Chapter 69

Double and Ilterated Integrals

b

THE (SIMPLE) INTEGRAL f f(x) dx of a function y = f(x) that is continuous over the finite
interval a < x < b of the x axis was defined in Chapter 38. Recall that

1. The interval a=<x =<b was divided into n subintervals h,, h,,..., h, of respective
lengths A,x, A,x, ..., A, x with A, the greatest of the A, x.
Points x, in h,, x, in h,, ..., x, in h, were selected, and the sum Z f(x,) A,x formed.

The interval was further subdmded in such a manner that A, -—>O as n— +w,
We defined j fx)dx = lim_ Z fx,) A,x.

THE DOUBLE INTEGRAL. Consider a function z = f(x, y) continuous over a finite region R of
the xOy plane. Let this region be subdivided (see Fig. 69-1) into n subregions R,, R,, ..., R,
of respective areas A,A,A,A, ..., A A. In each subregion R, select a point P, (x,, y,) and
form the sum

k§=:l fO, y ) A A=flx,, y)AA+f(xy, y,) A4+ +flx,, y,)A,A (69.1)

Now, defining the diameter of a subregion to be the greatest distance between any two points
within or on its boundary, and denoting by A, the maximum diameter of the subregions,
suppose the number of subregions to be increased in such a manner that A, —0 as n— +.
Then the double integral of the function f(x, y) over the region R is defined as

[ e naa= tim 3 s, v .8 (60.2)

When z = f(x, y) is nonnegative over the region R, as in Fig. 69-2, the double integral
(69.2) may be interpreted as a volume. Any term f(x,, y,) A, A of (69.1) gives the volume of a
vertical column whose parallel bases are of area A,A and whose altitude is the distance z,
measured along the vertical from the selected point P, to the surface z = f(x, y). This, in turn,
may be taken as an approximation of the volume of the vertical column whose lower base is the
subregion R, and whose upper base is the projection of R, on the surface. Thus, (69.1) is an
approximation of the volume ‘‘under the surface™ (that is, the volume with lower base in the
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436 DOUBLE AND ITERATED INTEGRALS [CHAP. 69

xOy plane and upper base in the surface generated by moving a line parallel to the z axis along
the boundary of R). and. intuitively, at least, (69.2) is the measure of this volume.

The evaluation of even the simplest double integral by direct summation is difficult and will
not be attempted here.

THE ITERATED INTEGRAL. Consider a volume defined as above, and assume that the boundary
of R is such that no line parallel to the x axis or to the y axis cuts it in more than two points.
Draw (see Fig. 69-3) the tangents x = a and x = b to the boundary with points of tangency K
and L, and the tangents y = ¢ and y = d with points of tangency M and N. Let the equation of
the planc arc LMK be y = g,(x), and that of the plane arc LNK be y = g,(x).

ﬂ
5
:

ey

b

Divide the interval ¢ =< x < b into m subintervals h,, h,, ..., h,, of respective lengths A x,
A,x, ..., A, x by the insertion of points x =¢,, x=4¢&,,...,x=¢, | (as in Chapter 38). and
divide the interval ¢ =y =d into n subintervals k,, k,,....k, of respective lengths Ay,
A,y....,A,y by the insertion of points y=7,, y=7....,y=m,-,. Denote by A, the
greatest A x. and by u, the greatest A;y. Draw in the parallel linesx = ¢, x=§&,,...,x=§,_,
and the parallel lines y=mn,, y=1n,,..., y=m, ,, thus dividing the region R into a set of
rectangles R, of areas A x Ay plus a set of nonrectangles that we shall ignore. On each
subinterval h select a point x = x,, and on each subinterval k, select a point y =y , thereby
determining in cach subregion R, a point P, (x,.y ). With each subregion R, associate by
means of the equation of the surface a number z, = f(x;, y;). and form the sum

2 fx,y)AxAy (69.3)

L.
L.

1o 19

)=
Now (69.3) is merely a special case of (69.1), so if the number of rectangles is indefinitely

increased in such a manner that both A, — 0 and &, — 0. the limit of (69.3) should be equal to
the double integral (69.2).

In effecting this limit, let us first choose one of the subintervals, say h,, and form the sum

[’,Ell flx,, y])A}y] Ax (i fixed)
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of the contributions of all rectangles having A, as one dimension, that is, the contributions of all
rectangles lying in the ith column. When n— +%, u, —0 and

lim [E flxi, y)A y] Ax= U:ix:) fx;, y) dy] Ax=d(x)Ax

BR—+x

Now summing over the m columns and letting m— +%, we have

lim Z d(x,)Ax = Lb¢(x)dx=J;b[E::) fix, y)dy]d

m—s+x

_ [ ) " e ) dy d (69.4)

2,(x)

Although we shall not use the brackets hereafter, it must be clearly understood that (69.4) calls
for the evaluation of two simple definite integrals in a prescribed order: first, the integral of
f(x, y) with respect to y (considering x as a constant) from y = g,(x), the lower boundary of R,
to y = g,(x), the upper boundary of R, and then the integral of this result with respect to x from
the abscissa x = a of the leftmost point of R to the abscissa x = b of the rightmost point of R.
The integral (69.4) is called an iterated or repeated integral.

It will be left as an exercise to sum first for the contributions of the rectangles lying in each
row and then over all the rows to obtain the equivalent iterated integral

f flj(:) f(x, y)dxdy (69.5)

where x = h (y) and x = h,(y) are the equations of the plane arcs MKN and MLN, respec-
tively.
In Problem 1 it is shown by a different procedure that the iterated integral (69.4) measures
the volume under discussion. For the evaluation of iterated integrals see Problems 2 to 6.
The principal difficulty in setting up the iterated integrals of the next several chapters will
be that of inserting the limits of integration to cover the region R. The discussion here assumed
the simplest of regions; more complex regions are considered in Problems 7 to 9.

Solved Problems

1. Let z = f(x, y) be nonnegative and continuous over the region R of the plane xOy whose
boundary consists of the arcs of two curves y = g,(x) and y = g,(x) intersecting in the points K
and L, as in Fig. 69-4. Find a formula for the volume V under the surface z = f(x, y).

Let the section of this volume cut by a plane x = x,, where a < x, < b, meet the boundary of R in 1he
points S(x,. g,(x,)) and 7(x,, g,(x,)). and the surface z = f(x. y) in the arc UV along which z = f(x,. y).
The area of this section STUV is given by

82(x,)
Y= [ e ) dy

Thus, the areas ot"r cross sections of the volume cut by planes parallel to the yOz plane are known
e
functions A(x) = J f(x, y) dy of x, where x is the distance of the sectioning plane from the origin. By

Chapter 42, the requnred volume is given by

v= [ awac=["[["7 e vy ay] aw

This is the iterated integral of (69.4).
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Fig, 6%4

In Problems 2 to 6, evaluate the integral at the left.

2.

1 fx 1 . 1 , e x’]' 1

2 r3v 2 )

J:f ():+y)dxdy=f1 [%x2+xy]iydy=jl 6y" dy = [2y°’ = 14
y

2 xt+x 2 i 5

j—lLZ_szydx:f_,[XY];;;fde=J](x3+x2—2x3+2x)dx-_-g

7 fcosé ki ™
L L psin 8 dp dB=L [3p%sin6]°° do = %L cos’ @sin@ do =[— % cos’ 8]; =}

wi2 rdcos6 w2 1 4cos @ w2
3 — il 4 — 4 _
J; J; ] dpdo—L [4p ]2 de J; (64cos” 8 —4)d

H . w2
=[64(§£+S|n26+5|n46)_40] 107

4 32 0

Evaluate f JdA, where R is the region in the first quadrant bounded by the semicubical

R
parabola y’ = x* and the line y = x.

