c) $\sqrt{2}$; (d) $\sqrt{26}$

- Show that the maximum directional derivative of $V = \ln \sqrt{x^2 + y^2}$ of Problem 8 is constant along any circle $x^2 + y^2 = r^2$. 18.
- On a hill represented by $z = 8 4x^2 2y^2$, find (a) the direction of the steepest grade at (1, 1, 2) and (b) 19. the direction of the contour line (direction for which z = constant). Note that the directions are mutually perpendicular. Ans. (a) $\arctan \frac{1}{2}$, third quadrant; (b) $\arctan -2$

- 20. Show that the sum of the squares of the directional derivatives of z = f(x, y) at any of its points is constant for any two mutually perpendicular directions and is equal to the square of the maximum directional derivative.
- Given z = f(x, y) and w = g(x, y) such that $\partial z/\partial x = \partial w/\partial y$ and $\partial z/\partial y = -\partial w/\partial x$. If θ_1 and θ_2 are two mutually perpendicular directions, show that at any point P(x, y), $\partial z/\partial s_1 = \partial w/\partial s_2$ and $\partial z/\partial s_2 = -\partial w/\partial s_1$.
- 22. Find the directional derivative of the given function at the given point in the indicated direction:

```
(a) xy^2z, (2, 1, 3), [1, -2, 2]
```

(b) $x^2 + y^2 + z^2$, (1, 1, 1), toward (2, 3, 4)

(c) $x^2 + y^2 - 2xz$, (1, 3, 2), along $x^2 + y^2 - 2xz = 6$, $3x^2 - y^2 + 3z = 0$ in the direction of increasing z

Ans. (a)
$$-\frac{17}{3}$$
; (b) $6\sqrt{14}/7$; (c) 0

23. Examine each of the following functions for relative maximum and minimum values.

```
(a) z = 2x + 4y - x^2 - y^2 - 3 Ans. maximum = 2 when x = 1, y = 2
```

(b)
$$z = x^3 + y^3 - 3xy$$
 Ans. minimum = -1 when $x = 1, y = 1$

(c)
$$z = x^2 + 2xy + 2y^2$$
 Ans. minimum = 0 when $x = 0$, $y = 0$

(d)
$$z = (x - y)(1 - xy)$$
 Ans. neither maximum nor minimum

(e)
$$z = 2x^2 + y^2 + 6xy + 10x - 6y + 5$$
 Ans. neither maximum nor minimum

$$(f) z = 3x - 3y - 2x^3 - xy^2 + 2x^2y + y^3$$
 Ans. minimum = $-\sqrt{6}$ when $x = -\sqrt{6}/6$, $y = \sqrt{6}/3$;

maximum =
$$\sqrt{6}$$
 when $x = \sqrt{6}/6$, $y = -\sqrt{6}/3$

(g)
$$z = xy(2x + 4y + 1)$$
 Ans. maximum = $\frac{1}{216}$ when $x = -\frac{1}{6}$, $y = -\frac{1}{12}$

24. Find positive numbers x, y, z such that

```
(a) x + y + z = 18 and xyz is a maximum (b) xyz = 27 and x + y + z is a minimum
```

(c)
$$x + y + z = 20$$
 and xyz^2 is a maximum (d) $x + y + z = 12$ and xy^2z^3 is a maximum

Ans. (a)
$$x = y = z = 6$$
; (b) $x = y = z = 3$; (c) $x = y = 5$, $z = 10$; (d) $x = 2$, $y = 4$, $z = 6$

- 25. Find the minimum value of the square of the distance from the origin to the plane Ax + By + Cz + D = 0. Ans. $D^2/(A^2 + B^2 + C^2)$
- 26. (a) The surface area of a rectangular box without a top is to be 108 ft². Find the greatest possible volume. (b) The volume of a rectangular box without a top is to be 500 ft³. Find the minimum surface area. Ans. (a) 108 ft³; (b) 300 ft²
- 27. Find the point on z = xy 1 nearest the origin. Ans. (0, 0, -1)
- 28. Find the equation of the plane through (1, 1, 2) that cuts off the least volume in the first octant.

Ans.
$$2x + 2y + z = 6$$

Determine the values of p and q so that the sum S of the squares of the vertical distances of the points (0,2), (1,3), and (2,5) from the line y=px+q is a minimum. (Hint: $S=(q-2)^2+(p+q-3)^2+(2p+q-5)^2$.)

Ans. $p=\frac{3}{2}$; $q=\frac{11}{6}$