Dynamics of
Offshore
Structures

James F. Wilson, Editor

John Wiley & Sons, Inc.






Dynamics of Offshore Structures



Cover photograph. This historical Argus Island Tower was a U.S. Navy facility, locat-
ed 39 km off the southwest coast of Bermuda in a water depth of 58 m. Built in 1960,
the Tower was used for about 10 years for underwater acoustic research and for sub-
marine detection. The two enclosed levels on top of this four legged jacket structure
had space for diesel generators, living quarters, and laboratories. During the first few
years of the Tower’s existence, it was subjected to storm-generated waves approaching
21 m, which was also the wave height upon which the Tower design was based. The
1969 inspections of the Tower revealed storm damage to many of its subsurface weld-
ed brace connections, damage that was deemed too closely to repair and subsequently
maintain. Thus, demolition using shaped charges toppled the Tower in 1976, and its
remains now rest on the coral floor of the sea.
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Preface

"This book is intended for three groups: (1) students and professors of structural
and ocean engineering; (2) engineers and scientists in academic institutions,
government laboratories, and industries involved in research on offshore installa-
tions, especially fluid-structure-soil interactions; and (3) practicing professional
engineers who consider conceptual designs and need to employ dynamic analy-
sis to evaluate facilities constructed offshore. The material herein was originally
prepared by the three contributors for short courses attended by engineering
practitioners, and for university courses taken by engineering seniors and grad-
uate students.

Compared to the first edition, this second edition includes more example
problems to illustrate the dynamic modeling, analysis, and solution of deter-
ministic and stochastic responses for a wide variety of structures offshore, which
include buoys, moored ships, and platforms of the fixed-bottom, cable-stayed,
and gravity-type designs. Also, the extensive references of the first edition are
updated, especially source material involving offshore waves, structural modal
damping, and fluid-structure-soil interactions.

As in the first edition, this second edition addresses the basic physical ideas,
structural modeling, and mathematical methods needed to analyze the dynamic
behavior of structures offshore. Chapter 1 summarizes existing installations
and points out future challenges. In subsequent chapters, careful attention is
given to the many and sometimes subtle assumptions involved in formulating
both the structural model and the natural forces imposed by the often hostile
environment. The analyses in these chapters focus on plane motions of elastic
structures with linear and nonlinear restraints, motions induced by the forces of
currents, winds, waves, and earthquakes. Chapters 2 through 5 address single
degree of freedom structural models that, together with plane wave loading
theories, lead to time history predictions of structural responses. Chapters 6
and 7 extend these analyses to statistical descriptions of both wave loading and
structural motion. Chapters 8 and 9 include the analysis and examples of multi-
degree of freedom linear structures. Chapter 10 deals with continuous system
analysis, including the motion of cables and pipelines. Chapter 11 addresses
current practice related to submerged pile design for structures offshore.

I sincerely hope that this book will be useful and serve as an inspiration
to engineers and researchers who design and analyze structures for the offshore
environment.

JAMES F. WILSON
Chapel Hill, North Carolina
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Structures in the
Offshore Environment

James F. Wilson

Offshore structures, constructed on or above the continental shelves and on
the adjacent continental slopes, take many forms and serve a multitude of pur-
poses: towers for microwave transmission, installations for power generation,
portable pipeline systems for mining the ocean floor, and a few platforms and
floating islands that serve as resort hotels. Most structures offshore, however,
have been built to support the activities of petroleum industries—activities
that include the exploration, drilling, production, storage, and transportation
of oil. Exploratory drilling is done from mobile platforms or carefully positioned
ships; production and storage operations involve more permanent structures;
and pipelines, buoys, and mooring systems for floating structures and ships
support all oil acquisition activities.

The design of marine structures compatible with the extreme offshore envi-
ronmental conditions is a most challenging and creative task for the contempo-
rary ocean engineer. The engineer involved in designing these marine structures
must rely on the knowledge and experience of meteorologists, oceanographers,
naval architects, geologists, and material scientists. The marine engineer’s goal
is to conceive and design a lasting structure that can withstand the adverse
conditions of high winds and waves, earthquakes, and ice, remaining in har-
mony with its environment. Mulcahy (1979) expressed this design philosophy
as follows:

Offshore platforms are a bit like space capsules—for each pound
of unnecessary deck space that can be trimmed from the structure,
the magnitude of the structure needed to support it can be reduced.
This is true for a guyed tower, a fixed platform, or a tension leg struc-
ture. Decreasing the wave load leads to lower overturning moments,
a lesser requirement for pilings, and a smaller number of strength
members in the structure. When this is accomplished, smaller launch
barges can transport the structure to the work site.



2 STRUCTURES IN THE OFFSHORE ENVIRONMENT

In perspective, offshore structures include a great deal more than the towers
and platforms. They include moored or mobile ships whose positions may be
precisely controlled. They include the guy lines for compliant towers, the cables
for buoys and for tension-leg platforms, and the associated pipelines without
which the platforms and submerged oil production systems would be useless.
Detailed descriptions of such installations may be found in the references at the
end of this chapter. Of particular note is the review article on compliant offshore
structures by Adrezin et al.(1996), with its 130 citations to the world literature
on the subject up to the mid-1990s. For descriptions of current practice in all
types of offshore installations, the reader is referred to the yearly conference
proceedings such as found in the References at the end of this chapter.

This chapter begins with a short history of offshore structures, describes typ-
ical state-of-the-art installations, and concludes with a discussion of engineering
challenges for future designs. Subsequent chapters address in some detail both
the mathematical modeling and the environmental loading of offshore struc-
tures, together with ways to predict their dynamic responses and structural
integrity, from both the deterministic and the statistical viewpoints.

1.1 HISTORICAL PERSPECTIVE

The earliest offshore structure for oil drilling was built about 1887 off the coast
of southern California near Santa Barbara. This was simply a wooden wharf
outfitted with a rig for drilling vertical wells into the sea floor. More elaborate
platforms supported by timber piers were then built for oil drilling, including
installations for the mile-deep well in Caddo Lake, Louisiana (1911) and the plat-
form in Lake Maracaibo, Venezuela (1927). Soon after these early pier systems
were built, it became apparent that the lifetime of timber structures erected
in lakes or oceans is severely limited because of attacks by marine organisms.
For this reason, reinforced concrete replaced timber as the supporting structure
for many offshore platforms up to the late 1940s. Over the next 50 years about
12,000 platform structures were built offshore, usually of steel but more recently
of precast concrete. The chief features of these structures, together with their
supporting components such as mooring systems and pipelines, are discussed in
this chapter. See also Gerwick (1999) and Will (1982).

Offshore mooring systems have a variety of configurations. All have anchors
or groups of piles in the seabed with flexible lines (cables, ropes, chains) leading
from them to buoys, ships, or platform structures. The function of a mooring
system is to keep the buoy, ship, or platform structure at a relatively fixed
location during engineering operations. Engineering efforts in mooring systems
have focused in recent years on the development of new anchor configurations
with higher pullout loads, larger capacity and lower cost of installation for deeper
water applications.

When pipelines were first laid offshore, no extraordinary analyses or deploy-
ment techniques were needed since they were in shallow water and were of small
diameter, somewhat flexible, and made of relatively ductile steel. As platforms
were built in deeper and deeper water with multiple well slots, larger diameter
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pipelines of higher strength were required. During the 1960s, engineers met
this challenge with new designs and with refined methods of analysis and de-
ployment. Pipeline systems evolved into two main types: sea floor and vertical
configurations. Both are used to transport gas and oil, but the vertical sys-
tems also include risers to carry drilling tools, electric power lines, dredge pipes
for deep sea mining, and cold water pipes (CWP) for ocean thermal energy
conversion (OTEC).

Throughout the world there are at present about 80,000 km of marine
pipelines. Since 1986, the rate of building new marine pipelines has been about
1000 km per year. Individual pipelines on the sea floor vary in length from 1 to
1000 km and in diameter from 7 to 152 cm. For instance, a Norwegian project
features a 1000 km line extending from the Troll field to Belgium, which was
completed in 1992. At present, Kuwait has the loading line of largest diameter,
152 cm. The pipelines of smaller diameter are used to transport oil and gas
from wellheads, and those of larger diameter are used to load and unload oil
from tankers moored at offshore terminals. The deepest sea floor pipelines at
present are the 46 cm diameter gas lines in the Gulf of Mexico, for which the
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Figure 1.1  Six offshore platforms at their maximum depths: (a) jackup rig; (b)
gravity platform; (c) jacket structure; (d) compliant tower; (e) tension leg platform;
(f) semisubmersible.
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maximum depth is 1400 m. Sea floor pipelines are often anchored to the seabed
or buried in trenches for protection from erosion and the undermining effects of
currents. Some seabed pipelines have a coating of concrete to add protection
and to reduce buoyancy.

Figure 1.2 A mat-type jackup rig at a Louisiana dock.

1.2 PLATFORMS

Six general types of offshore platforms are depicted in Figure 1.1. The first three
are designed for depths up to about 500 m, and the last three are for depths to
2000 m. Not shown are subsea production platforms, which are presently rated
for 3000 m depths.

Fixed-Bottom Platforms

A mobile structure often used for exploratory oil-drilling operations is the
self-elevating platform commonly called a jackup or mat-supported rig. A con-
structed version of this platform, depicted schematically in Figure 1.1a, is shown
in Figure 1.2. Typically, such a platform is supported by three to six legs that
are attached to a steel mat resting on the sea floor. In soft soils, the legs pass
through the mat and may penetrate the soil to depths of up to 70 m. To the
bottom of each leg is attached a steel saucer or spud can to help stabilize the
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structure and to minimize leg penetration into the soil. The height of the

platform above the seafloor, up to 100 m, may be adjusted by using motor
drives attached to each leg.

Figure 1.3 A jacket-template platform (courtesy of IHI Co. Ltd., Japan).

A platform designed to be used in a fixed location as a production unit
is shown in Figure 1.1b. Such a unit, called a gravity platform, consists of a
cluster of concrete oil-storage tanks surrounding hollow, tapered concrete legs
that extend above the water line to support a steel deck. See Graff and Chen
(1981). A typical unit, of which there were 28 operating in the North Sea in
1999, has one to four legs and rests directly on a concrete mat on the sea floor.
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With ballast consisting of sand in the bottom of the tanks and seawater in
the legs, these structures depend on self-weight alone to maintain an upright
position when subjected to the highest waves that are expected to occur in a
100 year time period. A realistic 100 year wave that may occur in the northern
North Sea is 27.8 m. At present, the largest concrete gravity platform is the
Troll structure, and one of moderate size is the Statfjord-A Condeep structure,
both located in the North Sea. The latter structure is 250 m high and has
three legs. Located off the coast of Norway, the Statfjord-A Condeep unit has
slots for 42 oil wells that reach to depths of 2800 m. When in operation, it
accommodates a crew of 200 people who live and work on this structure.
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Figure 1.4 Two storm wave height spectra in the Gulf of Mexico, showing two offshore
structures with natural frequencies beyond the frequencies of the highest energy waves.

Found more frequently among the permanent, fixed-bottom structures, how-
ever, is the steel truss or jacket template structure shown schematically in Figure
1.1c, where an installed structure is depicted in Figure 1.3. As for the gravity
platform, each steel jacket unit is designed for a fixed location and a fixed water
depth. The first such structure was operational in 1955 in water 30 m deep. By
1999 there were approximately 6500 jacket structures, the tallest of which was
the Bullwinkle unit located in the Gulf of Mexico. The common characteristics
of these jacket structures are their tubular legs, somewhat inclined to the verti-
cal, and reinforced with tubular braces in K or X patterns. Piles driven through
these legs into the sea floor and clusters of piles around some of the legs main-
tain structural stability in adverse weather. One of the largest jacket structures
is the 380 m high Cognac unit, which has 10 legs with 24 piles extending 140 m
into the soft clay of the Gulf of Mexico. As with all jacket template structures,
its natural or fundamental bending frequency of 0.17 Hz is above the 0.11 Hz
frequency of the highest energy sea waves in the Gulf of Mexico during storm
conditions, as depicted in Figure 1.4.
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Compliant Platforms

An alternative class of offshore structures meant for depths from 300 to 800
m is the compliant tower such as that shown in Figure 1.1d. Such a tower
may or may not have mooring lines. It is a pile-supported steel truss structure
designed to comply or flex with the waves and has considerably less structural
material per unit height when compared with a common jacket template tower.

The first compliant tower was the Lena, which was installed in the early
1980s in the Gulf of Mexico. Including its three-level drilling and production
deck and its drilling rigs, this tower reaches a total height of 400 m. Each
of the 20 stabilizing cables, attached 25 m below the water line and arranged
symmetrically about the structure, extends a horizontal distance of about 1000
m to a line of clumped weights that rest on the sea floor, to an anchor cable
and an anchor pile. Under normal weather or small storm conditions, the cables
act as hard springs, but with severe storms or hurricanes, the cable restraints
become softer or compliant. That is, the amplitude of tower rotation increases
at a rate greater than that of the loading, since the clumped weights lift off the
sea floor to accommodate the increased storm loads on the tower. When storms
or hurricane conditions are anticipated, operations on compliant towers cease
and the crew is evacuated.

Installation of the Lena cables was more difficult and costly than anticipated.
Subsequently, compliant towers without cables have been designed by Exxon,
and two such designs were installed in 1999 in the Gulf of Mexico. Unlike
the jacket-template structures, the compliant towers have natural frequencies
in bending or sway near 0.03 Hz, or well below the 0.05 Hz frequency of the
highest energy sea waves in the Gulf of Mexico during storm conditions. Thus,
an important feature of such structures is that they are designed to have natural
sway frequencies well removed from the frequency range of the highest energy
waves for normal seas (0.1 to 0.15 Hz) and for storm seas (0.05 to 0.1 Hz). This
frequency spread is necessary to avoid platform resonance, which can lead to
failure. The sway frequencies of two platforms in comparison to the frequency
range for the spectrum of the highest energy storm waves in the Gulf of Mexico
are depicted graphically in Figure 1.4. The measurement and meaning of this
wave height spectra, which is highly site-dependent, will be discussed in detail
in subsequent chapters.

Buoyant Platforms

The tension leg platform (TLP) can be economically competitive with com-
pliant towers for water depths between 300 m and 1200 m. The schematic design
of the TLP is depicted in Figure 1.1e. In such designs, the total buoyant force
of the submerged pontoons exceeds the structure’s total gravity or deadweight
loading. Taut, vertical tethers extending from the columns and moored to the
foundation templates on the ocean floor keep the structure in position during
all weather conditions. The heave, pitch, and roll motion are well restrained by
the tethers; but the motions in the horizontal plane, or surge, sway, and yaw,
are quite compliant with the motion of the waves. The first production TLP
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was built 150 km off the coast of Scotland in the mid-1980s. Conoco installed
the Julliet in 1989, and Saga Petroleum installed the Snorre near Norway in
1991. The tethers for the Snorre are 137 cm in diameter. By the late 1990s,
a total of eleven TLPs were installed, three in the North Sea and eight in the
Gulf of Mexico.

For water depths of about 1500 m, a subsea production system provides an
excellent alternative to a fixed surface facility. Much of a subsea system rests
on the ocean floor, and its production of oil and gas is controlled by computer
from a ship or other buoyant structure above the subsea unit. The buoyant
structure and the subsea unit are often connected by a marine riser, which will
be discussed presently.

Figure 1.5 A semisubmersible platform (courtesy of the builder, Mitsubishi, Ltd.,
Tokyo and the owner, Japan Drilling Co.).

A popular buoyant structure is the floating production system. Such a struc-
ture is practical for water depths up to 3000 m, and also at lesser depths where
the field life of the structure is to be relatively short. An example of a buoyant
structure is the semisubmersible with fully submerged hulls, shown schemat-
ically in Figure 1.1f , with an installed design shown in Figure 1.5. Other
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examples include ships converted to floating production systems. In the late
1960s, companies initiated research and design for these semisubmersible, multi-
hull tubular structures and ships that would remain relatively stable in rough
seas. In the late 1990s, the first three draft caisson vessels, or spars, were
installed for use in 180 m water depths. Spars are floating vertical cylinders that
support production decks above storm waves. These structures are controlled
to remain essentially still in stormy seas. Some need to be towed from place to
place; others are self-propelled. During drilling and production operations, these
structures are kept in place with mooring lines and thrusters. The computer-
controlled thrusters monitor the mooring line forces and accurately position
the structure over the wellhead. One of the first semisubmersible structures
was the Sedco 709 with a water depth rating of 1800 m. By the year 2000,
semisubmersibles using dynamic positioning were designed for 3000 m water
depths.

1.3 MOORINGS
Temporary Anchor Moorings

A classical example of temporary offshore mooring is the spread mooring
configuration for a ship in relatively shallow water. Six to eight cables of wire
rope or chain are unreeled from onboard winches symmetrically placed around
the perimeter of the ship. Tug boats aid in spread mooring installations. In
place, each cable hangs as a catenary curve and is attached either directly to
a drag embedment anchor in the seabed or to a buoy that is anchored. An
example of a spread mooring configuration is shown in Figure 1.6. Particular
mooring configurations were reported by Baar et al. (2000) and O’Brian and
Muga (1964).