The line and parabola intersect in the points (0, 0) and (1, 1) which establish the extreme values of x
and y on the region R.

Solution 1 (Fig. 69-5): Integrating first over a horizontal strip, that is, with respect 1o x fromx =y
(the line) to x = y*'* (the parabola), and then with respect to y from y =010 y =1, we get

Vo py?? 1

R

Solution 2 (Fig. 69-6): Integrating first over a vertical strip, that is, with respect to y from y = x*’?
(the parabola) to y = x (the line), and then with respect to x from x =0 to x = 1, we obtain

1 rx 1
deA=JO L'Z dydx=L (=X de =[5 -7 = %
R
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1Ly 1,1}

Fig. 69-5 Fig. 69-6

8. Evaluate I[dA where R is the region between y =2x and y = X lying to the left of x =1.
R

Integrating first over the vertical strip (see Fig. 69-7), we have

ffdA=Ll£xdde=Ll(2x—xz)dx=§

R

When horizontal strips are used (see Fig. 69-8), two iterated integrals are necessary. Let R, denote
the part of R lying below AB, and R, the part above AB. Then

1 VY 2 r1
[Jon=]fans [ fan=[ [Taca [ [ ar=ione
R R, Ry v .

7] 1
Fig. 69-7 Fig. 69-8

9. Evaluate Ifxz dA where R is the region in the first quadrant bounded by the hyperbola

R
xy = 16 and the lines y = x, y =0, and x = 8. (See Fig. 69-9.)

It is evident from Fig. 69-9 that R must be separated into two regions, and an iterated integral
evaluated for each. Let R, denote the part of R lying above the line y = 2, and R, the part below that

line. Then
4 r16/y 2 rB
J.J-xsz=fJ-x2dA+ffx2dA=J;f xzdxdy+J0J“x2dxdy
R R, Ry g '

1 (/16 1 (?
(=) ay+ 3 [ 6=y ay=as

=3,

As an exercise, you might separate R with the line x = 4 and obtain

4 rx R ,lbrx
2 _ 2 2
J.J.x dA—J;Lx dydx+J;J.0 x" dy dx
R
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Y

v
Y
(4, 4) (3/”
R 8,2 =
AN S e 0 .
X — 1
o R z
Fig. 69-9 Fig. 69-10

1 r3
Evaluate L L e* dx dy by first reversing the order of integration.
y

The given integral cannot be evaluated directly, since J' e* dx is not an elementary function. The
region R of integration (see Fig. 69-10) is bounded by the lines x =3y, x =3, and y =0. To reverse the
order of integration, first integrate with respect to y from y =0 to y = x/3, and then with respect to x
from x =0 to x = 3. Thus,

1 £3 .2 3 rxi3 2 3 2o
LJ;ye dxdy=J;L e dydx—ﬁl [e“y]s  dx
3

=i et rae=pie =t - 1)

Supplementary Problems

Evaluate the iterated integral at the left:

@ [ [ acay=1 ®) [ [ e+ dedy=9
@ [ [ werraa=1 @ [ [Loayax= &

@ [ [ w aay=1 O [ e va=a
@ [ [ v dyax=te-1 w [ [ yaxay=3

o [ pdeda=3 [ [ orosodpan=t

mi tan 8 sec @ 2w I-cos@
(k)J; L p’cos’Bdpdo= 3% () J; L p*cos’@dp do=Hn
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12.

13.

Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the
iterated integral in both orders.

(@) x over the region bounded by y = x* and y = x° Ans. %
(b) y, over the region of part (a) Ans. 3%
(c) x* over the region bounded by y = x, y =2x, and x = Ans. 4
(d) 1 over each ﬁrst-quadrant region bounded by 2y=x’ y= 31, andx+y=4 Ans. §. %
(e) y over the region above y =0 bounded by y* =4x and y° =5—x Ans. S
Ans. 4

1
————— over the region in the first quadrant bounded by x* =4 -2
(f) \/Zy_—yz g q y y

In Problem 11(a) to (&), reverse the order of integration and evaluate the resulting iterated integral.



Chapter 70

Centroids and Moments of
Inertia of Plane Areas

PLANE AREA BY DOUBLE INTEGRATION. If f(x, y) =1, the double integral of Chapter 69

becomes dA. In cubic units, this measures the volume of a cylinder of unit height; in square
.. R .
units, it measures the area of the region R. (See Problems 1 and 2.)

B rpa(®)
In polar coordinates, A = f]dA =J f p dp d6, where 0 = a, 8 = 8, p,(0), and p,(0)

0)(9)

R
are chosen to cover the region R. (See Problems 3 to S.)

CENTROIDS. The coordinates (x, y) of the centroid of a plane region R of area A = J. f dA satisfy
R

the relations

Ax=M, and Ay=M,
or x'ffdA=fodA and yffdA=ffydA
R R R R

(See Problems 6 to 9.)

THE MOMENTS OF INERTIA of a plane region R with respect to the coordinate axes are given by

1,,=”y2dA and 1_‘.=”x2d,4
R R

The polar moment of inertia (the moment of inertia with respect to a line through the origin
and perpendicular to the plane of the area) of a plane region R is given by

1(,=1,+1),=Jj(x2+y2)dA
R

(See Problems 10 to 12.)

Solved Problems

1. Find the area bounded by the parabola y = x* and the line y = 2x + 3.

Using vertical strips (see Fig. 70-1), we have

3 25+ 3 i
A =f_, jz dy dx =j—| (2x + 3 — x?) dx = 32/3 square units

2. Find the area bounded by the parabolas y> =4 — x and y* =4 — 4x.

442
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©,2)
(3? 9)

('-ls 1} x
70 ©0,-2)
Fig. 70-1 Fig. 70-2

Using horizontal strips (Fig. 70-2) and taking advantage of symmetry, we have
2 4—y2 2
—— = a2y 1,2
A-2L f,-,;,,dxdy ZL [((4=y)-(1=4iyH)]dy
2
= 6J; (1- 1y*) dy = 8 square units

3. Find the area outside the circle p =2 and inside the cardioid p = 2(1 + cos ).

Owing to symmetry (see Fig. 70-3), the required area is twice that swept over as 8 varies from 6 = 0
to 8 = . Thus,

w2 2{1+cos @) w2 w2
A=2L L pdpd0=2j; [%p2]:<l+°°’9)dﬂ=4ﬁ) (2cos 8 + cos’ 9) dé

wi2

=4[2sin @ + 16 + { 5in 20];"* = (7 + 8) square units

Fig. 70-4

4. Find the area inside the circle p = 4sin 8 and outside the lemniscate p® = 8 cos 26.

The required area is twice that in the first quadrant bounded by the two curves and the line 8 = ! .
Note in Fig. 70-4 that the arc AO of the lemniscate is described as @ varies from 6 = w/6 to 6 = n/4,
while the arc AB of the circle is described as 8 varies from 6 = n/6 to 8 = /2. This area must then be
considered as two regions, one below and one above the line # = 7/4. Thus,

wl/4 4 sin 6 w/2 4 sin 6
A=2Lo J;\/z_cm_mpdpd6+2jn/4ﬁ) p dp db
w/4

w/2

L 16 sin® 8 dé

”w

:I/o (16 sin® 8—8cosZG)dB+J'

= (§m + 4V3 - 4) square units
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5.  Evaluate N= L e * dx. (See Fig. 70-5.)
Since J; e"zdx=f0 e dy, we have

R

Changing to polar coordinates (x* + y* = p°. dA = p dp d8) yields

N P I e SR O
i 0 0 a—es= 2 0 2 Jo 4

and N=v7/2.

v 5.5)

Fig. 70-5 Fig. 70-6

[CHAP. 70

6. Find the centroid of the plane area bounded by the parabola y = 6x — x° and the line y = x.

(See Fig. 70-6.)
5 6x -x° 5
A:IfdA=LJ’ dde=J:,(5x_X2)dx:%

R

5 rbr—x? s
My=IIXdA=J:,I Xdyd-x=4[, (5x" —x") dx = %%
R

5 rox—x? s
Mx=jfydA=fof ydydxzéjn [(6X‘X2)2—x2]dx="—§5
R

Hence, x= M, /A=3,y=M,/A=35, and the coordinates of the centroid are (3,5).

7. Find the centroid of the plane area bounded by the parabolas y =2x — x* and y = 3x" — 6x.

(See Fig. 70-7.)

2 r2x-x? 2
= = = 4yl = le
A= IJdA J; J’sﬂ-m dy dx J; (8x —dx")dx = ¥

R

2 2x-x2 2
= = = 2— 3 = L6
MV—J'J’di——J:) -[uz_ﬁxxdydx J:J(SX 4x )y dx = §
R

2 r2xo4? 2
M,=ijdA=£'Lz_h ydyd.x=%L [(2x —x*)" = (3x° - 6x)"] dx = - &
R

Hence, x =M /A=1,y=M,/A=~%, and the centroid is (1, - 2).
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Y
v
0 (2, 0) x
x
(4]
Fig. 70-7 Fig. 70-8

8. Find the centroid of the plane area outside the circle p =1 and inside the cardioid
p=1+cosé.

From Fig. 70-8 it is evident that y =0 and that x is the same whether computed for the given area or
for the half lying above the polar axis. For the latter area,

w2 1+cos @ 1 w2 1r+8
- = = - 2_ 12 =
A—ffdA J; J; p dp db 2J’D [(1+cos8)" —1°]de 8
R

w2 1+cos@ 1 w/2 R
M,=JdeA=J; J: (pCDSB)pdpd9=§J; (3cos’ 8 + 3cos’ 8 + cos* 9) db
R

_1[3 3. o 3 31 1. ]"’2_151r+32
=3 20+4sm28+3sm9 sin 8+86+4sm26+32sm48 . = a8
The coordinates of the centroid are (M, )

6(m +8)

9. Find the centroid of the area inside p =sin @ and outside p =1 — cos 6. (See Fig. 70-9.)

wi2 sin 8 ] w2 4_17_
A=ffdA=L J‘l pdpd8=§f0 (2cosﬂ—l—-c0520)d8=~4—
R

—cos @

w!2 rsin@
My=ffdi=J; J:‘m”(pcosﬂ)pdpdﬂ
R

2 157 — 44
(sin> 8 —1 +3cos § —3 cos’ @ + cos’ B) cos § df = ———

"3 48
w/2 rsin@
M,=J’fydA=J; L_c o(pSinB)pdde
R
. m(sin39—1+3 s8—3cos’ 0 + cos’ 0 ‘ada—3—“_—4
=3/ co! cos cos” 8) sin T

157~ 44 31r—4)
124—m)" 12(4- =)/’

The coordinates of the centroid are (
10.  Find /,, I,, and J, for the area enclosed by the loop of y* = x’(2 - x). (See Fig. 70-10.)
2 rxVZ-x 2
A=ffd.4=2J;J; dydx=ZJ;xV2—xdx
R

1 5]“’ _32v2

0
- _ 2_ 4 —_ _ 2 3__
= 4'[/5(22 z%)ydz= 4[32 5z vis 15
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4
z
(4]
x

Fig. 70-9 Fig. 70-10

where we have used the transformation 2 — x = z>. Then

2 rxV2-x 2 2
= 2 — 2 - £ Jem 342
l,—ffy dA 2J;L y dydx 3L):(Z x)"“dx
R

— 4 ¢ 2\3_4 _ 4 [8 5 ]2 7 2 9 1 “:Io 2048\/5 64
=3 ﬁ(z z°)z dz——§ 52 72 +§z 17 2

2 xV2-x 2
IL=|[|x*dA=2 dyde=2| xV2—xdx
Y o Jo 0
R

(1]
8 12 6 1
= — — »2)3,2 = - — 3—_ 3 _ 7__
4‘{\5(2 Yz dz 4[32 5z+_’z ik

,]" 1024V2 32
Vi 315 21

_1332vz 46

L=l +1,= =4 =333

1. Find I,, I, and I, for the first-quadrant area outside the circle p = 2a and inside the circle
p =4acos 6. (See Fig. 70-11.)

w/3 prdacos @ ] w3 +
A=J’IdA=J j pdpdé= - [(4(1(:0519)2—(Za)z]dﬂ=ZL—?'\/—ja2
o 2a 2 ) 3
R

w!3 r4acosé w3
I.ZIJ’yZ dA=J'0 L (psinﬂ)zp dp do = % L {(4a cos 8)* ~ (2a)*} sin® # de
R

’A

n/3
a4 4 iy _4m+9V3 ,  4m+9V3
4a J' (16cos” 8 — 1) sin” 8 dO 3 a 2w + 3V3) a

w3 rdacose 127+ 11V3 3(127 + 11V3)
_ R _ Py _ 4_ 2
ly—fo dA L L (p cos 0)'p dp db 2 = a4

]

207 +21V3 o 20 +21V3
3 27+ 3V3

L=1+1= a’A

12. Find I, I, and I, for the area of the circle p =2(sin § + cos ). (See Fig. 70-12.)

x yQ

Since x> + y> = p?,
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13.

4.

15.

16.

17.

18.

CENTROIDS AND MOMENTS OF INERTIA OF PLANE AREAS

=y

Fig. 70-11 Fig. 70-12
Im/4 £2(sin @ +cos8) Inida
Io=fj(x2+y2)dA=J-— e o pzpdpd0=4 _“(Sin3+COSG)‘d0
R
=4[20-cos20 - ;sindd] i =6m =34

It is evident from Fig. 70-12 that 1, = I,. Hence, I, = I, = }1,= ; A.

Supplementary Problems

Use double integration to find the area:

(@) Bounded by 3x +4y =24, x=0,y=0 Ans. 24 square units

(b) Bounded by x +y=2,2y=x+4,y=0 Ans. 6 square units

(c) Bounded by x* =4y, 8y =x’ +16 Ans. % square units

(d) Within p =2(1 - cos 6) Ans. 6w square units

(¢) Bounded by p =tan@sec8 and 6 = 7/3 Ans. V3 square units

(f) Outside p = 4 and inside p =8 cos 6 Ans. 8(%m + V3) square units

Locate the centroid of each of the following areas.

(a) The area of Problem 13(a) Ans. (%.2)
(b) The first-quadrant area of Problem 13(c) Ans. (3.%)
(¢) The first-quadrant area bounded by y* =6x, y =0, x =6 Ans. (2.0
(d) The area bounded by y> =4dx, x’=5—-2y, x=0 Ans. (8%.%)
(¢) The first-quadrant area bounded by x’ —8y +4=0, x’ =dy, x =0 Ans. (3, 2)
(f) The area of Problem 13(e) Ans. (3V3, %)
167 + 6V3 22 )
(g) The first-quadrant area of Problem 13( f) Ans ( 2w i3V3  2m 233

B B [8:00)
Verify that 3 f [g3(0)— g2(6)] db =f f o P dp do = ffdA; then infer that
R
fff(x, y)dA =fff(p cos 6, psin 8)p dp dé
R R

Find 7, and /, for each of the following areas.