SWAY
PLAN MOORING
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Figure 1.6 A spread mooring configuration.

In a typical spread mooring operation for a semisubmersible in deep water,
a work vessel transports each anchor while pulling out its cable attached to the
semisubmersible. The vessel lowers the anchor and installs a locating surface
buoy just above it. At present, temporary systems for semisubmersible drilling
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rigs and construction barges are used in water depths of up to 2000 m. An
example of an early and successful drilling rig is the Ocean Victory installed at
a water depth of 450 m. This rig employed 12 anchors, each with a holding power
of 200,000 newton (N) or about 45,000 1b. Each catenary line was about 2500
m long and consisted of two equal segments: one of 8.9 cm diameter steel wire
cable and the other of 8.3 cm diameter chain. Newer generation rigs designed
for deep water have ten times the anchor-holding capacity of the Ocean Victory.
An anchor design based on suction is shown schematically in Figure 1.7.

LOWERING
CABLES

HOSE TO
SUCTION PUMP

Figure 1.7 A suction anchor showing water flow during embedment.

Platform Pile and Single-Point Moorings

For installing piles for platform moorings, specially fitted derrick barges
may use hydraulic hammers, drilling equipment, or possibly a jetting system.
In jetting, seawater is forced around the base of a pile, blasting away the soil
to make way for pile embedment. When installing mooring piles for tension leg
platforms, template structures are carefully positioned at the site, and piles are
hammered through the template that serves as a pile guide. Suction piles are
employed in deep water where the use of hydraulic hammers is impractical or
too costly. Suction piles employ hydrostatic pressure to push the piles to full
penetration.

Single-point mooring (SPM) systems are designed to accommodate deep-
draft tankers while they transfer crude oil and fuel oil to and from shore. Two
typical designs are shown in Figure 1.8: the single anchor leg mooring (SALM),
and the catenary anchor leg mooring (CALM). By the year 2000, there were
about 50 SALM systems and 150 CALM systems in operation throughout the
world. Their common features are the rotating head on the buoy and the ver-
tical chain that anchors the buoy to the sea floor. While a few SALM systems
may have taut mooring lines for added buoy stability, all CALM systems have
multiple catenary lines (anchor legs). A third type of SPM system, the ar-
ticulated column, has been designed and laboratory-tested but has yet to be
installed offshore.
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Figure 1.8 Two single-point mooring systems: (a) a single anchor leg mooring
(SALM); (b) a catenary anchor leg mooring (CALM).

Successful SPMs are found at the world’s largest terminals. One of these is
Saudi Arabia’s Ju’aymah exporting terminal, which has two SALM buoys and
four CALM systems. For this SPM system, crude oil and fuel oil are loaded
simultaneously to a moored tanker through the swivel assembly on the seabed.
A second example is the CALM system for service vessels associated with the
Cognac platform in the Gulf of Mexico. This SPM buoy has 12 catenary lines,
each anchored to 0.76 m diameter piles. The water depth here is 275 m.

1.4 PIPELINES
Sea Floor Pipelines

Most of the 80,000 km of offshore pipelines have been installed by one of
the following three methods. In these methods, the deployed pipeline forms an
S-shape between the vessel and the sea floor.

TENSIONER

BARGE
(FLOTATION)

TV T 7777777777777 7 772777
SEA FLOOR
Figure 1.9 The laybarge method of pipeline construction offshore.
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1. Laybarge method. Pipe sections, which sometimes have been coated pre-
viously with concrete for protection, are welded together on the deck of a barge
and deployed on rollers over the stern. Near the stern, the pipeline passes
over pontoons called stingers that relieve excess bending in the pipeline as it is
deployed to the seabed. See Figure 1.9.

2. Reel barge method. Small to medium diameter pipe sections (up to 41 cm
in diameter) are prewelded and coiled onto a reel mounted to the deployment
vessel. As the pipeline is unreeled at sea, it passes through straightening rollers
and then deployed as in the laybarge method.

3. Bottom pull method. Pipe sections are assembled on shore, and the pipe
string is towed into the sea by a barge. During the launch to its place on
the seabed, pontoons are often used under the string to avoid excess pipeline
bending,.

The following two methods of pipeline deployment have been studied exten-
sively but have yet to be used.

1. J-lay method. A dynamically positioned vessel such as a drill ship, a
converted pipelaying vessel, or a semisubmersible may be used in this operation.
On board the vessel a derrick is used to hold the pipeline vertically as it is
lowered, and the pipeline forms a J-shape between the vessel and the seafloor.
An efficient single station pipe welding procedure has to be developed before
this method can be adapted to common practice.

2. Floating string method. According to this concept, the pipeline is floated
on pontoons at the water surface. Then the pontoons are released successively
so that the pipe string gradually sinks to the sea floor.

Vertical Pipelines

One type of vertical offshore pipeline is the marine riser, which is shown
for several of the structures in Figure 1.1. Although marine risers make up
a fraction of the 80,000 km network, they are nonetheless key components of
offshore structures and serve a variety of functions. For example, a riser may
contain a bundle of smaller pipelines connecting a wellhead to its platform, or
it may transport oil directly from its platform to a sea floor pipeline. A riser
may act as a drilling sleeve, or it may contain electric power lines for operating
seafloor mining vehicles or other subsea facilities. A typical drilling riser, with a
ball joint at the bottom and a telescoping joint at the top, is maintained under
tension to ensure stability and is kept to within 8 degrees of the vertical by
computer-controlled positioning of its parent drilling vessel. In the mid-1980s,
the longest riser was operating off the east coast of the United States, where
depths of 2100 m were reached. At present, risers for depths approaching 3000
m are becoming a reality.

Vertical pipelines are used in deep-sea dredging operations. A most chal-
lenging engineering problem, which began to receive serious attention in the
late 1960s, was that of designing dredge pipes to suck up and transport man-
ganese nodules from depths of 3000 to 5500 m to the ship. See Lecourt and
Williams (1971).These nodules, about the size of a man’s fist and found in a
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monolayer on the sea floor in many parts of the world, contain other minerals
as well, including cobalt, copper, and nickel with traces of molybdenum, vana-
dium, and titanium. By the mid-1980s, remote-controlled mining of the nodules
was achieved with a 5500 m long dredge pipe. In this design, air bubbles are
pumped into the string at various points along its length to aid in pumping
the nodules to the surface. The dredge pipe’s position is computer-controlled,
synchronized to the movement of both the self-propelled mining scoop at one
end and the ship at the other end. A schematic diagram of this system is shown
in Figure 1.10a.
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Figure 1.10 Two vertical pipeline systems: (a) a dredge pipe for mining manganese
nodules; (b) a cold water pipe for ocean thermal energy conversion.

Vertical cold water pipe systems for ocean thermal energy conversion (OTEC)
have been studied extensively. See Wilson et al. (1982). Calculations show that
practical full-scale pipe designs are 10-20 m in diameter, are about 1000 m long,
and may be used to raise the cooler water in the deep ocean to the warmer
surface water. With the differential temperature between the ends of the pipe
(10-20°C), it is possible to produce net power through heat exchange. Such a
system is depicted in Figure 1.10b. In 1979, a small-scale OTEC power plant
operated successfully on a barge 2.3 km offshore of Kona, Hawaii. This pipe
was 61 cm in diameter, 660 m long, and made of polyurethane. The CWP was
supported by a surface buoy at the barge stern and was tension-moored with
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a smaller diameter polyurethane pipeline, a seafloor wire rope to shore, and
concrete blocks on the sloping sea floor. This was the world’s first and so far
the only OTEC system at sea to generate net useful power. In the year 2001,
further development work on OTEC systems was underway in India.

1.5 CHALLENGES

To meet the need for new sources of energy and minerals, marine engineers must
work at the frontiers of known technology. Their main challenges are to design,
deploy, and operate facilities and equipment in environments where none have
before existed—in deeper and deeper water, on the slopes of the continental
shelves, and in the hostile Arctic seas. To meet the challenges, marine engineers
continue their research and development efforts in the following four broad and
necessarily overlapping topics of concern.

Environmental Forces

Every offshore facility is subjected to several types of environmental loads
during its lifetime. Thus, site-dependent databases are being developed to char-
acterize the time-varying fluid-induced loads of winds, currents, and waves.
Such loads occur both on a short time scale of seconds and minutes, induced
by periodic vortex shedding, wind gusts, and wave slamming; and over longer
periods of hours, days, and even years, where the loads are induced by steady
waves, tides, and hurricanes. At some sites, data are also needed on subsea
earthquake intensity, on the scouring of sea floor foundations by currents, and
on the total and differential settlements of the sea floor due to the withdrawal
of hydrocarbons during the lifetime of the structure. At present, there is the
particular challenge of minimizing differential settlements for gravity platforms.
For the Ekofisk structural complex in the North Sea, however, this challenge
appears to have been met by employing water injection. In Arctic regions, data
are needed on the rates of ice accretion and on the velocity, yield strength,
and mass of floating ice. Reliable deterministic and statistical methods are be-
ing developed to measure and interpret time-dependent field data suitable for
predicting structural loadings.

Structural Materials

An offshore structure should have a high ratio of strength to self-weight.
For instance, for each added unit of deck weight for a tension leg platform,
an additional 1.3 units of hull weight are required for buoyancy support, and
an additional 0.65 unit of mooring pretension force is needed. In this case,
high-strength steels with high fracture toughness are being investigated for the
purpose of reducing hull weight. Hollow cylindrical steel link chains or synthetic
mooring line materials, such as Kevlar with an abrasion-resistant polyethylene
cover, are being developed to increase mooring capacity. To determine the
suitability of new, high-strength steels and composite materials in the offshore
environment, test data are being generated. These data involve measures of cor-
rosion fatigue, fracture toughness, stress corrosion cracking, and weldability for
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steels and the reliability of several types of high-strength, light-weight synthetic
rope mooring lines.

Modeling and Analysis

Once the site, the environmental load conditions, and the preliminary struc-
tural design are determined, a mathematical model of the structure is formu-
lated, and computer-aided analyses are performed to determine the overall mo-
tion, the critical stresses, and the reliability of the design. The fundamental
mechanics of fatigue and fracture were reviewed by Petroski (1984), who dis-
cussed fatigue failures that have occurred at the welded tubular joints, which
can be subjected to millions of loading cycles during a structure’s lifetime. It
is particularly important to include fatigue in the structural reliability analysis.
Novel and improved methodology for reliability assessment of offshore structural
welded joints, with applications to jackup rigs, was discussed by Etube (2001).
Computer graphics and finite element methods of structural analysis that aid
in this design process are continually being improved. Structural optimization,
least weight criteria, nonlinear dynamics, fluid-structure-soil dynamic interac-
tions, and statistical methods are being added and refined in the mathematical
models. The aims are to achieve more accurate representations for structural
dynamic behavior and improve the predictions of structural lifetimes. See Buch-
holt (1997) and Jin and Bea (2000).

Experimental Evaluations

Before a structure is installed offshore, extensive tests are made on its
component materials and also on its overall dynamic behavior using scaled-
down laboratory models with simulated environmental load conditions. Present
laboratory-scale efforts are focused on two issues: fluid-structural load inter-
actions, especially the effects of fluid vortices on structural motion; and the
mechanics of structural-soil foundation interactions.

Once installed in the field, the structure may be instrumented for a period of
time to determine whether its behavior under a variety of natural forces has been
accurately predicted by the mathematical models and analyses used in its design.
Such data are useful for future similar designs. In addition, for platforms, buoys,
and pipeline systems nearing the end of their lifetimes, frequent inspection and
maintenance are required to assure continuing performance. Improvements are
being made in the computer systems used for the retrieval, storage, and analysis
of large amounts of data from both laboratory scale and field tests of offshore
structural systems.
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Structure-Environmental
Force Interactions

James F. Wilson

This chapter has three main objectives: (1) to discuss basic ideas, limitations,
and physical laws involved in modeling complex offshore structures as single
degree of freedom systems; (2) to quantify the important environmental forces,
except for wave action, that occur offshore and show how these forces interact
with structures (discussions of wave action are in Chapters 3 and 4); and (3) to
illustrate the modeling of structural mass, stiffness, and the structural restraint
forces of guy lines and soil foundations. Emphasized in this chapter is the first
step in dynamic engineering analysis: the formulation of the structural equations
of motion. Solutions for structural motion, both deterministic and stochastic,
are presented in later chapters.

2.1 SINGLE DEGREE OF FREEDOM STRUCTURES

Before the motion of an offshore structure can be calculated, an analytical rep-
resentation is needed for the structure (or part of the structure), together with
the loadings and restraints. This representation, called the mathematical model,
has two parts: a simplified schematic diagram or free body sketch of the struc-
ture, and the associated equations of motion. The free body sketch shows a
typical dynamic position or mode shape of the structure, relative to its static
equilibrium position; it describes the necessary and sufficient independent co-
ordinates, equal in number to the degrees of freedom needed to describe motion
uniquely; and it shows as arrows four classes of generalized forces, which include
moments. These forces are: (1) self-weight; (2) externally applied environmen-
tal forces mentioned briefly in Chapter 1; (3) reaction forces (due to system
restraints) that tend to restore the structure to its static equilibrium position;
and (4) damping forces that mitigate motion. Based on the free body sketch, the
equations of motion are formulated in a straightforward manner, using either
Newton’s second law, as is done in this chapter, or Lagrange’s energy meth-
ods, as is done in Chapter 8. Although these two methods may be employed

17
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for multi-degree of freedom problems in three-dimensional physical space, the
mathematical models in this text are limited to motion in the vertical plane, a
representation that is generally adequate for a preliminary dynamic design of
offshore structures.

The simplest mathematical model has just one equation of motion, written
as a differential equation in terms of only one time-dependent scalar coordinate
which uniquely describes the structure’s position. Such a model defines a single
degree of freedom system. Assume that a structure or portion of a structure
is rigid, or nearly so, and has a wirtual mass m. Because of structure-fluid
interactions, discussed later in this chapter, virtual mass includes all or part of
the structural mass, together with some water that the structure drags with it
during motion. Assume further that m is sufficiently higher than the mass of
the system restraints (guy lines or soil foundation) that limit its motion. Let
the motion of m be restricted to a plane on which the absolute displacement
coordinate of its mass center G is v = v(¢). Let F, denote the sum of the
four types of external force components on m, in line with v and positive in the
positive v direction. In these terms, Newton’s second law states

> F,=mi (2.1)

where ¥ is the absolute acceleration of G. This equation is particularly useful in
single degree of freedom models involving rigid body translation only in which
the flexible supports restraining the motion of m are in line with v.
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Figure 2.1 Free body sketch for the spread moored ship of Figure 1.6.

Ezxample Problem 2.1. Consider the surge motion for the spread moored
ship shown in Figure 1.6. This ship is asumed to be a rigid structure for which
the motion is described solely by its horizontal displacement coordinate v = v(%)
of its mass center at G. Sway, pitch, heave, and yaw motions are neglected. The
free body sketch of the ship in the vertical plane, shown in Figure 2.1, depicts the
four types of externally applied loads: self-weight or ship displacement W, which
is balanced by its buoyant force equal in magnitude to W; the equivalent of all v-
directed, time-dependent environmental forces p(t); the equivalent v-directed
mooring line restraint force of the general form ¢(v); and the velocity-dependent
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damping force of the general form f(%). When equation {2.1) is applied in the
v direction to this free body sketch, the resulting equation for surge motion
becomes

mi + f(¥) + q(v) = pa(t) (2.2)

In the first term of equation (2.2), the virtual mass m for surge motion is about
15 percent higher than the actual ship’s mass. Quantitative values for the
remaining terms of this equation are discussed later in this chapter.

Other examples of single degree of freedom offshore structures include the
pure, plane rotational motion of buoys such as shown in Figures 1.8 and of
gravity platforms rocking in the vertical plane, such as depicted in Figure 2.2.
With all out of plane motion and translational motion supressed, the angular
displacement of these structures, modeled as rigid bodies of virtual mass m, the
angular displacement is uniquely described by the single coordinate 6 = 6(t).
Suppose that such a structure rotates about a fixed point 0 in the plane. Let
31Mj denote the sum of all external moments in the plane of motion, acting on
m, positive in the positive direction of §. These moments, which are due to the
four types of external forces discussed above, are all expressed with respect to
the same fixed point 0. In this case, the equation of motion has the general
form

> Mo = Job (2.3)

in which 6 is the absolute angular acceleration of the rigid body and Jj is the
virtual mass moment of inertia of this body with respect to the reference axis
through point 0 and perpendicular to the plane of motion. The value of Jy is
defined as

%:/ﬂml (2.4)

where r is the distance from that reference axis to the virtual mass element
dm, and the integration is over the whole rigid body. In applications it is often
convenient to express Jy in terms of Jg, or the value of Jy when the point 0
coincides with the mass center G. The connection is through the parallel axis
theorem, or

Jo=Jg + mhé (2.5)

where hg is the distance between 0 and G. Values of Jg for a variety of solids
of uniform density are listed in most elementary texts on rigid body dynamics.
For a relatively rigid structure composed of such shapes, the structure’s total Jy
value can be estimated by calculating Jy for each elementary component using
equation (2.5) and then superimposing the results.
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Figure 2.2 Monopod gravity platform in pure rotation.

Ezxample Problem 2.2. Consider the rotational motion of a rigid gravity
platform shown in Figure 2.2. This structure has an actual mass of myp, a
buoyant mass of m;, and is supported at the sea floor by a soil foundation. Let
the motion be limited to rotations 6 about the base pivot point 0. Define M,
as the net moment about point 0 due to the pressure differences across the top
of the caissons, and let F'(t) represent the net horizontal load due to currents,
winds, and waves, located at height hy above 0. Let f(f) and ¢(f) be the
respective foundation reaction moments for damping and rotational restraint.
In these terms, the application of equation (2.3) to the free body sketch of the
gravity platform of Figure 2.2 leads to the following equation of motion:

Job + f(8) + a(0) — (moghe — maghy) sinb = —F(t) ho ~ Mpe ~ (26)

In equation (2.6), Jy is based on the virtual mass of the submerged portion of the
structure. For instance, for a submerged cylinder, virtual mass is approximately
the cylinder mass plus the mass of the water displaced by the cylinder. Quan-
titative calculations for Jp and the other terms of equation (2.6) are illustrated
in Ezxample Problem 5.2.

In the last example problem, the rigid body assumption may not always be
a realistic one. The rigid body model would be entirely useless, for instance,
if the dynamic flexural stress were needed in the legs of the gravity platform.
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Nonetheless, the rigid body assumption may be warranted if only an estimate of
the overall dynamic stability of the platform-soil foundation system is needed.
Thus the choice of the mathematical model is strongly tempered by the partic-
ular goals of the analysis.

2.2 FLUID-INDUCED STRUCTURAL FORCES

There is a wealth of literature on the theory and measurement of forces on solid
bodies moving or at rest in dynamic fluid fields. An excellent critique of this
literature that extends back to the early nineteenth century and up to 1981 is
given by Sarpkaya and Isaacson (1981). The essential physical ideas and gov-
erning nondimensional loading parameters presently perceived as characterizing
these dynamic forces are now highlighted. Most of the following discussion is
limited to an isolated, fully submerged, right circular cylindrical solid for which
the incident fluid velocity is perpendicular to its longitudinal axis. In the plane
flow cases considered, shown in Figures 2.3 through 2.6, the fluid or cylinder
motion is in line with its net force per unit length, 4. The fluid is assumed
to be incompressible, and for the present, effects of nearby objects and solid
boundaries are not included. As restrictive as these assumptions may seem, the
results none the less demonstrate the basic ideas of fluid loading for a major
portion of offshore structures and their components, including pipelines, cables,
tubular structural members, and many types of submerged tanks and caissons.

Classical Inviscid Fluid Flow

One classical loading parameter is the inertia coefficient, Cas, alternatively
denoted as Cy or C;, a parameter that originated with hydrodynamics or the
theory of ideal, inviscid flow, formulated during the nineteenth and early twen-
tieth centuries (Batchelor, 2000; Lamb, 1945). This coefficient relates the force
per unit length §; that is required to hold a rigid cylinder stationary in a fluid
of uniform, constant free stream acceleration of magnitude 7. That is,

2
qr=Cu pﬂ%ﬂ (2.7)
where p is the fluid density and D is the cylinder diameter. Shown in Figure
2.3 is this case of unseparated, unsteady, ideal flow, together with values of Cys
for several ratios of cylinder length to diameter, ¢/D. These results, reported
by Wendel (1956), are based on theoretical values of another nondimensional
parameter, the added mass coefficient C4, defined by

Cu=Cny—1 (2.8)
It is observed from the theoretical data in Figure 2.3 that as the cylinder length

becomes much larger than its diameter, the value of Cys approaches the limit
of 2, for which C4 approaches unity by equation (2.8).
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Figure 2.3 A rigid, stationary cylinder in an ideal, accelerating fluid.

Consider now the case of Figure 2.4, a rigid cylinder with a mass per unit
length g, immersed in a fluid. This cylinder has an absolute translational
displacement v = wv(t) in the fluid medium that would normally be at rest,
except for the presence of the cylinder. Based on Newton’s second law of motion
and classical hydrodynamic theory, the force per unit length required to achieve
an acceleration v for the cylinder is

D2
qr = <T7L0+CA/)7F—4-)'U:TTVU (2.9)

Equation (2.9) defines the cylinder’s virtual mass per unit length, 7. Thus, m
is the sum of Mg in vacuo and the added or apparent mass per unit length,
CaprD?/4, resulting from those fluid particles that are pulled along by the
intruding cylinder.

———-—')\‘}, v.

Figure 2.4 A rigid cylinder accelerating in an ideal fluid.
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Real Viscous Fluid Flow

Measurements show that Cps and C4 are time-dependent, which is due to
fluid viscosity. There is flow separation behind the cylinder, accompanied by
differential pressure forces opposing cylinder motion. Such forces are referred
to as form drag. In applications, a root-mean-square (rms) measured average of
each coefficient Cps and Cj4 is used. If such data are lacking, it is appropriate
to choose C'4 = 1 for design purposes, provided that the geometric ratio £/D is
much greater than one.

u = const.

Figure 2.5  Viscous drag on a rigid, stationary cylinder.

Another classical loading parameter is the viscous, frictional drag coefficient,
Cp. Define gp as the force per unit length necessary to hold a fully immersed
cylinder stationary as it is subjected to a constant free stream fluid velocity, u.
In these terms, measurements show that

D
I =Cpp5 Jul u (2.10)

The use of the absolute value sign on one of the velocity terms guarantees that
gp will always oppose the direction of u, as shown in Figure 2.5. For this
flow case, the experimental relationships of Cp to two nondimensional parame-
ters, cylinder roughness, and the Reynolds number, are well known (Schlichting,
1968). Here the Reynolds number is defined by

__ puD
I

Re (2.11)

where p is the absolute viscosity of the fluid. For a smooth cylinder subjected
to this constant, uniform, free stream flow, the value of Cp is approximately
unity for Re in the range of about 1000 to 200,000.

If the cylinder were rotating about its longitudinal axis or if it were not
circular, or if other solid elements or rigid boundaries were nearby, one would
need an additional loading parameter, the lift coefficient Cr. In such cases, the
lift force per unit length, which is perpendicular to u and gp, has the same form
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as equation (2.10), where C, depends on cylinder roughness, Reynolds number,
and the proximity of objects nearby.

In a uniform flow field, both separation and periodic wakes or vortices may
form behind the stationary cylinder. This phenomenon, discussed extensively by
Blevins (1977), is depicted in Figure 2.6. The vortices behind the cylinder detach
alternately. Accompanying this is a periodic pressure fluctuation, top to bottom,
at a characteristic frequency of f,, typically expressed in units of Hz (cycles per
second). Periodic vortices or vortex sheets occur for Reynolds numbers in the
range of 60 to 10,000 and sometimes even higher. (Swimmers can observe this
phenomenon, for instance, by moving a hand downward through the water with
fingers spread and feeling a tendency for the fingers to vibrate horizontally
or side to side).The nondimensional parameter that correlates vortex-shedding
data for the flow of Figure 2.6 is the Strouhal number, defined by
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Figure 2.6  Periodic vortices trailing behind a rigid, stationary cylinder.

Generally, S correlates well with the Reynolds number. For instance, corre-
lations of S with Re showing the apparent effects on vortex-shedding frequency
of a cylinder in proximity to a twin cylinder and a ground plane are reported by
Wilson and Caldwell (1971). In some instances, vortex-induced pressure forces
on a cylindrical structure could be large enough to destroy the structure. For
instance, periodic vortices behind the cylindrical piles supporting an offshore
pier lead to a complete destruction of that pier in a tidal current of two knots.
Since vortex-induced loading is unpredictable, one generally makes provisions to
avoid periodicity of the vortices. Although many methods have been proposed
to suppress vortices (Hafen et al., 1976), a particularly practical one is the ad-
dition of helical strakes around the cylinder, as shown in Figure 2.7. Optimal
strake geometries for the least vortex-induced loads on circular cylinders were
studied by Wilson and Tinsley (1989).



FLUID-INDUCED STRUCTURAL FORCES 25

Figure 2.7 A cylinder with a helical strake to negate periodic vortices.

The last nondimensional fluid-loading parameter highlighted herein is the
Keulegan-Carpenter number, Kc, which arises when a free stream, plane, peri-
odic flow is imposed on a stationary cylinder. If neither u or % is constant, but
both are described by a single, simple, plane wave of time period T, then Kc
correlates well with the force data on the cylinder. This flow parameter is

uoT
= 20 2.1
Kc i) (2.13)

where ug is the amplitude of the wave velocity (Keulegan and Carpenter, 1958).
Conservation of Linear Momentum and Flow Superposition

For a stationary cylinder in a plane flow field with the free stream velocity
u = u(t), the total time-varying load per unit length on the cylinder may be
expressed by superimposing the two flow models described by Figures 2.3 and
2.5. Thus, by adding their respective drag and inertial loadings expressed by
equations (2.10) and (2.7), the result becomes

2

D D
g=0Cp 3 |u|w + Cum p7r—4—1l (2.14)

Equation (2.14) was first proposed by Morison and his colleagues (1950) as an
empirical result, and that equation now bears his name.
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Figure 2.8 A rigid, circular cylinder in a flow field.
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There is a theoretical basis for Morison’s equation, the general form for
which can be deduced by applying the principle of conservation of linear fluid
momentum. This conservation principle is based on Newton’s second law as
applied to the fluid occupying a fixed control volume V at any instant of time.
In this case, V is chosen as the imaginary rectangular box surrounding a disc
element of a submerged circular cylinder, as shown in Figure 2.8. Here, V =
D?Az, where D is the disc diameter and Az is the disc height. For water of
density p and with a horizontal velocity u along z, the net horizontal shear load
X F, on the disc is given by

> F :é/pudV—f—/ pu - udAg (2.15)
3t v Ao
where dV is an element of the control volume and dAy is the element of area
on the surface of the control volume perpendicular to the flow. The reader is
referred to a standard text such as Munson et al. (1998) for a general derivation
of equation (2.15).

The terms of equation (2.15) are now evaluated. First, LF, = —§Az where
q is the loading per unit length. The negative sign is chosen since the net shear
reaction load must oppose the direction of flow. The first integral on the right
is approximated by

9 / pudV ~ —pD? Az i (2.16a)
ot Jy

The negative sign is chosen since the fluid decelerates inside the control volume
surrounding the rigid disc. The remaining integral represents the net momentum
flux along x, or the difference between the out-flowing momentum and the in-
flowing momentum through area A9 = D Az. Thus

/ pu-udA():/ pu-udAo—/pu-udAO:O—pu-lu}DAz (2.16Db)
net out n

where |u] is the absolute value of u and is used to preserve the sign of . When
u reverses direction, so does §. With equations (2.16), equation (2.15) becomes

G~ pDulu| + pD%3 (2.17)

To correlate equation (2.17) with experimental results, the coefficients Cp/2
and Cps/4 are inserted as multiples of the two respective terms on the right
side of equation (2.17), a result that then agrees with Morison’s form, equation
(2.14).

According to the database summarized in Chapter 4, Cp and Cjs both have
a range from 0.4 to 2.0. However, based on a multitude of experiments compiled
by the British Ship Research Association (1976) and by Sarpkaya and Isaacson
(1981), it is quite apparent that Cp and C)s are not simple constants. In the
case of an imposed periodic plane flow such as offshore waves of period T, if the
root-mean-square (rms) value is chosen for each over a time that is sufficiently
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large compared to T, then data show that Cp and Cjs are functions of three
parameters, expressed as

Cp = Cp(Re, Kc, cylinder roughness) (2.18a)

Cum = Cum(Re, Kc, cylinder roughness) (2.18b)

Further, Sarpkaya (1976) proposed that a frequency parameter 3 replace Re in
those relationships, where

Re pD?
== — 2.19
B=1x T (2.19)
Cp = Cp(8, Kc, cylinder roughness) (2.20a)
Cym = Cum(8, Ke, cylinder roughness) (2.20b)

The main advantage of Sarpkaya’s forms is that ug, the free stream amplitude of
the periodic velocity, then appears only once in each function of equations (2.20),
instead of twice in each function of equations (2.18). For periodic flows, this
alternative gives efficient correlations of measured cylinder forces with Cp and
Chs. Among the phenomena neglected in both of these functional relationships
are cavitation, fluid compressibility, three-dimensional flow, proximity effects,
and all movement of the cylinder. In the following example problem, Morison’s
equation is modified to account for one of these neglected factors: the lateral
vibrations of the cylinder.

-V

d
/
1 q -— ——
\ 2y kv

\
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u u STATIC FREE BODY
EQUILIBRIUM SKETCH

Figure 2.9 Cylinder model used to characterize fluid-structure interactions.

Ezxample Problem 2.3.  Consider fluid-solid interactions for the vibrating
cylinder based on the single degree of freedom model shown in Figure 2.9. The
cylinder is modeled as a rigid body with an elastic restraint of stiffness k per
unit length and with a linear viscous structural damping constant of ¢ per unit
length. This cylinder is an approximate model of a flexible, tubular cross-
member of an offshore platform whose legs provide the cylinder’s end restraint.
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The free stream horizontal flow velocity v = u(¢) is in line with the cylinder’s
translational motion v = v(t). As shown on its free body sketch, the restraint
and damping forces per unit length that oppose the cylinder motion are kv and
¢v, respectively. The virtual mass per unit length, '/, is deduced from equation
(2.9). The fluid loading per unit length is given by equation (2.14), modified so
that the drag force is based on the relative velocity (v — ©) between the fluid
and the cylinder. When Newton’s second law, equation (2.1), is applied to this
cylinder, the equation of motion becomes

D? . D D?
(ﬁzo +C4 p7r—4—) b+ 0+ kv = CDp—z—]u —0l(u—0)+Cup pr— U (2.21)

The term involving Cps results from fluid motion only, such as wave action,
where 4 is the absolute acceleration of the fluid.

Equation (2.21) is nonlinear as a consequence of the drag force term. Berge
and Penzien (1974) linearized this equation for small motion, or

Cp = Cp |u— | ~ constant (2.22)

With this assumption, equation (2.21) becomes
_ D?\ . _ , DY . - , D D?
m0+CAp7r—4— v+ c+CDp§ v+kv:CDp§u+CMp7r—Z—u (2.23)

Equation (2.23) clearly shows that the damping of a moving cylinder is increased
due to the fluid drag force, a force that in general overwhelms the internal
structural damping €. The conclusion holds true for its nonlinear counterpart
also, equation (2.21).

Thus, to solve equation (2.21) or (2.23) for the structural displacement
v = v(t), one needs to know four structural parameters: mg, D, ¢ and k;
the fluid density p; the free stream flow field v = u(¢); and the three empirical
constants C 4, Cp and C)y. In subsequent examples, k and ¢ will be estimated for
particular cases, and the dependency of the latter three empirical constants on
offshore waves will be discussed in greater detail. Other environmental factors
affecting the motion of offshore structures are now quantified.

Buoyancy and Gravity

It is well known that a solid object can be lifted much more easily when
in water than in air. This is because the water pressure exerts an upward or
buoyant force on the submerged solid. The Greek mathematician Archimedes
(287-212 B.C.) stated this principle in precise terms:

A solid body partially submerged in o fluid is buoyed up by a force
mpg equal to the weight of the fluid displaced. (my, is the mass of the

fluid displaced.)
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Figure 2.10  Cross section of a ship showing buoyant and gravitational forces.

For example, consider the ship shown in Figure 2.10 which has an actual
weight (in air at sea level) of mgg. The volume of water that the ship displaces
is V and the weight density of the water is denoted by =,,. The result of applying
Archimedes principle to this system is

Mpg = ¥y, V = Mog (2.24)

This buoyant force 7,V acts at point B on the ship, in a vertical direction
opposite to that of the resultant gravitational force mgg. The latter force acts
at the ship’s center of gravity. Thus, a ship’s actual weight is generally referred
to as its displacement.

In general, point B is not coincident with point G of the solid body. In
precise terms:

If the displaced fluid is of constant density, B is located at the cen-
troid of the displaced fluid volume V.

This statement can be proved in general for solid body of arbitrary shape (Batch-
elor, 2000). Its validity can be simply illustrated for the following special case
of a solid, prismatic block partially submerged in water. Refer now to the se-
quence of illustrations (a) through (f) in Figure 2.11. Suppose that the solid
block (a) is removed from the water and then replaced by pressure forces around
the void of volume V so that the water remains undisturbed (b). The pressure
distribution, shown as “gage” pressure, is constant on any horizontal plane and
varies linearly with depth. The pressure distribution on the solid block (c) is
identical to that on the void. In fact this identical pressure distribution would
also occur on a water block (d) of volume V which would just fill the same void.
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Figure 2.11  Tllustration of Archimedes’s principle.

To maintain static equilibrium of this water block, two conditions must be
met. First, the force of the water block in (d), or mpg which acts at B, the
centroid of V, must be balanced by its net pressure forces along its horizontal
boundaries. Since the pressure forces on the vertical boundaries balance, they
are of no consequence in this problem. Second, the resultant of the boundary
pressure forces must pass through B to avoid rotation of the water block. Since
the solid block (e) and the water block (f) have identical boundary pressure
distributions, the buoyant force myg acts at B on the solid block also.