(a) The area of Problem 13(a) Ans. 1,=6A;1 =%A

(b) The area cut from y’ = 8x by its latus rectum Ans. 1, =%A;1,=%4A
(¢) The area bounded by y =x* and y = x Ans. I =3%A 1 =3%A
(d) The area bounded by y =dx — x> and y = x Ans. I,=%4;1 =3A

_ 1_1) . _(1 l)
l‘_(16 64 L=\1*5/4
Find 1, for (a) the loop of p =sin26 and (b) the area enclosed by p =1+ cos 6.

(b) B4

Find Z, and I, for one loop of p* = cos 26. Ans.

Ans.

447

(a) 34;



Chapter 71

Volume Under a Surface by
Double Integration

THE VOLUME UNDER A SURFACE : = f(x, y) or z = f(p, 8), that is, the volume of a vertical

column whose upper base is in the surface and whose lower base is in the xOy plane, is defined

by the double integral V= z dA, the region R being the lower base of the column.

Solved Problems

Find the volume in the first octant between the planes z =0 and z = x + y + 2, and inside the
cylinder x* + y* = 16.

From Fig. 71-1, it is evident that 2 =x + y +2 is to be integrated over a quadrant of the circle
x* 4+ y* =16 in the xOy plane. Hence,

PRV vy . 1
V=szdA=L L (x+y+2)dydx=f0 (x\/m—x2+8—§x’+2v16—xz)dx
R

1 ; i !
= [—5 (16 — x*)*"? + 8x — % + xV'16 — x* + 16 arcsin % x]o = (% + 877) cubic units
Find the volume bounded by the cylinder x* + y° =4 and the planes y + z=4 and z =0.

From Fig. 71-2, it is evident that z =4 — y is to be integrated over the circle x* + y° = 4 in the xOy
plane. Hence,

2 Va2 2 Va2
V= le f—\/?‘—? (4—y)dxdy=2 .[-2,[0 (4 — y) dx dy = 167 cubic units
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3. Find the volume bounded above by the paraboloid x* + 4y” = z, below by the plane z =0, and
laterally by the cylinders y* = x and x” = y. (See Fig. 71-3.)
The required volume is obtained by integrating z = x’ + 4y’ over the region R common to the
parabolas y” = x and x° = y in the xOy plane. Hence,

1 vV 1
V=J:J f: (x* + 4y*) dy dx=L [x°y + $y’1}F dx = § cubic units

4. Find the volume of one of the wedges cut from the cylinder 4x* + y*> = a” by the planes z =0
and z = my. (See Fig. 71-4.)

The volume is obtained by integrating z = my over half the ellipse 4x* + y* = @’ Hence,
3

w2 Ve wr
V=2J:I J; mydydx=mJ; YR de= 3~ cubic units

5. Find the volume bounded by the paraboloid x* + y* = 4z, the cylinder x* + y> = 8y, and the
plane z = 0. (See Fig. 71-5.)

The required volume is obtained by integrating z = }(x* + y?) over the circle x* + y* =8y. Using
cylindrical coordinates, the volume is obtained by integrating z = 4 p° over the circle p =8 sin 8. Then,

w r8siné = rBan@
= = =1 3
V—J-J‘sz LL zp dp df 4LL p~ dp db
R

= 6 L [0°15=¢ db = 256 L sin® 6 d6 = 967 cubic units

b
v,
Aoy

Sl SO

Find the volume removed when a hole of radius a is bored through a sphere of radius 2a, the
axis of the hole being a diameter of the sphere. (See Fig. 71-6.)
From the figure, it is obvious that the required volume is eight times the volume in the first octant

bounded by the cylinder p° = a°, the sphere p’ + z° = 44°, and the plane z =0. The latter volume is
V4a® — p® over a quadrant of the circle p = a. Hence,

60

obtained by integrating z =

w2 fa w2
V= SL J:) Vda™ — p'p dp do = & L (8a* — 3V3a’) do = 4(8 — 3V3)a’x cubic units
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10.

12.

13.

4.

15.

16.

17.

18.

19.

21.

22.
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Supplementary Problems

Find the volume cut from 9x° + 4y*> + 36z = 36 by the plane z=0.  Ans. 3 cubic units

Find the volume under z = 3x and above the first-quadrant area bounded by x =0, y =0, x =4, and
x’+y*=25.  Ans. 98 cubic units

Find the volume in the first octant bounded by x* + z=9, 3x +4y =24, x=0, y=0, and z =0.

Ans. 1485/16 cubic units

Find the volume in the first octant bounded by xy =4z, y = x, and x =4. Ans. 8 cubic units
Find the volume in the first octant bounded by x> + y*=25and z=y.  Ans. % cubic units

Find the volume common to the cylinders x* + y° =16 and x> + 2> =16.  Ans. %* cubic units
Find the volume in the first octant inside y° + 2> =9 and outside y* =3x.  Ans. 27w/16 cubic units
Find the volume in the first octant bounded by x* + z° = 16 and x — y = 0. Ans. % cubic units

Find the volume in front of x =0 and common to y*+ 2” =4 and y* + 2° + 2x = 16.

Ans. 287 cubic units

Find the volume inside p =2 and outside the cone z> = p’. Ans. 32m/3 cubic units
Find the volume inside y*> + 2> =2 and outside x* —y°—z°=2.  Ans. 8m(4— V2)/3 cubic units
Find the volume common to p° + z°=a’and p=asin8.  Ans. 2(37 —4)a’/9 cubic units

Find the volume inside x* + y*> =9, bounded below by x* + y* + 4z = 16 and above by z = 4.

Ans. 817/8 cubic units
Find the volume cut from the paraboloid 4x° + y’ = 4z by the plane z — y = 2. Ans. 9 cubic units

Find the volume generated by revolving the cardioid p = 2(1 — cos 8) about the polar axis.
Ans. V= 21TJ‘J- yp dp d6 = 641/3 cubic units

Find the volume generated by revolving a petal of p = sin 26 about either axis.

Ans.  32m/105 cubic units

A square hole 2 units on a side is cut symmetrically through a sphere of radius 2 units. Show that the
volume removed is $(2V2 + 197 — 54 arctan V2) cubic units.



Chapter 72

Area of a Curved Surface by
Double Integration

TO COMPUTE THE LENGTH OF A(PLANAR) ARC, (1) the arc is projected on a convenient coor-

2

dinate axis, thus establishing an interval on the axis, and (2) an integrand function, 1+ (%y_)

2 X

if the projection is on the x axis or 1+ (@) if the projection is on the y axis, is integrated
over the interval.

A similar procedure is used to compute the area S of a portion R* of a surface z = f(x, y):
(1) R* is projected on a convenient coordinate plane, thus establishing a region R on the plane,
and (2) an integrand function is integrated over R. Then,

2 2
If R* is projected on xOy, S=JJ \/1 + (E) + (E) dA.
< ox ay
. ) ax\> [dx\
If R* is projected on yOz, § = 1+{—) + (—) dA.
< dy dz

P 4

2 2
If R* is projected on 20x, S=JJ \/1 + (0_y) M (%) dA.
R

Solved Problems

Derive the first of the formulas for the area S of a region R* as given above.

Consider a region R* of area § on the surface z = f(x, y). Through the boundary of R* pass a
vertical cylinder (see Fig. 72-1) cutting the xOy plane in the region R. Now divide R into n subregions
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AA, (of areas AA,), and denote by AS, the area of the projection of AA, on R*. In each subregion AS,,
choose a point P, and draw there the tangent plane to the surface. Let the area of the projection of AA,
on this tangent plane be denoted by AT,. We shall use AT, as an approximation of the corresponding
surface area AS;.