Ezample Problem 2.4. Consider a gravity platform partially submerged in
soft mud, as shown in Figure 2.12. Here the buoyant force of air may be ne-
glected because the gravitational force mgg is defined as the structure’s weight
in air. Assume that the water-saturated mud layer behaves as a liquid of approx-
imately constant density «,, and thus contributes to the structure’s buoyancy.
Liquefaction of the mud foundations of gravity platforms can occur during a
storm due to caisson vibrations and repeated shear stress reversals at the soil-
caisson interface (Graff and Chen, 1981). This leads to a gradual increase in
pore water pressure which reduces the shear strength of the mud foundation,
causing the foundation to behave as a liquid.
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A

Figure 2.12 A gravity platform partially submerged in a mud layer or in liquefied
soil.

The three buoyant forces on this platform are: (1) a buoyant force due to
the mud of +,,, V,,, which is located at a distance of h,, from the base and acts
upward at the centroid of the displaced mud volume V,,; (2) a buoyant force
for the portion of the caisson in water of v,,V, , which is located at k. from the
base and acts upward at the centroid of its displaced water volume V,; and (3)
a buoyant force on the submerged portion of each leg of v, V,, which is located
at hy from the base and acts at the centroid of its displaced water volume of
Ve. If the structure has N identical legs, the total buoyant force mgyg and its
statically equivalent location hp on the structure are, respectively

MpG = Y Vin + Yoo Ve + NV ¥, Ve (2.25)

1
hy = — (hm’yme + hcfwac + N hg’wag) (2.26)
myg

Here, hyis located on the vertical centerline of the upright structure, where
the identical legs are symmetrically placed with respect to this axis. However,
that if the structure is tipped at angle 6, the resultant buoyant force retains
its same magnitude for all practical purposes, but its location shifts to an off-
center position, from B to B’. The location of B’ relative to the mass center G
determines the static stability of the whole structure, as the following example
problem demonstrates.
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(a) STABLE (b) STABLE (c) UNSTABLE

Figure 2.13  Static stability of three gravity platforms supported by a liquefied soil
foundation.

Ezample Problem 2.5. Consider now the stability of the monopod gravity
platforms shown in Figure 2.13, as they rock in plane motion on the liquified
mud foundation. Assume that the rocking motions are very slow so that the
structures’ inertias can be neglected, for which mpg ~ mog. If B and also B’
remain always above G as a monopod tips to a small angle 8, the structure
will return to vertical equilibrium (6 = 0). This configuration, shown in Figure
2.13(a), is stable because the resultant buoyant force and gravity force produce
a couple opposite to the direction of rotation. The restoring moment imposed
by the liquified mud foundation would be relatively insignificant in this case.
If the design is such that B and B’ remain below G, the structure may still be
stable, but only if the metacenter M is above G. The metacenter is the point of
intersection of the vertical line through B’ with the original centerline, as shown
in Figure 2.13(b). When M is above G, the floating structure is dynamically
stable because the restoring, gravity-produced couple is in a direction that will
reduce 6. If, however, M is below G, as shown in Figure 2.13(c), then the couple
due to the buoyancy and gravity forces will increase 8, and the structure will
topple in the absence of the restoring forces of the foundation.

The qualitative analysis presented in the last example problem is analogous
to the elementary static stability analysis of ships and other floating objects as
presented, for instance, by Munson et al. (1998). In practice, a more thorough
analysis of structural stability is needed, which is accomplished by studying the
differential equations describing structural motion. Such dynamic analyses will
be illustrated in the forthcoming chapters.
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Winds and Currents

For a typical fixed-bottom offshore platform, the static drag force due to
wind on the superstructure amounts to about 15 percent of the total force on
the structure (Muga and Wilson, 1970), and often accounts for about 25 percent
of the total overturning moment (Graff, 1981). The wind-induced overturning
moment increases linearly with the height of the structure, and thus, as these
structures are built in deeper and deeper water, the effects of wind drag then
become increasingly significant in design.

A measure of wind velocity is needed to predict both wind loading on the
superstructure and to predict the magnitude of the wind-generated wave forces
on the submerged portion of the structure. A windstorm is often described as
airflow with a mean or steady velocity #%(z), with a superimposed fluctuating
velocity. Here z is the height above the still water level. Gould and Abu-Sitta
(1980) point out that the averaging period of one hour has been used in Europe
and Canada in presenting data for @(z) = @(h), for a reference height of either
z = h=30 ft or 10 m. Gaythwaite (1981) states that in Great Britain values
of u(h) chosen for structural design have traditionally been averaged over only
one minute. In the United States, however, the concept of the fastest mile of
wind speed is used to define @(h). That is, measures are made of wind velocity
during the time it takes for a mile of air to pass a fixed point, and the annual
extreme condition is used as the reference value. Sachs (1972) and Simiu (1976)
discuss methods of converting such data to a mean velocity. Gaythwaite (1981)
suggests that all but temporary marine structures should be designed using the
mean, fastest mile of wind speed associated with return periods of 50 to 100
years.

Once a(h) is established for a particular offshore site, the mean horizontal
wind velocity at height z above the sea surface is

(z) = (%)” " a(h) (2.27)

The exponent n depends on many factors. For instance, n = 3 fits data for
rough coastal areas; n = 7 to 8 for sustained winds over an unobstructed sea;
and n = 12 to 13 for gusts. At heights of 100 ft or more above the surfaces,
the vertical gust-velocity becomes about the same as its horizontal value. Wind
data @(h) and further discussions of equation (2.27) are given by Muga and
Wilson (1970), Sherlock (1953), Simiu and Scanlan (1978), and Vellozzi and
Cohen (1968).

On a member of the superstructure which is nine or more diameters removed
from neighboring structural elements, & = @(z) calculated from equation (2.27)
can be used with equation (2.10) to estimate wind drag force, where Cp is based
both on Reynolds number and on the cross-sectional shape of the member.
Values of Cp for common shapes are readily available (Hoerner, 1965, and
Pattison et al., 1977).

For a truss structure in wind, the sum of the drag forces on each individual
member may give a low estimate of the total drag force. This effect, called
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solidification, modifies the drag coefficient as follows:

Cp=18p, for 0<p <06 (2.28a)

Cp=2, for ¢>06 (2.28b)
where the solidity ratio ¢ is given by

projected area of truss members only

¢ = (2.29)

projected area of the enclosed solid
Here the projected area is in a plane normal to the prevailing direction of the
wind.

For members of the superstructure closer than nine diameters, shielding ef-
fects (sometimes referred to as sheltering) are apparent. For instance, a cylinder
just behind a lead cylinder facing the wind experiences a considerable drop in
drag force, and sometimes a negative drag force at close spacings. Wind tunnel
data for the shielding of cylinders are reported by Pagon (1934) and Wilson and
Caldwell (1971). Numerous references to calculated results based on classical
hydrodynamics are discussed by Muga and Wilson (1970). Values of shielding
factors varying from 0 to 1.0 and useful for design purposes are recommended by
Graff (1981). To obtain the drag force for a shielded component, the shielding
factor is multiplied by the static drag force of its unshielded counterpart.

In addition to these static loads, the dynamic effects of wind on offshore
structures should be considered also. For instance, for a moored structure whose
fundamental period in free oscillation is close to the period of wind gusts, the
dynamic deflection of the structure could become significant. However, for a
truss structure with fixed legs, the overall dynamic response due to gusts alone
are generally insignificant. This is because the time lag between gust arrival
at the leading edges and its arrival on the downstream portions of the open
structure tends to minimize the overall loading. Static loading of individual
members to gusts could be significant since wind gust speeds may be quite
high. For instance, a value of 120 knots is often used for the design of structures
in the North Sea, a value about 1.4 times the steady or sustained wind speed
%(z) at a height of 30 m (Graff, 1981).

On the other hand, adverse vibrations of a structural component may arise in
steady winds due to vortex shedding, if these vortex frequencies are in tune or in
resonance with a free vibration frequency of a structural member. This may lead
to large displacements or flutter of platelike members and to galloping beam and
cable components. As discussed earlier in this chapter, helical strakes or other
spoilers can be used to eliminate periodic vortices on tubular members. Vortex-
induced resonance is further discussed by Blevins (1977), Gould and Abu-Sitta
(1980), and Simiu and Scanlan (1978). Extended discussions concerning the
physical basis for both wind and ocean currents are given in the classical treatise
of Neumann and Pierson (1966).

In his summary of ocean currents, Gaythwaite (1981) indicates that tidal cur-
rents and wind-stress currents are the two most relevant ones in the structural
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design of floating and fixed structures. Offshore tidal currents, or the horizontal
water flow due to the vertical rise and fall of tides, often attain a maximum
velocity of 1 to 2 knots and may even reach 10 knots in some locations. Tidal
currents are higher in the spring than in any other time of the year. Data on
tidal currents for many offshore locations on the coasts of the United States and
Asia are published annually by the National Oceanic and Atmospheric Admin-
istration, U.S. Department of Commerce. Data for the tidal current u,(z) as a
function of water depth z generally follows a power law similar to that for wind,
equation (2.27). That is

z

1/7
ue(z) = (1 + 3) " we(0) (2.30)
where d is the total water depth, z is the coordinate of the tidal velocity (a
negative number measured downward from the sea surface), u;(0) is the tidal
velocity at the surface z = 0, and u;(—d) = 0 at the seafloor.

The other important current is u,,(z), the current generated by a sustained
wind blowing over the sea surface. The velocity profile of this wind-stress current
is approximated as linear with depth, with a maximum value u,,(0) at the sea
surface, where u,,(—d) = 0 at the seafloor. That is

wa(2) = (1+ 2) 2,(0) (2.31)
The magnitude of u,,(2) is generally about 1 to 5 percent of the sustained wind
speed.

In the absence of vortex shedding, the steady-state drag force per unit length
at the depth location z of a stationary, submerged, tubular member can be
calculated from equation (2.10) in which the effective fluid velocity u is the sum
of the two current velocities given by the last two equations, and the horizontal
wave particle velocity, %yqve, is discussed in Chapter 3. That is,

2\ /7 z
U= (1 + E) u(0) + (1 -+ 3) Uy (0) + Uwave (2.32)
With the design values for u;(0), u,(0), and wyaye, and with a knowledge of the
geometry for all the structure’s tubular members whose longitudinal axes are
perpendicular to u, the total horizontal drag force from those tubular members
of the structure is obtained by using equation (2.32) with equation (2.10) and
integrating the result over those tubular members.

Currents do affect structural integrity in other ways. Current-induced scour-
ing, for instance, can undermine pile-supported jacket template platforms and
gravity platforms by erroding surrounding sand and soil. Currents carry ice that
can impact and damage structures. High currents accelerate the corrosion rate
of submerged metal structures. Currents also modify waves and wave loading
of structures (Tung, 1974). Except for the impact of ice, which is discussed
briefly in the next section, these environmental hazards to offshore structures
are subjects that are beyond the scope of this book.
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2.3 EARTHQUAKES, ICE IMPACT, AND WAVE SLAMMING

Earthquake Forces

The engineer who is designing jacket-template or gravity platforms which
will resist marine seismic disturbances finds that records of strong ground earth-
quake motion on the sea floor are generally nonexistent in locations where such
structures are contemplated (Page, 1975). The needed data are the time histo-
ries of velocity or acceleration of the sea floor, in both the vertical and horizontal
directions. With such data, the engineer can calculate the structural dynamic
responses, estimate seismic damage, and evaluate the possibilities of structural
survival (Bea et al., 1979).

Lacking the needed data and faced with the need to design offshore platforms
in the earthquake-prone Gulf of Alaska, Wiggins et al. (1976) rationalized the
use of California seismic records as a first approximation to the phenomena
expected in the Alaskan Gulf. Wiggins et al. compared various measured values
for focal depths, which are locations below the earth’s surface where strong
earthquakes have originated. This average depth below ground level is 16 km for
California. earthquakes and 26.5 km for the severe 1964 shocks in Alaska. Since
ground motion attenuates rapidly with the distance from the focus, ground level
motion should be less in Alaska than in California, given earthquakes of equal
intensity and assuming identical soil characteristics. Based on this argument,
the engineer can employ California earthquake data in the design of Alaskan
offshore structures.
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Figure 2.14 Accelerogram for the El Centro earthquake, south east component,
May 18, 1940.
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A typical earthquake-induced ground acceleration time history, which is
sometimes used as input to the base of a structure to evaluate its earthquake
resistance, is shown in Figure 2.14. Here the horizontal ground acceleration @,
is expressed as a multiple of g, the acceleration due to gravity. The instanta-
neous upper bound on this acceleration is approximately 0.3g. For the largest
California earthquakes on firm, deep alluvium, the total time for destructive
shaking is about 45 seconds. The following example illustrates how such data
can be used as a driving force for a simple model of an offshore structure.
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Figure 2.15 Offshore structural model with horizontal sea floor motion (an
earthquake).

Ezample Problem 2.6. A single degree of freedom model of a jacket-template
structure is shown in Figure 2.15. The motion of the deck relative to the sea floor
is v = v(t) and this motion is assumed to be in the horizontal direction. The
time history of motion for an earthquake at the sea floor is given as vy = vy(t),
and this motion is assumed to be in the horizontal direction also. The equivalent
virtual mass, leg stiffness, and fluid-structural damping constants are m, ky,and
c1, respectively, and are depicted on the simple damped, spring-mass model of
this structure and on its free body sketch in Figure 2.15. (Methods for calcu-
lating m, k1, and ¢y for particular structures are considered in the next section
and in Chapter 5). The total or absolute values for the deck displacement and
its absolute acceleration are, respectively:

v =V + v, (2.33)

By =D+ (2.34)
g

The restoring forces due to structural stiffness and damping depend only on
the relative displacement v and the relative velocity . Thus, when Newton’s
second law of motion is applied to the spring-mass model, the equation of motion
becomes

miy + 10+ kv =0 (2.35)
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Substituting 9; from equation (2.34 ) into (2.35), the result is
mi + 10 + kv = —mi, (2.36)

In this structural model, the excitation force p;(t) is identified as the horizontal
ground acceleration of magnitude —mi,. In using this model to compute the
structural responses v = v(t) to typical earthquake motion, which will be done
in Chapter 5, the negative sign on the right side of equation (2.36) is of no
consequence and is generally ignored.

Base shaking of an offshore structure is just one of several types of seismic-
induced ground motions (Hudson, 1970). For instance, piles may shift or the
structure’s foundation may be undermined and fail due to fault displacements
or large-scale mud slides. Such large-scale earth motions occur over a period
of time which is relatively long compared to the natural period of an offshore
structure. Thus these earth motions are essentially static as far as the structure
is concerned and are not a part of a structural dynamic analysis.

There is a vast amount of literature describing the geological nature of earth-
quakes and the effects of soil and rock strata on structural response, including
linear and nonlinear effects. For such information the reader may consult the
following classical works: the book edited by Wiegel (1970); the concise pre-
sentation of the seismic phenomenon, including the deterministic and statistical
analyses of structural responses, by Gould and Abu-Sitta (1980); and the com-
pilations of references pertinent to earthquake engineering of offshore structures
by Bea et al. (1979) and Marshall (1981).

Ice Impact Forces

Ice is a hazard to fixed offshore structures which are located in polar seas
such as the Gulf of Alaska. Gaythwaite (1981) summarized ice hazards and
ways to minimize associated structural damage. Current field studies about ice
are published yearly in the Proceedings of the Offshore Technology Conference,
Houston, Texas.

To analyze for the impact hazard, it is necessary to know ice speed, size,
and material properties. Drifting ice travels at speeds from 1 to 7 percent of
the wind speed. A typical ice island in Cook Inlet, Alaska, for instance, may
be 1 km in diameter, 1 m thick, and travel with a speed of 3 knots. In general,
the ratio of the height of a drifting ice block above water to that below is about
1:2; but may vary from 1:1 up to 1:7. With the usual concentrations of NasS0y,
sea ice has a compressive or rupture strength from 200 to 400 psi, but this does
vary with salt concentration and the rate of impact loading (Peyton, 1968).
The American Petroleum Institute (1979, 1997) has recommended the following
formula for calculating the horizontal force, Fj, on structures subjected to the
impact of ice:

Fh - Cz Tei A() (237)

Here C; is a coefficient in the range of 0.3 to 0.7 which accounts for loading rate;
0.; is the compressive strength or rupture stress for the ice; and Ay is the area
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of the structure exposed to the impacting ice. An example of a structure that
tolerates impacting ice is a concrete gravity platform with one wide-based, cone-
shaped leg (Bercha and Stenning, 1979). This leg geometry leads to effective
stress rupturing of the impacting ice with minimal damage to the structure.

Besides the impact of floating ice, there are other ice hazards to a structure
in the polar seas. Most of these hazards are well understood and can be min-
imized by careful structural design. For instance, one of these hazards is the
uplift force on the deck due to the buoyancy of accumulated ice attached to
the structure around the water line. (Note that the specific gravity of sea ice
ranges from 0.89 to 0.92). Although this uplift force may be offset by added
gravity loads on the superstructure due to ice accumulation there, this accretion
also increases wind loads because of the increased exposed area. Further, ice
accumulation on the legs increases wave and current loads for the same reason.
Ice also causes abrasion in various forms. Cyclic freezing and thawing leads
to cracking and spalling of offshore concrete structures, phenomena common in
our highways. This is usually due to the expansion of freezing water in cracks,
pores, or capillary cavities. Some of this entrained water is the excess required
for hydration of the cement and may be minimized by careful choice of the mix
ingredients.