Now the angle between the xOy plane and the tangent plane at P, is the angle v, between the z axis

with direction numbers [0. 0, 1], and the normal. [— ﬂc af ] = [— a_z‘ - E, 1]. to the surface at
P th ox ay’ ox Ay
> thus

V(5 + (5] -

AT,cosy = AA, and AT, =secy, AA,

Then (see Fig. 72-2),

Fig 1o

Hence, an approximation of § is z AT, = Z secy, AA,, and

S= lim Zsecy,AA ff«;ecydA ff —;) +1dA

n— b %

Find the area of the portion of the cone x* + y* = 327 lying above the xOy plane and inside the
cylinder x* + y* = 4y.

Solution 1: Refer to Fig. 72-3. The projection of the required area on the xOy plane is the region R
enclosed by the circle x* + y* = 4y. For the cone.

dz _1x d z _ly So ]+(6Z)+(ﬂ)2=9zz+x1+y2:12zz=i
dx 3z an dy 3z ax Ay 927 922 3
3 ' ﬂ‘: . ((?_Z J J‘\,4| vl _ J» Jv\/d\ vl
Then s-fkf\.u(ax) (%) aa=) ) o Sdedy=2 dx dy

4 : 8V3 ,
=3 J:‘ Vay —y dy = ~3 7 square units

Solution 2: Refcr to Fig. 72-4. The projection of one-half the required area on the yOz plane is the
recgion R bounded by the line y = V32 and the parabola y = }z% the latter obtained by eliminating x
between the equations of the two surfaces. For the cone,

ax y dx _ 3z - (0x) (ax) X +y +92°  127° 122°

= — = . (8] 5 = =
Ay and 9z x S ay dz X 327 -7

_4 2T a3 ! 5
Then S = 2J. I \/32 _2.’» V‘—I [\/32 - ]}\,'\f/—\ TL Vdy —y dy
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: . . . ‘ az\" (0 2
Solution 3: Using polar coordinates in solution 1, we must integrate \;’1 + (—z) + ( z) V3

over the region R enclosed by the circle p = 45sin 6. Then,
2 B m 4uin @ 2 1 fﬂ 113 b
S—Uv—g‘“-ﬁ. | e 5 | a

16 (7 8V3
=7 J;) sin’ 0 do = —3 ™ square units

3. Find the area of the portion of the cylinder x* + z> = 16 lying inside the cylinder x™ + y° = 16.

Figure 72-5 shows one-eighth of the required area, its projection on the xOy plane being a quadrant
of the circle x> + y* = 16. For the cylinder x* + z% = 16,

Az x Az (éz)z (z?z)2 X+ 2z 16
_—— — _ = ) 1 + _— —_ = = 5
ax z and dy 0 So ax! * Ay z’ 16 — x°
1 Ve 12 4 3
Then S= SL L Vi dy dx =32 J” dx = 128 square units

4, Find the area of the portion of the sphere x>+ y2 + z° = 16 outside the paraboloid
X*+y +z=16,

Figure 72-6 shows one-fourth of the required area, its projection on the yOz plane being the region
R bounded by the circle y* + z> = 16, the y and z axes, and the line z = 1. For the sphere,

i
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x _

a_x)2+(ax)2_xz+y’+zz_ 16

z
_z +( 9x
x Soo 1 dy dz 2

and =
x 16—y’ -2

az
z 2 1 Vie-z?
Then s=4”\/1+(2) +(Z) dA=4JJ e dyd:
] dy oz o Jo Vie—y' - 22

1 y Vi16—z2 t 1
= 16L [arcsm ﬁ]o dz = 16‘[0 3T dz = 8 square units

5.  Find the area of the portion of the cylinder x* + y* = 6y lying inside the sphere x* + y* + 2° =
36.

2,
:
:

Figure 72-7 shows one-fourth of the required area. Its projection on the yOz plane is the region R
bounded by the z and y axes and the parabola z* + 6y = 36, the latter obtained by eliminating x from the
equations of the two surfaces. For the cylinder,

ax _3-y ax _ (g)’ (t?_x)z_xz+9—-6y+y2_ 9
iy~ x and 62—0. So 1+ 3y +\37) = " 6 — )
6 r\V36-6y 3 6 \/8
Then S= 4J; J; ——6);\/%}’2 dzdy = 12J; \/—)7 dy = 144 square units
Supplementary Problems
6. Find the area of the portion of the cone x* + y* = z* inside the vertical prism whose base is the triangle

bounded by the lines y =x, x =0, and y =1 in the xOy plane. Ans. $V2 square units

7. Find the area of the portion of the plane x + y + z =6 inside the cylinder x* + y* = 4.

Ans.  4V3m square units

8. Find the area of the portion of the sphere x* + y® + z* = 36 inside the cylinder x° + y° = 6y.

Ans. 72(m — 2) square units
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12.

13.

4.

18.

Find the area of the portion of the sphere x* + y* + z> = 4z inside the paraboloid x* + y* = z.

Ans. 4 square units

Find the area of the portion of the sphere x* + y* + z* =25 between the planes z=2 and z =4.

Ans. 207 square units

Find the area of the portion of the surface z = xy inside the cylinder x* + y* =1.

Ans. 2m(2V2 —1)/3 square units

Find the area of the surface of the cone x” + y* — 9z° = 0 above the plane z =0 and inside the cylinder
x*+y’=6y.  Ans. 3VI0w square units

Find the area of that part of the sphere x* + y* + z* = 25 that is within the elliptic cylinder 2x* + y* = 25.

Ans. 50w square units

Find the area of the surface of x* + y* — az = 0 which lies directly above the lemniscate

2
4p> = a’ cos 20. Ans. §= 3 ff Vdp’ + a’p dp do = % (g - ;—T) square units

Find the area of the surface of x* + y*> + z° =4 which lies directly above the cardioid p = 1 — cos 6.

Ans. 8[m — V2 —In (V2 + 1)) square units



Chapter 73

Triple Integrals

CYLINDRICAL AND SPHERICAL COORDINATES. Assume that a point P has coordinates
(x. y,2z) in a right-handed rectangular coordinate system. The corresponding cylindrical
coordinates of P are (r, 6, z), where (r, @) are the polar coordinates for the point (x, y) in the
xy plane. (Note the notational change here from (p, ) to (r, 8) for the polar coordinates of
(x. y); sec Fig. 73-1.) Hence we have the relations

x=rcosé@ y=rsing 7'2=X2+y2 tan6=£

In cylindrical coordinates, an equation r = ¢ represents a right circular cylinder of radius ¢ with
the z axis as its axis of symmetry. An equation @ = ¢ represents a plane through the 2z axis.

» P(r. 8, z)
z
o y y
x ;] r
oua
x
Fig. 73-1 Fig. 73-2

A point P with rectangular coordinates (x, y, z) has the spherical coordinates (p, 0, @),
where p = |OP|, @ is the same as in cylindrical coordinates, and ¢ is the directed angle from the
positive z axis to the vector OP. (See Fig. 73-2.) In spherical coordinates, an equation p = ¢
represents a sphere of radius ¢ with center at the origin. An equation ¢ = ¢ represents a cone
with vertex at the origin and the z axis as its axis of symmetry.

The following additional relations hold among spherical, cylindrical, and rectangular
coordinates:

r=psin ¢ z=pcos¢ pl=xt+y’+ 2’
x=psin ¢ cos ¢ y=psin ¢ sin @
(See Problems 14 to 16.)

THE TRIPLE INTEGRAL J' j j f(x, y, z) dV of a function of three independent variables over a

R
closed region R of points (x, y, z), of volume V, on which the function is single-valued and
continuous, 1$ an extension of the notion of single and double integrals.

456
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If f(x, y, z) =1, then ffjf(x, y, z) dV may be interpreted as measuring the volume of
R

the region R.

EVALUATION OF THE TRIPLE INTEGRAL. In rectangular coordinates,
boryax) pzp(xy)
jjj’f(x, ¥, 2) dV=[ [ flx.y, 2) dz dy dx
R

yi(x) 1(xew)

d rxy(y) (z3(x.5)
=J [ j fix. y,2) dz dx dy, etc.

10 x.v)

where the limits of integration are chosen to cover the region R.
In cylindrical coordinates,

B (ry(8) (2a(r.0)
fk”f(r, 8, 2) dV=L fw) LM) f(r. 8, 2)r dz dr do

where the limits of integration are chosen to cover the region R.
In spherical coordinates,

B [6:(0) rpy(d.8) .
J}! J f(p, &, 0) dV:J; P f(p, d.0)p sin ¢ dp d¢p do

where the limits of integration are chosen to cover the region R.

Discussion of the definitions: Consider the function f(x, y, z), continuous over a region R
of ordinary space. After slicing R with planes x = £ and y =7, as in Chapter 69, let these
subregions be further sliced by planes z = ¢,. The region R has now been separated into a
number of rectangular parallelepipeds of volume AV, , = Ax, Ay; Az, and a number of partial
parallelepipeds which we shall ignore. In each complete parallelepiped select a point
P (x;, ¥, z,); then compute f(x,, y , z,) and form the sum

2 flxi, y,, 2 ) AV, = 12 flx,.y,.2,) Ax, Ay, Az, (73.1)

The triple integral of f(x, y, z) over the region R is defined to be the limit of (73.1) as the
number of parallelepipeds is indefinitely increased in such a manner that all dimensions of each
go to zero.

In evaluating this limit, we may sum first each set of parallelepipeds having A x and A y, for
fixed i and j, as two dimensions and consider the limit as each A,z— 0. We have

p

22
lim 2, f(xivyz)A,z8x Ajy=J;1 fix,, yi,2)dzAx Ay

p—--\\-x k:l

Now these are the columns, the basic subregions, of Chapter 69; hence,

lim ) > mf(x,., y;» 2:) AV, =ijf(x, y, 2)dzdx dy=JfJf(x. ¥. 2) dz dy dx
R R

p—+ = j=l.....n
k=l....,p

CENTROIDS AND MOMENTS OF INERTIA. The coordinates (x, y, z) of the centroid of a
volume satisfy the relations



458 TRIPLE INTEGRALS [CHAP. 73

iji[dV=[![de fJ}!JdV=IJJde
(ffJar=f ][z

The moments of inertia of a volume with respect to the coordinate axes are given by

I,=jjj(y2+z2)dv 1,=f”(z2+x2)dv 1,=ffj(x2+y2)dv

Solved Problems

1. Evaluate the given triple integrals:

(a) J;l LI—I I:_x xyz dz dy dx
=L‘ L‘ x(J:quzdz) dy] dx
TG T P T I

1 r _ y=l-x
=j '9'._(_2_,_)1] dx = = J'(dx—12x +13x° —6x* +x)dx—
o L 4 v=0 4

13
240

w2 1 2
(b)f ff zr’sin 6 dz dr d¢
0 0 JO

wi2
J J[ ]rsmedrdo 2[ Jrsmodrde

2

=z [r ]5 sin 6 d —--—[cosl9]'”2 3

3
” w/4 sec ¢
(c) J:) J:) L sin2¢ dp d¢ dé

=2L"stin¢d¢ d0=2L"(1—%\/7)d0=(2—\/'2')w

2. Compute the triple integral of F(x, y, z) = z over the region R in the ﬁrst octant bounded by
the planes y =0, z=0, x + y =2, 2y + x =6, and the cylinder y* + z° =4. (See Fig. 73-3.)

Integrate first with respect to z from z = 0 (the xOy plane) to z = V4 - ¥’ (the cylinder), then with
respect to x from x =2 —y to x =6 — 2y, and finally with respect to y from y =0 to y = 2. This yields

6-2v rVa-y2 2 r6-12y
”f:dV J'f J; zdzdxdy=J; L [122)V*7" dx dy

[ Ty ardy = [ -y ay =%
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i, 8, 0%

R

=
-
oo
o
)
I
i

3. Compute the triple integral of f(r, 8, z) = r’ over the region R bounded by the paraboloid
r* =9 — z and the plane z =0. (See Fig. 73-4.)

Integrate first with respect to z from z =0 to z =9 — r’, then with respect to r from r =0 to r =3,
and finally with respect to 6 from 6 =0 to § = 2. This yields

FE S ST B 20 3
Jl(frl dV=l(“ L J:] rz(rdzdrd0)=J; L r"(()—rz)drdﬂ
R

2 2n
=L Hake %r°],‘1,d6=f do=2x

(4]

iy
)

|

—

4 Vi6-12 p4 4 2vE Vaz-x:
4. Show that the integrals (a) 4}; J; J: dz dy dx, (b) 4}; J; }; dy dx dz, and

Vdz—y2 Ateyd)ia

4 4

(c) 4J; LM J; dx dz dy give the same volume.

(a) Here z ranges from z = (x” + y°) to z = 4, that is, the volume is bounded below by the paraboloid
4z = x’+y® and above the plane z =4. The ranges of y and x cover a quadrant of the circle
x® +y® =16, z = 0. the projection of the curve of intersection of the paraboloid and the plane z = 4
on the xOy plane. Thus, the integral gives the volume cut from the paraboloid by the plane z = 4.

(b) Here y ranges from y =0 to y = V4z — x; that is, the volume is bounded on the left by the zOx
plane and on the right by the paraboloid y° = 4z — x*. The ranges of x and z cover one-half the area
cut from the parabola x° =4z, y =0, the curve of intersection of the paraboloid and the zOx plane,
by the plane z =4. The region R is that of (a).

(¢) Here the volume is bounded behind by the yOz plane and in front by the paraboloid 4z = x* + y°.
The ranges of z and y cover one-half the area cut from the parabola y° =4z, x =0. the curve of
intersection of the paraboloid and the yOz plane, by the plane z = 4. The region R is that of (a).

5. Compute the triple integral of F(p, ¢, 8) = 1/p over the region R in the first octant bounded
by the cones ¢ = } 7 and ¢ = arctan 2 and the sphere p = V6. (See Fig. 73-5.)
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I

i, A0

Integrate first with respect to p from p =0 to p = V6, then with respect to ¢ from ¢ = i to
¢ = arctan 2, and finally with respect to 8 from 8 =0 to 8 = }=. This yields

J'J'J'ldV J'w’ZJ'amaﬂJ-’ —p Zsin ¢ dp dop db = 3j”2rmdnzsm¢d¢ dé

[ ()

6. Find the volume bounded by the paraboloid z = 2x* + y* and the cylinder z = 4 — y’. (See Fig.
73-6.)

Integrate first with respect to z from z =2x” + y* to z =4 — y*, then with respect to y from y =0 to
y =V2 - x* (obtain x* + y*> = 2 by eliminating x between the equations of the two surfaces), and finally
with respect to x from x =0 to x = V2 (obtained by setting y =0 in x> + y* = 2) to obtain one-fourth of
the required volume. Thus,

2-x V2 2-
V:"LL L1+zdzdydx=4L L [(4=y*)+ (26" +y*)] dy dx

p 3 m
=4 |:4y—2x2y—zl] 16J'

3 Y*'? dx = 47 cubic units

0

7. Find the volume within the cylinder r = 4 cos 6 bounded above by the sphere r* + 2> = 16 and
below by the plane z =0. (See Fig. 73-7.)