Using a fracture mechanics approach, the quasi-static penetration and frac-
ture of floating ice plates was investigated by Bazant and Kim (1998). Related
studies were reported by DeFranco and Dempsey (1994). These ideas are be-
ginning to be applied to the design of offshore structures in arctic regions, to
mitigate their vulnerability to the multiple hazards of ice.

Wave Slamming Forces

Although general descriptions of offshore waves and their associated loadings
of structures are considered in Chapters 3 and 4, wave slamming is an important
enough hazard that it is now considered separately. Unlike the steady wave train
models addressed in Chapters 3 and 6, slamming refers to the impact of a single,
occasional wave with a particularly high amplitude of energy. Sarpkaya and
Isaacson (1981) reviewed the classical research on the slamming of water against
circular cylinders, of which the work of Miller (1977, 1980) seems particularly
applicable. Based on water-tank experiments, Miller found that the peak wave
slamming force on a rigidly held, horizontal, circular cylinder is correlated by
the following equation:

Fy= %CspDéu2 (2.38)
Here, the coeflicient C; is in the range of 3.5 to 3.6; D and ¢ are the cylinder
diameter and length, and p and u are the water mass density and the peak
horizontal water particle velocity, respectively. If the cylinder is not rigid but
a flexible, elastic body (a tubular brace of a jacket-template platform, for in-
stance), then Sarpkaya and Isaacson (1981) recommend the following procedure
for computing the cylinder load: let Cs = 3.2 and then multiply the resulting
force calculated from equation (2.38) by the force-impact magnification factor
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calculated through a dynamic response analysis. Magnification factors will be
discussed in chapter 5. The alternative is to use C; = 5.5 if no dynamic response
analysis is made for the flexible cylinder.

Wave slamming on an offshore structure in which the waves are underneath
the deck and in the vertical direction, can be a further design consideration. One
way to calculate the resulting sudden uplift force on the deck is to use equation
(2.38) in which u is the vertical wave particle velocity and the product D¢ is
replaced by the deck’s area of impact. However, further research is still needed
to determine the range of the fluid coefficient C; for this particular type of wave
impact. For a detailed analysis of wave forces on decks of offshore platforms,
see Bea, et al. (1999).

2.4 STRUCTURAL MASS, DAMPING, AND RESTRAINT

Structural Mass and Stiffness

The following two example problems illustrate the modeling of single and
multiple beams as a point mass located by the single coordinate v = v(t).
Classical beam theory gives the bending stiffness as k; = CEI/ ¢3. For a single
beam, EI is the flexural stiffness, £ is the length, and C is a constant that
depends on the end fixity of the beam (C = 3 for a cantilevered beam with
full fixity at the base and no moment at its tip). For a tubular beam with an
outside diameter D and an inside diameter D;, then I = w(D* — D%)/64.

Ezxample Problem 2.7. Consider the horizontal motion of a tubular cross
brace welded to the relatively rigid and stationary legs of a jacket platform.
This structural element, defined in Figure 2.16a, has full fixity at its ends and
is subjected to the uniform horizontal load per unit length G, given by the right
side of equation (2.23). The total horizontal load, modeled as a single point
load at midspan, is £ = p,(¢), or

DZ
pi(t) =Ch pﬁ—g—u +Cp p€7r—4—'il (2.39)

The dominant mode of motion #%(x) is shown by the broken lines of Figure
2.16b. The midspan coordinate is v = v(¢), which locates the lumped, virtual
mass m of the massless cross brace of bending stiffness E'I, as shown in Figure
2.16c. The virtual mass is deduced from equation (2.23), or

D2
m= (ﬁlo—f—CAp?TT) fit (240)

in which 7ng is the actual mass per unit length. Note that f; = 1 gives an upper
bound for m, but this is a bad choice since it is obvious that all of the mass
along the length does not have the same displacement as that of the lumped
mass. In Chapter 5, Ezample Problem 5.3, it is shown that f; = 0.370 for this
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structural element. The bending stiffness of the brace is derived from elementary
beam theory and is

EI
b= 1922 (2.41)

Here, k; can be interpreted as the lateral force that, when applied to the
midspan, will produce a static deflection of v = 1 at midspan. The structure-
fluid damping is assumed to be linear-viscous which, referring to equation (2.23),
has the following form:

D

g =¢l+ Cppt 5 (2.42)
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Figure 2.16  Model of a tubular cross brace of an offshore structure.

In summary, the tubular brace of Figure 2.16a is modeled as the damped
spring-mass, single degree of freedom system depicted in Figure 2.16d. The
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forces on m are shown on the free body sketch in Figure 2.16e, from which the
equation of motion is deduced as

mv + 10 + klv =DM (t) (243)

Here, since p; (¢) is all lumped at midspan instead of being uniformly distributed,
the solution v = v(t) to equation (2.43) will be on the high side. This particular
mathematical model is thus a conservative one. Needed for p; (¢) are the explicit
forms for the flow field u = u(t) and its associated constants Cp and Cy, topics
that are deferred to Chapters 3 and 4.
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Figure 2.17 Model of a jackup drilling rig.

Ezample Problem 2.8. Consider the horizontal motion of the jackup drilling
rig for which a simplified diagram is shown in Figure 2.17a. This structure has
three identical tubular legs {(only two are shown). These legs have full end fixity
in that they are clamped at the mat or mudline and also at the deck level. Of the
three types of environmental loading, wind, wave, and current, assume that the
wave loading dominates. Apply the total wave load as a horizontal load p; (¢)
acting at the deck level. Since cross braces are absent, the overall leg bending
stiffness is three times that for a single leg, or 3EI. Assume that the amplitude
of the dominant dynamic deflection mode ¥ (z) of the legs follows the broken
lines shown in Figure 2.17b, a shape that is consistent with the deck loading and
the structural restraints. For simplicity, approximate the deck motion v = v()
as translational only, in which the deck’s vertical drop, Ah, is always negligibly
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small by comparison to v. Now lump a fraction fy of the virtual mass of all three
flexible legs with the rigid deck mass, mg4. From the coefficient of ¢ in equation
{2.23), the equivalent virtual mass for this structural system is deduced as

m =3 (o + Ca p7D?) frd + 3mo(t ~ d)f1 + ma (2.44)

in which g is the actual mass per unit length of a single leg, d is the water
depth, and (¢ — d) is the length of a leg between the still water line and the
bottom of the deck. { Example Problem 5.4 will show that f; = 0.375.) Assume
that structural damping is mainly produced by the submerged portions of the
legs. From the coeflicient of % in equation (2.23), the damping coefficient is
deduced as

¢y = 3ad+ 3Cp dg (2.45)

From classical beam theory, the restoring force constant is calculated as

k= 36% (2.46)
which is the magnitude of the horizontal force at deck level that produces a unit
deflection (v = 1) at that point. (For a single leg, k; = 12EI /£3 ). The value
of k1 given by equation (2.46) is an upper bound value for two reasons. First,
this stiffness is decreased as the full fixity conditions on the legs are relaxed
at the mud line or at the deck. Second, this leg stiffness is also reduced as the
magnitude of the deck load approaches the Euler buckling load for this structure,
an effect that will be explored in a subsequent example problem.

In summary, the jackup drilling rig of Figure 2.17a and Figure 2.17b is
modeled as a single degree of freedom system whose free body sketch is shown
in Figure 2.17c. When Newton’s second law is applied to the equivalent virtual
mass in this latter sketch, the governing equation (2.43) is obtained. With the
respective values of m, ¢1, and k; given by equations (2.44), (2.45), and (2.46),
the explicit form of equation (2.43) becomes

[md +3 (mo +Cy pZ—DZ) frd + 3mo(€ — d) flJ B

+ <3Ed + ng pdD) v+ 36% v =pi(t) (2.47)

The modeling of p,(t) its deferred to later chapters.

Cable Restraints

Cables or guy lines are employed to restrain the motion for several types of
offshore structures. The simplest cable configuration is the vertical one used
to restrain floating, tension leg platforms such as in Figure 1.1e. In addition,
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there are two classes of flexible mooring systems in which stationary guy lines
hang as catenary curves from the structures to the sea floor. The first is the
single line that constrains a vessel or buoy. The second is the multi-line system
that constrains vessels, semisubmersible platforms, and compliant towers. The
lines in present use are ropes of metallic wire or of synthetic fiber such as
nylon, Dacron, or Kevlar; and steel chains with solid or hollow links. Practical
aspects of guy line design are discussed in the U.S. Navy publication NAVFAC
DM-26 (1968), in the four papers by Childers (1973-1975), and in the work of
Niedzwecki and Casarella (1975). These references include analyses of multi-
line systems with inextensible or nonstretching lines. Refined analyses which
include clumped weights and additional anchors along the cables, as well as the
effects of elastic cable stretching, are presented by Adrezin et al. (1996), Ansari
(1980), and Wilson and Orgill (1984).

For a taut cable with negligible sag, the longitudinal extension ¢ depends
on both the applied longitudinal force F, and the material properties of the
cable. For instance, Wilson (1959) used the following power law to correlate the
load-extension behavior of both steel wire and synthetic fiber line employed in
mooring ships:

F, = Cob" (2.48)

Here, Cy and n are constants depending on the material, its length, and its
cross-sectional area. If the deflections are sufficiently small, n = 1 and the
force-deflection relationship based on elementary theory is given by

F= éOZ—Eﬁa = b (2.49)

where Ag is the cross-sectional area, ¢ is the length, and F, is the equivalent
Young’s modulus for longitudinal extension of the line. In this case, equation
(2.49) defines the longitudinal stiffness constant k; = AoE. /<.

A more convenient form of equation (2.48), which also includes equation
(2.49) and approximately represents the behavior of an assembly of taut cables
tied to a common point whose deflection is § under load F,, is

Fo=k16+ kol6| 6 + ks&® + - - (2.50)

where ky, ko, ... define the stiffness. The absolute value sign on each even-order
term in 6 forces F, to be antisymmetrical about § = 0, assuring that the restraint
stiffness is the same for loading and unloading. Example problems will show
that the approximation of equation (2.50) facilitates the dynamic analysis of
offshore structures with both extensible and inextensible supporting cables.

One should keep in mind that equations (2.48)-(2.50) apply only when cable
dynamics can be neglected; that is, in cases where the fundamental cable fre-
quency in both longitudinal and transverse vibration is much higher than the
free vibration frequency of the structure that it restrains. In applications, this
frequency criterion should always be checked. Methods to calculate the struc-
tural frequency for single degree of freedom systems are given in Chapter 5; and
methods to calculate cable frequencies are discussed in Chapter 10.
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The catenary is the curve formed by suspending a uniform cable of zero
bending stiffness between two points. Classical theory for the static catenary
shape forms the basis for an upper bound calculation on the restraint stiffness
for cablestayed offshore structures. In this theory, longitudinal cable extension
is neglected, as are the effects of cable dynamics. Consider the cable segment of
length ¢ and of weight (in the water) of w per unit length, as shown in Figure
2.18. Since the bending stiffness EI is zero, such a cable achieves its stiffness
only through a change in shape as the tension forces Fy and F are changed at
each end. Classical theory leads to the equation of the catenary curve and the
relationships amoung the system variables (¢, w, Fy, F, 80, 8), which in turn are
used to compute the structural cable restraints. This analysis is surnmarized.

Figure 2.18  Freely hanging cable segment in static equilibrium.

The governing differential equation for the catenary segment, expressed in
terms of the (z, z) coordinates defined in Figure 2.18, is

1/2
d?z  w dz\?

where F; is the horizontal component of the tension force. Since the cable’s
bending stiffness is neglected, the resultant end tensions Fy and F are in a
direction tangent to the catenary curve. For static equilibrium, then, the hori-
zontal component of tension remains unchanged, or

F, = Fycosfp = Fcosh (2.52)
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For vertical equilibrium of this segment, it follows that
Fsinf — Fysinfg = wf (2.53)

in which ¢ is the length of the segment, given by

2o\ 2 1/2
0= / [1 + (—z> ] (2.54)
z dx
A closed form solution to equation (2.51), or the (z,y) coordinates of the cate-
nary curve, is

z= £ sinh™! (% + tan 00> _ L sinh™! (tan 6) (2.55a)
w Fy w

z= £ cosh [Eﬁf + sinh ™! (tan 90)] S cosh [sinh*l(tan 90)] (2.55Db)
w F, w

Equations (2.53) can be used to describe the static shapes of guy lines formed
of multiple uniform segments placed end-to-end in which the segments have dif-
ferent geometric and material properties. In such configurations, compatibility
of both slope and tension force at the junction of each adjacent segment needs
to be maintained (Ansari, 1980). The following example problem illustrates
the use of the catenary solutions to solve for the restraining stiffness g(v) of a

floating platform stayed with identical guy lines.
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Figure 2.19 Model of a cable stayed floating platform.
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Ezample Problem 2.9. The floating structure of Figure 2.19, representing
a moored ship or a semisubmersible platform, is restrained by symmetrically
placed, uniform cables separated by equal angles 3. Assume that the platform
motion v(t) is not excessive so that a portion at the lower end of each cable
always remains flat. Thus, vertical pull forces on the anchors do not occur. The
problem is to calculate the stiffness g(v), first for one of the pair of opposing
cables in line with the deflection coordinate v(¢), and then for the other cable
of the pair. The calculation of the stiffness due to the full array of cables is left
to the reader.

v
F F
REFERENCE A [
POSITION Pt c
. DISPLACED
ANCHOR ! POSITION  Zo= const.
0 0r |

Figure 2.20 Single cable of a floating platform.

Consider the stiffness of the single cable defined in Figure 2.20. For the static
equilibrium state (v = 0), the origin of the cable coordinates is at 0, for which
the flat length, the suspended length, and the horizontal projected lengths are
L,,¢.,and z,, respectively; and the tension force is F,. at angle 6, at the top
suspension point. At the bottom of the cable, the slope is zero at both 0. and
at the shifted origin 0 for v # 0, at which points the condition Fy = F, is
always true. The vertical projected length remains constant, or z = 2y. Since
the cable is assumed to be inextensible, the reference lengths subscripted r can
be expressed in terms of their corresponding unsubscripted values for v # 0 as

L.+ 4, =L+ {= constant (2.56)

Also, the distance between the anchor and the origin of the platform displace-
ment coordinate v remains constant, or

Le+z,=L+z-—v (2.57)

When (L — L,) is eliminated between equations (2.56) and (2.57), the platform
displacement is

v=~_,~z,+x—{ (2.58)
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Two additional equations, deduced from equations (2.55) for 8p = 0 and z = 2y,
are respectively

F, . wx
F, wT F,
20 = Z)— cosh (E) - E— (260)

From the overall equilibrium conditions, equations (2.51) and (2.52), it follows
that F; = F cos@ and wf = F'sin§. The ratio of these latter equations leads to

tan @ = sinh (%) (2.61)
Fy
For a fixed value of zy and w and an initially fixed value of 8 = 8,., then the three
initial values F, = F,,, * = z,, and ¢ = £, can be calculated from equations
(2.59), (2.60), and (2.61). For values of & # 6,, the corresponding values of
F,,z,¢, and v are calculated from equations (2.58)-(2.61). The restoring force
of a single cable is simply

q(v) = F; = Fz(v) (2'62)

One can now deduce that the restoring force for the pair of identical cables (the
single cable of Figure 2.20 and its mirror image across the plane v = Q) is given
by the superposition of the results just derived for the single cable, or

q(v) = Fyp(v) — Fy(—v) (2.63)

To facilitate the calculations and interpretations of the restoring forces, equa-
tions (2.58) through (2.61) can be cast in nondimensional form with the aid of
the following definitions:

—F_a; = £ ; Fzr = For (2643')
wzg wzo
_ _ e,
R (2.64b)
20 20
7=, z = 2L, T (2.64c)
2p 20 20

With equations (2.64), equations (2.58)-(2.61) become, after some rearrange-
ment,

= sinh ™! (tan 6) (2.65)

;"ﬂl sl
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— -1
F, = [cosh (:x«) - 1] (2.66)
F,
{=F,tand (2.67)
=, —F+T— ¢ (2.68)

For any fixed value of # (including 8,.), the values on the left sides of equations
(2.65)-(2.68) can be calculated explicitly, in sequence.
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Figure 2.21 Static behavior for a single and two opposing cables of a cable stayed
floating platform.
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Numerical results for 6, = 45 and 60 deg are shown in Figure 2.21. For
the single cable, the nondimensional horizontal restoring force F is small for
negative nondimensional displacements ¥ and increases at a growing rate as
¥ becomes positive. For the broken-line curves which correspond to opposing
pairs of cables 180 deg apart, F, is antisymmetric about ¥ = 0 and behaves
as a “hardening” spring for both positive and negative displacements #. For
these opposing cables, if the actual displacement v is less than about 5 percent
of the attachment height 2y, the horizontal force-displacement relationship is
linear, for practical purposes. In general for such diametrically opposed cable
systems, the horizontal restoring force g(v) can be approximated by an odd
order polynomial in v, or

q(v) = ky + kgv® (2.69)

Calculations of ¢(v) for other 8, values and for muliple pairs of identical, sym-
metric arrays of cables, with their ultimate approximation in the form of equa-
tion (2.69), are left for the reader. In making such calculations, it is recalled
that this analysis is valid only for cables that are relatively inextensible. Cal-
culations by Irvine (1981) imply that for steel cables over 13 cm in diameter,
where 45 < 8, < 85 deg, the cable extension strain is less than 0.1 percent. In
such cases the assumption of cable inextensibility is a reasonable one and the
results obtained herein are valid.
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Figure 2.22  Static behavior of a moored LST (O’Brien and Muga, 1964).
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Ezample Problem 2.10. Consider the explicit forms for the cable restraint
functions ¢(v) of the spread moored ship depicted in Figure 1.6 and previously
introduced in Example Problem 2.1. As in the original experimental study and
analysis by O’Brien and Muga (1964), traditional English units are used to
express the numerical results. The subject ship was an LST (Landing Ship,
Tank) moored in 45 ft of water in the Gulf of Mexico. The calculations for the
separate restraint functions ¢(v) for surge and sway were based on the catenary
theory just discussed and the actual mooring geometry of all seven chains for this
experimental study. The results are shown in Figure 2.22. These results typify a
hard spring nonlinear restraint system and are similar to the two-cable example
shown in Figure 2.21. When each curve of Figure 2.22 is fit to the odd order
cubic polynomial of equation (2.69), the restraining force for surge (longitudinal)
displacement and for sway (lateral) displacement become, respectively

q(v) = 20, 300v + 40003 Ib (2.70)

q(v) = 12,700v + 9500 1b (2.71)

The coefficient of v in each case is k1, or the slope of the curve at v = 0.

Example Problem 2.11. The purposes of this example are to compute the
virtual masses for the moored ship described in Ezample Problem 2.10, and to
set up the uncoupled equations of motion in surge and sway. Traditional English
units are employed for the purpose of clarifying the unit of mass. As previously,
the ship is assumed to be a rigid body with an actual mass mg. Based on its
given displacement (weight) of 4400 long tons, the ship’s actual mass is

x 4400 long tons x 2240 b

= 3.06 x 10%slug
long ton

1
0= 301 ft /sec?

in which the mass unit of Ib-sec?/ft is designated as slug. Experimental evidence
shows that for surge motion only, the virtual mass is approximately 15 percent
greater than mg, or m = 1.15mg = 3.52 x 10° slug; and for sway motion only,
the virtual mass for this ship (unstreamlined for sway) is about twice my, or
m = 2mg = 6.12 x 10% slug. For either motion, the governing equations are
of the form of equation (2.2). Assume negligible damping, f(?) = 0, and calm
seas, p(t) = 0. Under these conditions, with ¢(v) given by equations (2.70) and
(2.71), and with the virtual masses just calculated, the respective equations of
motion for surge and sway are as follows:

3.52 x 10%% + 20, 300v + 400v® = 0 (2.72)

6.12 x 10°%% + 12,7000 + 9500° =0 (2.73)

In these equations of motion, # has units of ft/sec? and v has units of ft.
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Soil Foundation Restraints

The properties of the soils on the sea floor are needed to predict the dynamics
of fixed offshore structures. In some cases, it may be appropriate to assume
that the soil foundation for such structures behaves elastically and that the soil
properties are unaffected by the motion of the contacting structure. Consider,
for example, the single cantilevered pile that penetrates the flexible foundation of
the sea floor to a depth £,,, as shown in Figure 2.23a. The pile’s bending stiffness
is ET and its height above the sea floor is £. Under the horizontal tip load F;, the
horizontal tip displacement is 8. Using a static analysis, Kocsis (1976) computed
the equivalent length £, > ¢ for a uniform pile partly submerged in sandy or in
clayey soil of constant, elastic properties. This equivalent length, depicted in
Figure 2.23b, is that for a hypothetical pile with full fixity at the base, which
gives the same horizontal deflection é under the same horizontal load F, as for
the pile with the flexible soil foundation. For a sandy soil, that length is

¢ ?\? e\
0, =10, [0.4 +1.353 (-€—> +1.875 (£—> + (7) } (2.74)
in which
102.9EI\/®
b, = [ —2=~ 2,
( No ) (2.75)
— 5
4 .
EI
L
mmml s
(a) SOIL FOUNDATION (b) RIGID FOUNDATION

Figure 2.23 Static model for pile-soil stiffness.

For submerged sandy soil, the horizontal subgrade reaction constant Ny in the
last equation has a range of 4 tons/ft3 to 34 tons/ft? for relatively loose to
dense sand, respectively (Terzaghi, 1955). With the value of ¢, from equations
(2.74) and (2.75), ky for the pile can calculated from classical beam theory for
a cantilevered beam of length ¢, as: ky = 3EI/¢3. Kocsis (1976) also presented
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equations similar to (2.74) and (2.75) for the calculation of ¢, for a pile in clayey
soil foundations.

DISC, !__ro

/77'

(a) SOIL FOUNDATION (b) SOIL-DISC MODEL

Figure 2.24 Dynamic model for disc-soil interactions.

Consider now the measured effects soil behavior to the motion of a contacting
structure. Veletsos and Wei (1971) performed extensive laboratory experiments
on soils in contact with a disc of radius g, as depicted in Figure 2.24a. In a
typical experiment, this disc was subjected to a harmonic frequency w, first in
the direction of sliding, v, and then in pure rotation 6. Nataraja and Kirk (1977)
correlated these data for applications to gravity platform dynamics. For disc
sliding motion only, the respective constants for soil stiffnesss and damping are
k; and ¢;; and for rotational motion only, these respective constants are kg and
cs. These constants, shown in the disc model of Figure 2.24b, are as follows:

8G, N
k‘l = 2_, (1 - 0.05&)7’0 Cp;'_s> o = a1 — blw (276)

8 s
&1 = 5=—/0.G, (0 67 + 0.02wrg g) r2 (2.77)
— SGS Ps 3 _
k(} = m (1 - 0215&17"0 G_s> To = Qo bow (278)
0.375
Cop = i'__—ywps’f'g (279)

Here G, v, and p, are the shear modulus, Poisson’s ratio, and mass density,
respectively, of the soil. The parameter w (rad/sec) is the frequency of the disc.
The use of this dynamic soil model is illustrated in Frample Problem 5.2.

The validity of employing equations (2.76)-(2.79) for full-scale design of grav-
ity platforms still needs to be shown through full-scale testing. Efforts to employ
the generalizations of continuum mechanics to characterize the dynamic, me-
chanical properties of soil, including the formulation of constitutive equations
from carefully designed experiments, are discussed by Zienkiewicz et al. (1978,
Chapters 10-16) and Prevost et al.(1981).
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PROBLEMS

2.1 The nondimensional parameter cylinder roughness affects the values of
the coefficients Cp and Cjs as indicated by equations (2.18) and (2.20). Define
precisely this measure of cylinder roughness by consulting a standard reference
book in fluid mechanics. Then based on reported experimental results, discuss
briefly the effect of this parameter on the coefficients C'p and Cys for both the
steady flow and the periodic flow of water which flows normal to a submerged
stationary, circular cylinder.

2.2 To linearize equation (2.21), Berge and Penzien (1974) made certain
statistical assumptions concerning the nature of the constant Cp of equation
(2.22). Review this paper, especially their equations (10)-(15), and describe the
method and assumptions leading to this linearized equation of motion.

Figure 2.25 Cross section of the cylindrical tank of Problem 2.3.

2.3  The cylindrical tank of Figure 2.25 has diameter D, height h, and an
average weight density in air of -y, when filled with solid, radioactive wastes.
The tank penetrates to a depth d into the mud of weight density +,, at the
bottom of the sea. The mud layer behaves as a liquid.

(a) Derive an expression for the tank dimension ratio d/h in terms of the
system densities. If v,, = 64 b/ft3, v,, = 95 Ib/ft3, and v, = 85 Ib/ft3, what
is this ratio?

(b) Locate the center of buoyancy for the cylinder in its upright position,
where D = 8 ft and h = 10 ft. Discuss the stability of this cylinder for small
angles of tilt, 6.

(c) For D= 8 ft and the densities given in part (a), calculate the maximum
height h for which the cylinder will remain stable for small 8.

2.4  The concrete monotower pictured in Figure 2.26 is in 160 m of water.
The caisson is filled with oil, and the leg is filled with seawater up to the still
waterline. The pertinent data are:
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Deck mass = 1.5 x 107 kg
Caisson mass (filled) = 2 x 10® kg
Concrete density = 2500 kg/m?
Sea water density = 1025 kg/m?>

(a) Does this structure float if it is raised just slightly from the bottom? If
so, what is the minimum deck mass needed to keep it from floating?

(b) Locate the center of mass G and the center buoyance B for this structure
when in the upright position. If the answer to part (a) is positive, use your
recommended deck weight to locate G.

(c) Discuss the stability of this structure, or the structure as modified in
part (a), if a thin layer of the soil foundation behaves as a liquid.
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Figure 2.26 Cross section of an idealized concrete monotower, Problem 2.4.

2.5 The mean wind velocity is used to calculate the wind-induced load on
an offshore structure. Discuss briefly a method for converting experimental
measures of the fastest mile of wind speed to a mean wind velocity. State your
assumptions and cite pertinent references.

2.6  Using equation (2.27), plot the normalized horizontal wind velocity
u(z)/u(h) as a function of the height parameter z/h. Show three typical curves:
one for a rough coastal area, one for sustained wind over an unobstructed sea,
and one for a gusty wind. Summarize your observations about these particular
wind velocity profiles.

2.7 The addition of helical strakes to a cylindrical structure such as shown
in Figure 2.7 is not the only way to negate trailing periodic vortices. Describe
other practical, alternative devices that may be added to the structure to elim-
inate such vortices. Use the references cited in the text as a starting point.

2.8 On the same graph, plot two flow velocity profiles as a function of water
depth: a tidal current and a wind-stress current. For this graph, assume that



56 STRUCTURE-ENVIRONMENTAL FORCE INTERACTIONS

both flows are in the same direction. If the wind velocity is offset by an angle
# to the tidal current, what is the equation for the total velocity in terms of 6.

2.9 A relatively isolated, vertical cylindrical pile is fully submerged and
subjected to a steady tidal current of magnitude 4 knots. The pile has diameter
D = 0.3 m and height A = 5 m. Compute the total current-induced drag force
on this pile. State all assumptions you make in arriving at your answer.

2.10 Based on studies reported in the most recent literature (for instance,
The Proceedings of the Offshore Technology Conference), discuss briefly both
the advantages and dangers of using onshore seismic data for ground motion in
the design of fixed-bottom offshore structures for earthquake resistance.

211  The coeflicient C; of equation (2.37), which is used to predict the
horizontal impact of ice on structures, varies by more than a factor of two.
Investigate the physical reasons for this variability.

2.12  After consulting the recent literature on the subject, write a summary
report comparing the particular design features that allow the offshore platforms
near Alaska to resist ice hazards. How do these platforms differ from the jacket-
template structures in the Gulf of Mexico?

2.13 For the case of two opposing cables shown in Figure 2.19, where the
equilibrium angle 6, is 45 deg, calculate k; and k3 for a best fit to equation
(2.69). If w = 39 Ib/ft and 2o = 1000 ft, what is ¢(v)?

2.14  Assume that the floating structure of Figure 2.19 is supported by four
identical, symmetrically arranged cables, 90 deg apart. Assume that the only
motion is horizontal and along the line of two opposing cables. Show that the
restoring force as a function of deflection as given by the curves of Figure 2.21 is
still quite accurate because the cables perpendicular to the direction of motion
contribute very little resistance to this motion. For what range of initial angles
8, is this approximation not a good one?

2.15 Assume that N pairs of identical cables are arranged at equal angles
[, as shown in Figure 2.19. Derive a general expression for the restoring force
along the line of one of these pairs. State all your assumptions. Then plot the
antisymmetric curve in the nondimensional form of Figure 2.21 for N = 6, 6,
= 45 deg, and § = 30 deg.

2.16 Based on the analysis of Kocsis (1976), calculate £,, the equivalent
length of a solid concrete pile submerged in medium stiff sand. Use the following
data: £ = 30 ft, D = 4 ft, E = 3000 kips/in?, and Ny = 14 tons/ft3. (Hint:
First convert to a consistent set of units.)
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Deterministic Descriptions
of Offshore Waves

Bruce J. Muga

To evaluate the fluid-induced forces acting on a structure or on any of its com-
ponents, we need to know its surrounding hydrodynamic flow field. For offshore
structures, this flow field arises from time-varying natural processes: winds,
currents, and surface gravity waves. Although these processes nearly always
occur in various combinations, the scope of this chapter is limited to descrip-
tions of surface gravity waves, which are usually wind-generated. It has been
observed that these time-dependent waves occur on two different scales. The
shorter time scale, measured in minutes or seconds, is useful for describing de-
tailed features such as wind gusts and surface wave periods. This shorter time
scale corresponds most closely to the response time of fixed offshore structures.
The longer time scale, measured in terms of hours, days, or even years, is useful
for describing variations in the wave intensity and in its statistics. The longer
time scale is important too because structures may fail in low cycle fatigue frac-
ture after months or years of service, a topic discussed by Etube (2001). In
this present chapter, we give a brief synopsis and critique of the classical wave
theories used most often by engineers for preliminary calculations of forces on
offshore structures. Here, the focus is on the shorter time scale. For compre-
hensive bibliographies of wave theories, see Sarpkaya and Isaacson (1981) and
Young (1999).

Iustrated in Figure 3.1 are the two fundamentally different descriptions of
surface gravity waves: deterministic and probabilistic. Deterministic descrip-
tions, analytical or numerical, are used to characterize the short time scale
features of waves. Deterministic analytic descriptions encompass classical wave
theories, which in turn are subdivided into linear and nonlinear types. Prob-
abilistic descriptions are used to characterize the long time scale features of
offshore waves. In both the deterministic and probabilistic descriptions, linear
wave theory is important to engineers for two reasons: it is simple to apply
when estimating forces on offshore structures during the preliminary phases of
design; and it affords a simple basis for estimating the probability of failure of
a given structure. Examples in future chapters illustrate these ideas.

61
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DETERMINISTIC PROBABILISTIC

1
ANALYTIC NUMERIC

LINEAR NONLINEAR WAVE
THEORIES THEORIES SPECTRA

Figure 3.1 Alternative approaches for describing surface gravity waves.

3.1 DESCRIPTION OF PLANE WAVES

Before discussing the most important classical wave theories, we first introduce
some fundamental definitions and concepts. The natural occurrence of waves
is usually complicated by the simultaneous superposition of waves of many dif-
ferent shapes and energies. Thus we define a single wave or a train of waves of
pure form that always behaves in exactly the same way on passing any given
point, and that propagates without change of shape when the surrounding con-
ditions remain the same. Further, we consider only plane or long-crested waves
of permanent form, waves that are independent of the coordinate normal to the
wave propagation direction. Therefore their crests or troughs can be represented
by straight lines in a horizontal plane. By permanent form, we mean that the
field of motion, pressure distribution, and surface configuration are maintained
as one follows the wave at a speed ¢, the designation of the phase velocity or
celerity. (In a strict sense all real waves have finite length crests, a factor that
is ignored herein.) Consider a wave form that is simple harmonic so that at
any time ¢ the wave has a sinusoidal shape with reference to the still water line
(SWL), or the z-axis as shown in Figure 3.2. At ¢t = 0, the instantaneous surface
elevation 7 is then

Mg = AcOs kzx (3.1)

Figure 3.2 Definition of a simple harmonic wave.
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In equation (3.1), A defines the amplitude of the wave and k is the wave
number. In radian measure, kx = 27z/); or /) is the multiple of the angle 27,
where A is the particular value of = for which cos kz = 1, yielding the next crest
of the wave in advance of the first at z = 0. The wave length )\ is expressed in
terms of wave number by

o
DY

The general expression for 7 in a progressive sinusoidal wave moving at velocity
¢ in the positive z direction is

k (3.2)

n(z,t) = Acosk(x — ct) (3.3)

Now, if we let z = 0 and consider the variation of the instantaneous surface
elevation with time as the wave passes the origin 0, we have from equation (3.3)

Ne—o = Acos(—kct) = Acoskct (3.4)

which is depicted in Figure 3.3. Again, the significance of kc is that of converting
kct to radian measure, or

t
ket = 27— 3.5
c T (3.5)
where T' is the particular value of ¢ that makes the cosine term unity, giving the

next crest of the wave in succession to the first at ¢ = 0. The quantity T is the
period of the wave and

ke = 2% = w rad/sec (3.6)

Figure 3.3 Variation of instantaneous surface elevation with time.
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where w is the angular frequency. From equations (3.2) and (3.5) it follows that
A=cT (3.7)

Equation (3.7), which could have been inferred directly, is a fundamental rela-
tionship in wave theory and has general application regardless of wave form.
Equation (3.6) enables us to rewrite equation (3.3) as

n(z,t) = Acos(kz — wt) (3.8)

If we now compare two similar waves of identical form that pass the same place
at different times, we have for one at ¢t = 0

Nyeg = A cos kz (3.92)
and for the other
Ny—o = Acos(kz + ¢) (3.9b)

where € is the phase displacement, as illustrated in Figure 3.4. This is positive
if ”’ lags the first wave, but negative if 7" leads #'. The interpretation of sign
is the same as for wt in n = Acos(kz £ wt): negative for a forward wave, and
positive for a rearward wave, where forward means motion in the direction of x
positive.
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Figure 3.4 Tllustration of phase displacement for two waves of identical form.