Integrate first with respect to z from z =0 to z =V 16 — r’. then with respect to r from r=0 to
r=4cos §, and finally with respect to 8 from 6 =0 to § = 7 to obtain the required volume. Thus,

7w rdcosh Vﬁ m rdcasd
V=L J:; J'D dedfdl?:J;) J;) V16— r’ drdd

= J:) (sin® 6 — 1) d6 = % (37 — 4) cubic units
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Find the coordinates of the centroid of the volume within the cylinder r = 2 cos 6, bounded
above by the paraboloid z = r* and below by the plane z =0. (See Fig. 73-8.)

2cos B w2 2 conb
V= 2f j I rdzdrdf = ZJ f r' drdf

L [ 5" db = sf cos' 6 db = 3

7/2 p2cosB prl
v IIJXdV=2J:) J; L (rcos 0)r dz dr df
R

2cos @ 202
=2L L r“cosBdrd():_%J; cos® 0 dd =2

1)

<
I

Then x = M,,/V = 3. By symmetry, y =0. Also,

w2 2¢cos 8 r2 w2 2cos
Mx,_=fszdv=2J f f zrdzdrma:f f r® dr do
. 0 0 0 0 Qa
R

w2
=%2J; cos® 0 do=3nm

and z =M, /V= 4. Thus, the centroid has coordinates (3,0, ¥ ).

2

For the right circular cone of radius a and height A, find (a) the centroid, () the moment of
inertia with respect to its axis (c), the moment of inertia with respect to any line through its
vertex and perpendicular to its axis, (d) the moment of inertia with respect to any line through
its centroid and perpendicular to its axis, an (e) the moment of inertia with respect to any
diameter of its base.

z. Then

V= 4f f[ rdzdrdf = 4[ J( —grz)drdﬂ

2 1
ghaj dﬂ—gfrha

Take the cone as in Fig. 73-9, so that its equation is r =
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b3
o

(a) The centroid lies on the z axis, and we have

wi2 pra rh
Mxy=J'J'J'de=4J' f J’ zrdz dr d6
0 0 Shria
R

/2 a hZ 1 mi2 1
ZZJ j (h2r——2r3)drd6=—h2a2f do = - wha®
0 0 a 2 0 4
Then z= M, /V= jh, and the centroid has coordinates (0, 0, 2h).
wi2 rFa rh
(&) I,= jjj(xz +y*)dv= 4L J; Lm (F)rdzdrdé = &mha = £a’V
R
(c) Take the line as the y axis. Then

w!2 ra rh
Iy=J'J'I(x2+zz)dV=4J; J;L, (r’cos® 6 + z°)rdz dr d
R

w2 a 3
h
=4J' J' [(hr3 - = r") cos® @ + 1 (hsr - —h3 r‘)] dr do
0 0 a 3 a

= % whaz(h2 + % a2) = % (h2 + % az)V

(d) Let the line ¢ through the centroid be parallel to the y axis. By the parallel-axis theorem,
I,=1+V(3h)® and =3(h+ LW SHV= (W +4a”)V

(e) Let d denote the diameter of the base of the cone parallel to the y axis. Then

I,=1+V(ih)’ = & +4a°V + 5h°V=5(2n* + 3a*)V
10.  Find the volume cut from the cone ¢ = i by the sphere p = 2a cos ¢. (See Fig. 73-10.)

w2 rmid F2acos
v=4f”dv=4J; L J; p’sin ¢ dp dg do
R

32(13 w2 rwi4 w2
3 J; J:, cos® ¢ sin ¢ dop dB =24’ J:) dé = ma® cubic units

11.  Locate the centroid of the volume cut from one nappe of a cone of vertex angle 60° by a
sphere of radius 2 whose center is at the vertex of the cone.
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R

¥
.
3
i

e

#

Take the surfaces as in Fig. 73-11, so that x = y = 0. In spherical coordinates, the equation of the
cone is ¢ = /6, and the equation of the sphere is p =2. Then

w2 wl6 2 32 wi2 w6
_ _ 2 _ 24 .
V—fjde—4J; J; J; p“sing dp dd db = 3 L L sin ¢ d¢p db
R

w2 w6 2
Mxy:JJJZdv=4J; J; J;(pcos(;b)pzsind;dpdd;de
R

w2 w6
=8J'0 L sin2¢p dp df = 7
and z=M_/V=3(2+V3).

12.  Find the moment of inertia with respect to the z axis of the volume of Problem 11.
w2 wia 2
I, =IJJ(){2 +y2)dv=4fu L L (p’sin® ¢)p’sin ¢ dp dep db
R
w2 ni6é 12 w2 5 _ 2\/§
=) s edean=F(3-5va) [ an= T as-ove =2y
Supplementary Problems
13.

Describe the curve determined by each of the following pairs of equations in cylindrical coordinates.
(@) r=1,2z=2 (b) r=2,z=9 (c) 8=m/4, r=V2 (dYb=mld, z=1r

Ans.  (a) circle of radius 1 in plane z =2 with center having rectangular coordinates (0, 0, 2); () helix
on right circular cylinder r =2; (c) vertical line through point having rectangular coordinates
(1,1,0); (d) line through origin in plane # = 7/4, making an angle of 45° with xy plane
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Describe the curve determined by each of the following pairs of equations in spherical coordinates.
m w w
(@ p=10=m b)yo=5.¢=¢ () p=2.¢=7

Ans. (a) circle of radius 1 in xz plane with center at origin; (b) halfline of intersection of plane
0= 7/4 and cone ¢ = m/6; (c) circle of radius V2 in plane z = V2 with center on z axis

Transform each of the following equations in either rectangular, cylindrical, or spherical coordinates into

equivalent equations in the two other coordinate systems.

(@) p=5 (b) 2=+ (0 X +y +(z-1)"=1

Ans. (@) x  +y +27=25r+2"=25,(b) 2" =x"+y’, cos’ ¢ =1 (that is, ¢ = w/4 or ¢ =3mw/4);
(¢) r’+2*=2z, p=2cos ¢

Evaluate the triple integral on the left in each of the following:

|13 2 3
(a) J:»L J; dz dxdy =1
I pfx pxy
® [ [ [ ardyar=2
6 f12-2v pf4-2y/3-x/3 12 ;6-x/2 f4-2y13-x/3
@[ ] xdzdedy=14a [=[ [ [ xdz dy dx

wi2 p4 pVi6-zt
(d) J; J; J; (16— r*)"?rzdrdzdd =37

2w pw oS
(e) L J:. J; p'sin ¢ dp dp do = 2500w
Evaluate the integral of Problem 16(b) after changing the order to dz dx dy.
Evaluate the integral of Problem 16(c), changing the order to dx dy dz and to dy dz dx.