The general expression for a sinusoidal wave in terms of a phase displacement
€ which preceeds the origin is thus

n(z,t) = Acos{(kx — wt) — ¢} (3.10a)
If ¢ = /2, then equation (3.10a) becomes
n(z,t) = Asin(kz — wt) (3.10b)

which describes a progressive harmonic wave moving in the positive = direc-
tion. In summary, a three-dimensional space-time representation of the surface
elevation for a progressive, plane wave is given by

n(z,t) = Acos(kz — wt) (3.10c)
which is shown in Figure 3.5.
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Figure 3.5 Space-time representation for a progressive plane wave.

The foregoing discussion includes the fundamental concepts and most of the
definitions needed to describe classical wave theories. It is noted that the symbol
H, often used for wave height, has yet to be defined. The reason for this will
soon become apparent.

3.2 LINEAR PLANE WAVES

The theory of linear waves is alternatively known as Airy’s theory, small am-
plitude theory, and first-order theory. Developed primarily by Airy (1845) and
by Laplace (1816), it is the most important of the classical theories because it
is both easy use and it forms the basis for the probabilistic spectral descrip-
tion of waves. For a full development and discussion of the theory, the reader
should consult the intellectually entertaining work by Kinsman (1965). We now
summarize the assumptions, the governing equations, and the solutions for the
wave velocity and pressure profiles useful for predicting wave-induced forces on
offshore structures.

Suppose that the simple harmonic plane wave defined in Figure 3.6 is prop-
agating in the positive x direction in water of density p. The vertical coordinate
is z, directed positive upward; and the origin is located at the still water line
(SWL) or the mean surface level. The nine assumptions inherent in linear theory
are as follows:

1. The amplitude A of the surface disturbance is very small relative to the
wave length A and the water depth d.

2. The velocity head (u? + w?)/2g is small compared with the hydrostatic
pressure head pgz. Here u and w are the horizontal and vertical water particle
velocities, respectively.
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The water depth d is uniform.

. The water is nonviscous and irrotational.

The water is incompressible and nonstratified (homogeneous).

. The Coriolis forces due to the earth’s rotation are negligible.

Surface tension is negligible.

. The sea floor is smooth and impermeable.

. The sea level atmospheric pressure p, is uniform. Here, the hydrostatic
pressure is —pgz, and the dynamic water pressure is denoted by p.

© 00O U

Assumption 1 actually implies 2, although this is not immediately obvious.
Assumption 5 excludes acoustic and internal wave phenomena. It is known
that Assumption 6 is valid if the very long waves associated with tides and
seiches in large seas are excluded. It is also known that surface tension effects
are negligible, Assumption 7, for all but very short wave lengths. The other
assumptions, needed to make the governing equations tractable for closed form
solutions, are reasonable approximations for a large number of applications.

77 2w

DIRECTION OF
PROPAGATION
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Figure 3.6 Schematic representation of a simple harmonic wave. The vertical scale
of the surface profile is exaggerated for clarity.

When the nine assumptions are invoked, the differential equations and bound-

ary restraints for the water particle velocity and pressure reduce to the following
forms:

% _ %Zj -0 (3.11a)
% %1;0 —0 (3.11b)
% _ ”}15% (3.11c)
%% _ _% g (3.11d)
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w= o at 2=0 (3.12)
w=0 at z=-d (3.13)
p=p, at 2=0 (3.14)

Equation (3.11a) is the zero vorticity or irrotational condition, which follows
from Assumption 4. Equation (3.11b) is the continuity condition. Equations
(3.11¢) and (3.11d) are the momentum conservation equations, otherwise known
as the Eulerian equations of motion. Equations (3.12) and (3.14) are the bound-
ary conditions at the surface, and equation (3.13) is the boundary condition at
the sea floor. The free surface is defined by z = 7. However, in view of Assump-
tion 1, the conditions on w and p of equations (3.12) and (3.14) are applied at
the mean water level, z = 0.

A particular solution that satisfies the linear equations (3.11) is the plane
wave form for surface elevation n = n(z,t), already presented as equation
(3.10b). With this result, together with equations (3.11)-(3.14), the water par-
ticle velocities u and w, their respective accelerations Ou/0t (= ) and dw/0t
(= W), and the dynamic pressure p can be deduced. All of these quantities are
summarized in Table 3.1. It is noted that the total or absolute water pressure is
the sum of three pressure terms: the atmosphere pressure, p,; the hydrostatic
pressure, p; = —pgz; and the dynamic pressure, or

Ptotal = Pa +Ds + P (315)

In calculating the forces on offshore structures, the atmospheric pressure is of
no consequence.

The wave number and frequency relation that is compatable with the solu-
tions just presented is

w? = gk tanh kd (3.16)

From equation (3.6), the wave phase velocity or celerity is given by ¢ = w/k.
With this and equation (3.16), the celerity becomes

c= (% tanh kd) V2 (3.17)

This equation for celerity reduces to rather simple limiting forms for cases in
which k is either very large (short wave lengths) or very small (long wave
lengths). Such examples are included as problems at the end of this chapter.
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TABLE 3.1 Results for Linear Small Amplitude Wave Theory

Parameter Formula

Surface wave profile n = Acos (kz — wt)

Horizontal particle velocity u= 24 3’%’:}%2 cos (kz — wt)
Vertical particle velocity w = 2—’7'14 Sﬁ’s%%(%}‘gz sin (kz — wt)

. . . . 4x®A cosh k(z+d) . .
Horizontal particle acceleration 4 = *5%* =77 sin (kz — wt)

Vertical particle acceleration W= 4“2‘4 s—"%’%—%ﬂ cos (kz — wt)
Hydrostatic pressure Ps = —pgz

Dynamic pressure p= pgAg’%}:);]f—};—:;ﬁl cos (kz — wt)
Wave celerity ¢ = (4 tanh kd)l/ 2

Wave group velocity cg = (1 + Sm2hk‘21k d)

Consider a few comments about the results for linear wave theory that are
summarized in Table 3.1. First, note that the water particle velocities, the
wave celerity, and the wave group velocity (derived by Sarpkaya and Isaacson,
1981) are all different in form and have different physical meanings. The water
particle velocities and particle accelerations are those used in Morison’s equation
to compute the drag and inertial forces of these waves on offshore structures.
Second, the origin z = 0 of the wave is arbitrary, which implies that a constant,
arbitrary phase angle can be added to the term (kz — wt) in the formulas of
Table 3.1. To the casual reader, this may be a source of confusion since many
references locate the origin at the trough of the wave rather than at its crest.
Third, some classical references define the coordinate z as positive downward,
which has the effect of reversing signs for those terms containing z. Further,
the vertical coordinate is sometimes labeled y in place of the more common z.

3.3 NONLINEAR WAVES

Two distinguishing features of a small amplitude wave based on linear theory
are its sinusoidal surface profile and its circular fluid particle orbit. These two
features do not coexist in a finite amplitude wave based on nonlinear theory.
Summarized now are the most important features of several nonlinear wave
theories: the trochoidal, cnoidal, Stokes, solitary, and numerical theories. For
a complete historical background and detailed description of these and other
nonlinear wave theories, see Sarpkaya and Isaacson (1981). In the summary
that follows, the term nonlinear wave implies a wave of finite amplitude.
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Trochoidal Theory

Gerstner (1802) and Rankine (1863) developed the trochoidal wave theory
independently. The three distinguishing features of the trochoidal theory are:
circular particle orbits; a rotational fluid; and a trochoidal wave surface profile.
Historically, this nonlinear theory found favor with naval architects, who focused
not so much on the fluid kinematics with its rotational characteristic, but on
the trochoidal surface profile of these finite amplitude waves. With the advent
of offshore structures, more realistic wave kinematics were needed, and thus
trochoidal theory is not usually used by engineers in offshore structural design.
The importance of trochoidal wave theory is that it serves as a link from linear
theory to the finite amplitude oscillatory wave theory as developed by Stokes
(1845), Levi-Civita (1925), Struik (1926), and Havelock (1914).

Cnoidal Theory

A finite amplitude wave theory appropriate for shallow water is the cnoidal
wave theory, first studied by Korteweg and de Vries (1895) and more recently
by Masch and Wiegel (1961). As suggested by Sarpkaya and Isaacson (1981),
the cnoidal wave parameters are formulated in terms of elliptic cosine functions,
from which the term ”cnoidal” arises. Tables and charts published in the latter
two citations aid in application of this theory.

"The cnoidal wave theory was developed from the governing equations for long
waves using the assumption that the square of the slope of the water surface, or
wave steepness, is small relative to unity. One important feature is that cnoidal
waves are periodic. For small values of H/d, where H is the crest to trough
wave dimension and d is the water depth, the cnoidal wave profile is sinusoidal.
Another limiting case is for very long wave lengths, which yields a solitary wave
profile, as discussed below. The use of the cnoidal wave theory is limited to the
following range: 0.01 < H/d < 0.78 and )\/d < 8. Within this range, cnoidal
theory describes the progression of the periodic waves more accurately than
does the theory for Stokes waves. Cnoidal theory bridges the gap between the
periodic and the solitary wave theories.

Stokes Theory

The basic assumption in the development of the finite amplitude wave theory
is that the fluid motion is irrotational. This assumption can be justified phys-
ically if the fluid viscosity is vanishingly small. The governing equations are
then formulated in a manner parallel to that for linear wave theory, equations
(3.11). Those equations are as follows:

ow Ou
5 B 0 (3.18)
Ju Ow
3_17 + 52" =0 (319)
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ou ou Ou  10p

Sw ow ow 13p
R IR T/ 21
ot +u8x+w8z p Oz g (3.21)

Equations (3.18) and (3.19) express the zero vorticity and continuity conditions,
respectively, and equations (3.20) and (3.21) express the conservation of linear
momentum. Once the velocity field can be computed, then the pressure field
can be determined. The boundary conditions are that the pressure on the free
surface of the wave is everywhere a constant, or

p(z,m,t) = p, = constant (3.22)

Here, p = p(z, 2, t) leads to

op, o0, 0p_
5t +u8:c +w8z =0 (3.23)

Thus the free-surface boundary condition is nonlinear with respect to the un-
known variables u, w, and p.

Stokes (1847) and others solved equations (3.18)-(3.23) by a successive ap-
proximation procedure in which the solutions were formulated in terms of a
series of ascending order terms. Solutions to the second and third order are
widely available in the open literature. See, for instance, Kinsman (1965), Ip-
pen (1966), and Sarpkaya and Isaacson (1981).

Some frequently used results of the finite amplitude theory to the second
order are presented in Table 3.2. When the solutions for the wave surface
profiles, the particle velocities, the particle accelerations, and the pressures given
in Table 3.2 are compared respecively to those in Table 3.1, it is noted that
each first order term in Table 3.2 corresponds to its counterpart given by the
linear theory. The remaining terms are the second-order corrections due to
the nonlinear convective inertia terms appearing in the governing equations
(u Ou/0z, etc). Higher-order expressions of the Stokes theory are simply those in
which the approximations for corrective effects are carried to the corresponding
power term. In principle, if Stokes theory is carried to a sufficiently high order, it
would be adequate for describing water waves in any depth of water. In practice,
this is only possible for waves in deep water. In shallow water the convective
terms become relatively large, the series convergence is slow and erratic, and
a large number of terms is required to achieve a uniform degree of accuracy.
Other classical formulations such as the solitary and cnoidal theories require
fewer terms to achieve the desired accuracy.
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TABLE 3.2 Results for Stokes Second Order Wave Theory

Parameter Formula
=4 _ H 7 cosh kd
Surface wave profile n= 4 cos(kz — wt) + Lz cosh kd

x[2 + cosh (2kd)] cos [2(kz — wt)]

Horizontal particle velocity —u = 4= &Ss}l‘;’%%i— cos (kz — wt)

U i n L cos [2(kz — wt)]

Vertical particle velocity w=4r EE%%%Q sin (kz — wt)

3" sinh 2h(4d) i) (9 (ki — wt)]

Horizontal particle = r °°Z}1’nﬁ 24d) sin (kz — wt)

. 3H21r3 cosh 2k(2+d) .
acceleration +22 T sin [2(kz — wt)]

Vertical particle w = QHT" %‘%ﬂ cos (kz — wt)

. 3H>x3 sinh 2k(z+d) .
acceleration — S g €08 [2(kz — wt)]

Hydrostatic pressure Ps = —pgz — ﬁ%{cosh 2k(z+d)] - 1}

. pgH cosh k(z+d _ _3mpgH>_
Dynamic pressure p = 85 =g cos (kx — wt) + 285

[P - 4 o e )

Wave celerity ¢ = (£ tanh kd)l/ 2

Ursell (1953) investigated the accuracy of Stokes second order theory by
comparing the amplitude of the second order term to the amplitude of the first
order term. He has generalized this comparison and expressed it in terms of the
Ursell parameter, defined by

Ug = ’7_/\0 (%)3 (3.24)

where 7, is the maximum elevation above the still water level. When the Ursell
parameter is very small, linear wave theory is valid. However, one should note
that, although the Ursell parameter is a useful guide, it is not the sole measure of
determining the relative importance of the nonlinear terms. In shallow water, for
instance, the relative amplitude H/d becomes the more important parameter.
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Figure 3.7 Profile of the solitary wave.

Solitary Theory

The solitary wave profile is illustrated in Figure 3.7. This wave has no trough
since its profile never extends below the still water level. Solitary wave theory
describes such a wave of infinite length that propagates in water of uniform
depth. Technically, the solitary wave is the limiting case of a periodic shallow
water wave of finite height in which the wave length approaches infinity while the
relative height, H/d, is maintained constant. The usual method of generating a
solitary wave in the laboratory is by adding a finite volume of water at one end
of a closed tank.

Russell (1845) derived the celerity for a solitary wave as ¢ = /g(H +d).
Most analyses of the solitary wave superpose the wave celerity —c into the
field of fluid motion, thereby reducing the moving solitary wave to a stationary
wave for which the origin of the coordinate axes translates with a velocity —c.
The conditions to be satisfied are those of continuity, equation (3.11b), and
zero vorticity, equation (3.11a). The analysis begins with the definition of the
velocity potential ¢, or

u = Q.?- w = _Q?Z
9z’ T 0z
It is seen that equations (3.25) satisfy the continuity condition, equation (3.11b).

When equations (3.25) are combined with the zero vorticity condition, equation
(3.11a), the result is Laplace’s equation, or

(3.25)

3¢ 0%
&72— + —6—2—5 =0 (326)
The boundary condition at the free surface is
dp op

It is noted that the pressure at the surface is

p(z,m,t) = pa (3.28)



NONLINEAR WAVES 73

In general, p must satisfy the following form of Bernoulli’s equation:

1
% —uc+ §(u2 +w?) + gz = constant (3.29)

If the moving horizontal axis is denoted by £, where £ = z~ct, then the potential
function ¢, the surface water elevation 7, and the vertical water particle velocity
w must vanish for large £. For these conditions, and provided that H/d is less
than approximately 0.7, the solutions for ¢ and 7 are as follows (Lamb, 1945):

_ N sinh M(£/d)
¢= —Cdﬂ [cos M(1+ 2/d) + cosh M(é/d)] (3.30)
3H ’

Here M and N are dimensionless parameters given implicitly by the following
two equations:

N = gsin2 [M (1 + %Z{)] (3.32)
% = —g—tan EM (1 + -{5)] (3.33)

When H and d are specified, M and N are computed by trial and correction
from the last two equations, and the particle velocity components are computed
directly from equation (3.30) using equation (3.25). It is noted that for sinu-
soidal waves 7 is periodic and changes sign, whereas for solitary waves 7 is
always positive. This is consistent with the solitary wave form shown in Figure
3.7.

Further analysis shows that the maximum value of H/d is equal to 0.78,
which occurs when u = ¢. Also the expressions for particle velocities and surface
elevation are compatible with linear theory when H/d approaches zero. Munk
(1949) summarized the work on solitary waves and proposed a modification
applicable to periodic waves.

Numerical Theory

With the advent of high speed, high capacity computers, and with the de-
velopment of efficient programming and numerical techniques, numerical wave
theories have become increasingly popular. Such theories, which are more ac-
curately described as procedures, are all based on deterministic solutions of the
flow field equations, with statistical features sometimes incorporated in the so-
lution procedures. The distinguishing features are the different treatments of
the boundary conditions and the alternative criteria defining accuracy. One
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popular numerical theory is based on ideal (non-viscous) fluid in plane flow as
described by Laplace’s equation (3.26). A historical computer code that solves
the Navier-Stokes equations for an incompressible fluid, and includes the effects
of fluid viscosity, was developed by Hirt et al. (1975).