Find the following volumes, using triple integrals in rectangular coordinates:

(@) Inside x>+ y> =9, above z =0, and below x + z =4 Ans. 367 cubic units
(b) Bounded by the coordinate planes and 6x + 4y + 3z = 12 Ans. 4 cubic units
(c) Inside x* + y° = 4x, above z =0, and below x* + y* = 4z Ans. 67 cubic units

Find the following volumes, using triple integrals in cylindrical coordinates:
(a) The volume of Problem 4
(b) The volume of Problem 19(c)

(c) That inside r* = 16, above z =0, and below 2z =y Ans. 64/3 cubic units
Find the centroid of each of the following volumes:
(a) Under z° = xy and above the triangle y =x, y =0, x =4 in the plane 2 =0 Ans. (3,%.%)
(b) That of Problem 19(b) Ans. (4.3.1)
64—97 23 737w — 128
(c) The first-octant volume of Problem 19(a) Ans. (16(11' ) 8m—1)" 327 = 1))
(d) That of Problem 19(c) Ans. (3,0, %
(e) That of Problem 20(c) Ans. (0,37/4,37/16)
Find the moments of inertia /,, /,, I, of the following volumes:
(a) That of Problem 4 Ans. I =1 =3V, I =%V
(b) That of Problem 19(b) Ans. I =3ViI =2V, 1, =RV
(c) That of Problem 19(c) Ans. I, =RV I =3V, I, =%V
(d) That cut from z = r* by the plane z =2 Ans. I =1=3V;I =3V
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Show that, in cylindrical coordinates, the triple integral of a function f(r, . z) over a region R may be

represented by
B (r(8) fzalr.8)
[ [ j f(r, 0. z)rdz dr do

NCOREN )

(Hint: Consider, in Fig. 73-12, a representative subregion of R bounded by two cylinders having Oz as
axis and of radii r and r + Ar, respectively, cut by two horizontal planes through (0,0, z) and
(0,0, z+ Az), respectively, and by two vertical planes through Oz making angles # and 6 + A#,
respectively, with the xOz plane. Take AV =(rAf#) Ar Az as an approximation of its volume.)

Fig. 7302 Fig. T3

-
,:2 PO ]

Show that, in spherical coordinates, the triple integral of a function f{ p, ¢, 8) over a region R may be
represented by

B (d300) [piid.)
f f flp. &.0)p’ sin ¢ dp do df

6108y Jp(d.8)

(Hint: Consider, in Fig. 73-13, a representative subregion of R bounded by two spheres centered at O, of
radii p and p + Ap, respectively, by two cones having O as vertex. Oz as axis. and semivertical angles ¢
and ¢ +A¢, respectively, and by two vertical planes through Oz making angles 8 and 8 + Ag,
respectively, with the 20y plane. Take AV = (p A¢)(p sin ¢ AB)(Ap) = p’ sin ¢ Ap A Af as an approx-
imation of its volume.)



Chapter 74

Masses of Variable Density

HOMOGENEOUS MASSES have been treated in previous chapters as geometric figures by taking
the density 8 = 1. The mass of a homogeneous body of volume V and density & is m = 8V.
For a nonhomogeneous mass whose density 8 varies continuously from point to point, an

element of mass dm is given by:

8(x, y) ds for a material curve (e.g., a piece of fine wire)
8(x, y) dA for a material two-dimensional plate (e.g., a thin sheet of metal)

8(x, y, z) dV for a material body

Solved Problems

1. Find the mass of a semicircular wire whose density varies as the distance from the diameter
joining the ends.

Take the wire as in Fig. 74-1, so that 8(x, y) = ky. Then, from x* + y* = r%,

(B e
ds = l+(dx dx—;dx

and m= J 8(x, y)ds= j_ ky ; dx = er’_ dx =2kr” units
2. Find the mass of a square plate of side & if the density varies as the square of the distance from
a vertex.

Take the square as in Fig. 74-2, and let the vertex from which distances are measured be at the
origin. Then 8(x, y) = k(x* + y*) and

m=ff6(x, y)dAzj; J; k(x2+y2)dxdy=kJ; (%a® + ay?) dy = tka® units
R

i i

edean,
o b Ry

3 4 5 e Y
PR N AR

hY

W

.~
-,
e e s

,

.

b3
Y
“an srsedee e nemnnchn e ~.>.'.*.‘.‘-*r-‘§
PR 3 ~
8 £ v
i

Y "

Fig, M3 Fig. 147 Fig. 763

466



CHAP. 74] MASSES OF VARIABLE DENSITY 467

5.

Find the mass of a circular plate of radius r if the density varies as the square of the distance
from a point on the circumference.

Take the circle as in Fig. 74-3, and let A(r,0) be the fixed point on the circumference. Then
8(x, y) = k[(x — r)> + y°] and

m =jj[ 8(x, y)dA =2 J: J; k[(x — 1)’ + y*] dy dx = 3kwr® units
R

Find the center of mass of a plate in the form of the segment cut from the parabola y* = 8x by
its latus rectum x =2 if the density varies as the distance from the latus rectum. (See Fig.
74-4.)

Here, 8(x, y) =2 — x and, by symmetry, y = 0. For the upper half of the plate,

m= Ha(x,y)dA jj k(2 — x) dx dy = kj (2— 1)’2;)dy—?4—;k
M, = Ua(x y)xdA = jf k(2 — x)x dx dy = kj[ (24§:64)]dy—2258k

and x = M, im= ¢, The center of mass has coordinates (§, 0).

Wig, T g, F4H Fig. 144

Find the center of mass of a plate in the form of the upper half of the cardioid r = 2(1 + cos )
if the density varies as the distance from the pole. (See Fig. 74-5.)

m 2(l1+cos@) -
m=Jj8(r, 9)dA=J; J; (kr)rdrdﬂ: %kfo (1+C050)3 do = 23—°k1'r
R
T 2(1+cosB)
M,:”S(r,a)y dA=L fo (kr)(r sin )r dr do
R
=4kJ; (1+cos8)sing df = 2k

2(1+cosB)
M = ffﬁ(r, 0)x dA = L J; (kr)(r cos 8)r dr do = 14km

Then x =

M, _
Tn_ » Y=

ol';’

M, _ 9%
m

=35, and the center of mass has coordinates (21 % )

10° 257

Find the moment of inertia with respect to the x axis of a plate having for edges one arch of
the curve y =sin x and the x axis if its density varies as the distance from the x axis. (See Fig.
74-6.)
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m=JJ6(x,y)dA=LL kydyd =%kj0 sin’ x dx = Lk
R

I,=J’j6(x, y)y2 dA=L L (ky)(y?) dy dx = ‘L‘kJ; sin® xdx = 3 kw = 3m

R

Find the mass of a sphere of radius a if the density varies inversely as the square of the
distance from the center.

k k
Take the sph in Fig. 74-7. Then &(x, y, 2) = ———— = — and
ake the sphere as in kig en 8(x, y, 2) x2+y2+zz pzan
w2 w2 ak
m=fff5(x,y,z)dv=8fo L J;—zpzsindjdpddadﬂ
p
R

w/2

w/2 wi2
= 8kaJ; J; sin ¢ d¢p d8 = 8ka f df = 4kma units

[

Find the center of mass of a right circular cylinder of radius @ and height A if the density varies
as the distance from the base.

Take the cylinder as in Fig. 74-8, so that its equation is r = a and the volume in question is that part
of the cylinder between the planes z =0 and z = h. Clearly, the center of mass lies on the z axis. Then

w2 pa rh 72 ra
m:fffﬁ(z,r,o)dvz4f J J. (kZ)rdZdrd8=2kh2f J‘ rdrdB
0 a Jo 0 0
R

w2
= kh’a’ L do = Yknh’a®

ni2 ra rh w/2 ra
- JJI&(z,r.B)de=4J‘ J. J. (kzz)rdzdrd6=§kh3j J‘ rdr do
- 0 e Jo o 0
R

w2
= %kh3a2j:) do = Ykwh'a®

<
[

and z =M, /m = %h. Thus the center of mass has coordinates (0,0, k).