To illustrate a widely used numerical theory, consider the free stream func-
tion approach developed by Dean (1965). The fluid is assumed to be non-viscous,
incompressible, and irrotational, with motion limited to the x, z-plane. In this
case, the governing differential equation of Laplace can be written in terms of
the stream function 2, or

%y %y
522 + 32 =0 (3.34)
The velocities in terms of 1 and the velocity potential ¢ are
88 oy 8¢
T 8z 9z’ Y= % T 75 (3.35)
v z { zZ=n
w= 4y
CREST - —
i f( 7 o SWL
‘LH [ \.
TROUGH-»
b

Figure 3.8 Wave boundary conditions used in stream function theory (Dean, 1965).

The boundary conditions to be satisfied are shown in Figure 3.8 and are sum-
marized:

1. At the sea floor where z = —d, the boundary is flat, horizontal, and
impermeable. Thus

_ 9% _ 9% _
2. At the free surface where z = 7, the particles remain on that surface, or
an 0

This is known as the kinematic free surface boundary condition.
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3. Also on the free surface at z = 7} the pressure is uniform. This implies
that Bernoulli’s equation for unsteady flow must be satisfied, or
9¢

1, 2 1
it S 3.38
n+ 3 (u” + w?) 5 constant (3.38)

This is known as the dynamic free surface boundary condition.
If the wave propagates without change in form, then a uniform velocity

field of magnitude c can be imposed on the field of motion (Dean, 1967). The
boundary conditions of equations (3.37) and (3.38) are thus reduced to

dn w
hudkd 3.
ot u-—c (3.39)
With this last result, Bernoulli’s equation for steady flow becomes
1
N+ =—{(u — ¢)? + w? = constant (3.40)

2g

The algorithm used by Dean {1967) to solve for %, u, and v is outlined as
follows. Assume a form of v, in terms of undetermined coefficients, which
satisfies Laplace’s equation (3.34) and also satisfies the boundary conditions of
equations (3.36) and (3.37). The form of the solution is such that the coefficients,
the wave number, and the free surface value of the stream function are computed
based on a least squares fit to the dynamic free surface boundary condition,
equation (3.38). This free stream function theory can also be used to compute
the characteristics of nonsymmetrical waves for which the surface profiles are
specified. Published tables (Dean, 1974) aid in applications. However, such
results can be computed directly using numerical methods.

The use of nonlinear wave theory is summarized. Trochoidal wave descrip-
tions, which include fluid rotation, were historically used by naval architects,
but are not generally used by offshore structural engineers. Stokes approximate
theory is practical for describing short waves of finite height; but this theory be-
comes cumbersome and impractical for long waves of finite height. Fortunately,
alternative theories (cnoidal, solitary, numerical) have been developed for this
latter case. The numerical theory based on free stream functions is appropriate
for deepwater waves of finite height, for nonsymmetrical waves, and for shallow
water waves for which the application of linear theory is often inappropriate.

3.4 DOMAINS OF VALIDITY FOR WAVE THEORIES

A question that frequently arises concerns the selection of a wave theory for
a given situation. Unfortunately, there are several bases for evaluating these
various theories. No consensus has yet emerged as to a common basis. Dean
(1974) and Le Mehaute (1976) have studied the problem and provided Figures
3.9 and 3.10, respectively, to aid in selecting an appropriate theory. Here H is
the wave height (twice the ampitude A of Figure 3.2); Hp is the value of H
when the wave breaks; and d is the water depth.
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Dean’s study of 1974 is a quantitative one, based on the closeness of fit of the
kinematic dynamic free surface boundary conditions. It is limited to waves lying
between the upper breaking limit curve and the lower curve labeled H = Hg /4
in Figure 3.9. We see that within this range there are three possibilities: the
cnoidal first order, the linear, and the free stream function fifth order theory. If
it is desired to use only analytic theories, then the range of application of the
cnoidal theory may be extended to cover all of that region lying below the lower
dashed curve; the Stokes fifth order may be employed for that region lying below
the upper dashed curve; and the linear theory may be extended for application
to the region lying between the two dashed curves.

STOKES 5th ORDER

fi/sec?
=
[

2
’

H/T

0.01

SHALLOW DEEP
INTERMEDIATE
fe— WATER  —sle— DEPTH WAVES —4«3:]\;5&1;4
0.001 LN 11
0.01 0.1 1 10

d/T? fi/sec?

Figure 3.9 Periodic wave theories providing best fit to dynamic free surface
boundary conditions. The region of validity for the free stream function fifth order
theory is encompassed by the bold boundary lines (Dean, 1974).

Le Mehaute’s study of 1976 appears to be based somewhat on subjective con-
siderations, although it does cover the entire range of physically possible waves
of permanent form. Only the analytic theories are shown in Figure 3.10. Here,
L denotes the wave length A. When the stream function fifth order is included,
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there is some overlapping with the higher-order Stokes theory domains and the
cnoidal theory domain. LeMehaute’s graph is particularly useful during pre-
liminary engineering calculations since it indicates the possibility of employing
simple theories easily solvable on hand-held calculators.

The following numerical examples illustrate the utility of these graphs by
Dean and Le Mehaute.

1 1 1
STOKES 4th ORDER
STOKES 3rd ORDER
B
~
@b
S
0.1p & -
éo\’ STOKES 2nd ORDER
~
4] =]
3 Yg- A H=H, /4
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o &,
b=
= 4
= §
& fuL¥a?
0.01~ HL7d=26 _
AIRY (LINEAR THEORY)
SHALLOW INTERME el
DIATE WATER
WATE P B e i
0.001 N R WAVES ~P1o DEPTH WAVES | | WAVES
0.01 0.1 1 10

2
d/T*, fi/sec?

Figure 3.10 Limits of validity for selected wave theories. The region of validity for
the free stream function fifth order theory is encompassed by the bold boundary lines
(Le Mehaute, 1969).

Ezample Problem 3.1. Find the maximum horizontal and vertical water
particle velocity at an elevation of 10 ft below the still waterline, in a wave that
has a period of 8 sec, a height peak to trough of 2 ft, and is propagating in a
constant water depth of 200 ft.

1. Deduce the appropriate theory by first computing the following flow
parameters:

d/T? = 200/8? = 3.125 ft/ sec?
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H/T? =2/8? = 0.03125 ft/ sec?

From Figure 3.10, we can see that this wave can be described by linear wave
theory, and that it is a deepwater wave.

2. Compute the wave length A and wave number k by combining equations
(3.2), (3.7), and (3.17). In the last of these equations, use the approximation
for deep water: tanh kd ~ 1:

ae 92 23220 sog g
27 2
2r 27 _1
= 5 = 55 = 00192 &

3. Calculate » and w from linear wave theory using Table 3.1:

_ mH cosh [k(d + z)]
YT T sinh kd

This value is a maximum when the cosine term is + 1. Note that for z = —10
ft, d + 2 = 190 ft. Substitute the numerical values to obtain the maximum
horizontal water particle velocity, or

o m(2) cosh[0.0192(190)]
max = —g sinh [0.0192(200)]

cos (kz — wt)

= (0.649 ft/sec
From Table 3.1, we observe that the maximum value of w, the vertical water
particle velocity, occurs when the sine term is + 1. Thus

o nH sinh[k(d + 2)] _ 7(2) sinh [0.0192(190)]
T sinhkd 8 sinh[0.0192(200)]

= 0.648 ft/sec

We observe that the maximum particle velocities are very nearly identical,
where the difference is due to roundoff errors associated with the hyperbolic
functions. Further, these maximums do not occur at the same time. Profiles of
Umax aNd Wmax can be generated by varying z from 0 to —200 ft; and the entire
history of the wave flow can be mapped by varying z and ¢ in the trigonometric
functions for v and w.

Ezample Problem 3.2. Determine the surface profile and the pressure vari-
ation at an elevation of 30 ft above the seabed in a wave that has a period of 6
sec, a height of 3 ft, and is propagating in a constant water depth of 50 ft.

1. Deduce the appropriate theory by first computing the following two flow
parameters:

d/T? = 50/6% = 1.389 ft/sec?

H/T? = 3/62 = 0.083 ft/sec?
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From Figure 3.10, we see that this is an intermediate depth wave and that Stokes
second-order theory is appropriate.

2. Compute the wave length A, the wave number k, and the circular fre-
quency w. For this intermediate depth wave, use the dispersion relation, equation
(3.17), to compute the wave length. Using k& = 27/ from equation (3.2) and
¢ = A/T from equation (3.7), the dispersion relation can be expressed implicitly
in terms of A and the given wave parameters, or

_p |92 2md\ _ . [32.2 2m(50)
/\.—T\/;Wtanh</\)~6 27rAtanh< \

This equation, when solved for A by trial and correction, leads to the following
results:

A=1746ft; k=2r/A=0.0360ft"";  w=kM\/T = 1.048 rad/sec

3. Use the appropriate expressions from Table 3.2, together the given values:
H =3 ft, and d = 50 ft. With the values of A, k, and w just computed, the
surface elevation 7 is thus:

n = 1.5 cos (0.036x — 1.048t) + 0.0502 cos (0.072z — 2.096t)

These results for the surface elevation show that, due to the second term on the
right, there is approximately a 3 percent correction to the linear theory due to
second order effects. The results for the pressure p at the depth z = 30 — 50 =
—20 ft in water of mass density p = 1.94 slug/ft3 are found by substituting the
foregoing numerical results into the full expression for p in Table 3.2. In the
numerical results below, the four terms on the right side of the equation, from
left to right, represent, respectively: the hydrostatic pressure of linear theory,
or —pgz = —1.94(32.2)(—20) = 1249.36 1b/ft?; the dynamic pressure of linear
theory; the second order dynamic correction to the linear theory; and the second
order hydrostatic correction to linear theory:

p = 1249.36 + 49.52 cos (kz — wt) + 0.07 cos 2(kz — wt) — 0.47 1b/ft?

Again we observe that the second order corrections to linear theory theory are
very small, less than 1 percent in this example problem.

Ezample Problem 3.3. Determine the celerity c for a wave with a period of
15 sec and a wave height of 2 ft, propagating in water 20 ft deep.

1. Deduce the appropriate wave theory by computing the following param-
eters:

d/T? = 20/15% = 0.0889

H/T? = 2/225 = 0.00889
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By referring to Figures 3.9 and 3.10, we see that both the cnoidal and
free stream function theories are appropriate for describing this wave, for which
computer-aided solutions are needed.

2. Rather than generate our own numerical results, refer to results of Masch
and Wiegel (1961). That is,

Compute: T+/g/d=15,/32.2/20 = 19.03
Table 2: c?/(gd) = 0.9675

Compute: ¢ =24.96 ft/sec

3. As a check on this result, we find that the wave characteristics place it
near Cases 3D and 4D given by Dean (1974), but Dean’s tabulated values do
not encompass the numerical values of the present problem.

4. From linear theory the wave celerity is ¢ = /gd = 25.37 ft/sec.

5. From solitary theory the wave celerity is ¢ = \/g(d + H) = 26.62 ft /sec.

These last two values of ¢ are reasonably close to the value 24.96 ft/sec
obtained from cnoidal theory. This does not imply, however, that the other flow

parameters are necessarily in close agreement, and those parameters need to be
calculated from cnoidal or free stream function theory.

Linear wave theory will be employed extensively in subsequent chapters to
calculate fluid loading on offshore structures.

PROBLEMS

3.1 For simple wave swells with periods T = 27 /w = A/c, 1 < T < 30 sec,
where the depth to wave length ratio satisfies d/\ > 0.5, the waves are defined
as deepwater waves. In this case show that the wave celerity and period have
the following approximate forms:

co (Y 2w
A\ or ’ g

T = 10 sec and A = 512 ft, calculate the wave celerity and the minimum
depth for which these relationships are valid.

3.2 A simple, shallow water wave is defined when the ratio of water depth
to wavelength satisfies d/A < 0.05. In this case, show that the wave celerity is
given approximately by ¢ = 1/gd. If A = 512 ft, what is the maximum water
depth for which this relationship holds?

3.3  For simple linear waves of length X at intermediate water depths d,
then 0.05 < d/X < 0.5. Deduce that the square of the wave celerity is given by
the following formula.
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Plot three curves corresponding to A = 200 ft, 400 ft, and 600 ft, which show
the wave celerity as a function of water depth in this intermediate range.

3.4 A deepwater wave having a length of 512 ft and a height of 20 ft
propagates from deep to shallow water over the sea bottom which has a slope
of 1:30. Determine the wave length and celerity as a function of depth.

3.5 In order to collect site-specific oceanographic data, a tower is installed
in a water depth of 80 ft. One gage located 50 ft above the bottom senses an
average maximum dynamic pressure of 150 lb/ft? at a period of 9 sec. Using
these data, compute the height and length of the corresponding wave. Is your
computed wave height the maximum that is present at the site? Explain.

3.6 We know that surface tension forces become more important as the
wave lengths decrease. In particular, as wave lengths approach 1 in., the surface
tension forces become important relative to the gravity forces. We wish to make
a model study of a semisubmersible platform (200 ft x 200 ft) as it is excited
by waves with periods ranging from 4 to 15 sec. What is the minimum scale
ratio that is acceptable? What factors other than surface tension effects should
be considered in determining this scale ratio?

3.7 Suppose that a deepwater wave having a period of 10 sec and a height
of 10 ft is propagating normally toward shore over a gently sloping beach. De-
termine the depth of water and the wave length when the wave breaks. (Hint:
Remember that as the wave length changes, the height must also change.)
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Wave Forces
on Structures

James F. Wilson

One approach used to estimate the highest expected wave forces on an offshore
structure is based on a single design wave. For a particular wave theory, with a
wave height and wave period chosen according to the location of the structure,
the corresponding pressure field and horizontal components of wave particle ve-
locity and acceleration are then determined. With this flow information, the
distributions of the two governing flow parameters Re and Kc (the Reynolds
and Keulegan-Carpenter numbers) are found for the structural components;
the flow regime is determined; and the appropriate fluid force coefficients for
drag, inertia, and diffraction (wave scattering) are chosen from a database. The
structural loading is then computed using these latter coefficients, together with
the expressions for wave velocity and acceleration applied to either Morison’s
loading model, or a modified version thereof, or to a diffraction model. This
approach is now illustrated for cases where the fluid and structural motion are
limited to the x, z-plane, and where the flows are normal to longitudinal axes
of the structural elements, usually right circular cylinders, the basic element
of offshore structures. Identified are the flow regimes appropriate for the ex-
perimental coefficients Cp, Cyy, and the diffraction coefficients, with a brief
summary of the uncertainties in these coefficients. Also defined are transfer
functions, or functions that relate the wave velocities and accelerations to the
structural forces. These transfer functions are employed in later chapters to
calculate the responses of linearly - behaving structures to actual sea states.

4.1 WAVE LOADING OF FLEXIBLE CYLINDERS

Suppose that a cylinder in a wave field has sufficient flexibility such that its
horizontal velocity v and horizontal acceleration # are often significantly higher
than the corresponding quantities « and @ for the water wave. In this case,
Berge and Penzien (1974) suggested a modification of Morison’s equation (2.14)
in which u is replaced by the relative velocity (u — %), and # is replaced by the
relative acceleration (4 — ¥). Recall Ezample Problem 2.3. A load model that

84
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accounts for both cylinder flexibility and the effects of the water wave length A
can be written as follows:

1
q= ch-ZpD% + CMgng%a — ) + CpgpD(u— o) [u— 1| (4.1)

The flow coefficients recommended by Moan et al. (1975) are given by

Cym =Cr + Curo (4.2a)
Car=1— 0.12? (4.2b)

Curz =10, for % <0.5 (4.2¢)

Cyo =154 — 1.087—r)\2, for f/\e > 0.5 (4.2d)

The following two example problems are applications of this formulation.

4

~

\/Ov\/

D

Figure 4.1 A submerged, flexible cantilevered cylinder.

Ezxample Problem 4.1. A uniform, flexible, cantilevered cylinder of actual
mass per unit length g, length ¢, and diameter D is fully submerged in water
of depth d, as shown in Figure 4.1. Calculate the total horizontal force on
this structure using equation (4.1). Neglect all drag forces. Then formulate
the equation of motion based on the coordinate v, the displacement at the top
of the cylinder. Assume linear wave theory. For the horizontal wave particle
acceleration & = 4(z, z,t) given in Table 3.1, let z = 0. Note that the origin is
at the still water line and that z is positive upward.
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The total horizontal force p;(t) is given by integrating equation (4.1) over
the length of the cylinder. For Cp = 0, this is

(e-d)
p(t) = / qdz

—d

v D o e
= Ch ZPDZ / udz + Chro Z/)D2 / (u — ’U)dZ (43)
—d —d

The stiffness of the cylinder, equal in magnitude to the horizontal static force
applied to the top which will produce a unit horizontal deflection, is easily
shown to be k; = 3EI/¢3. The equivalent lumped mass, computed in chapter
5, is mg = 0.227mgfl. For a conservative (or high) estimate of v, lump p;(¢)
at the top of the cylinder, or the coordinate point, z = ¢ — d. For a material
damping constant of ¢;, the equation of motion becomes

mol + 10+ kv =p; (t) (44)

It is further assumed that @ is much larger than ¥ along the cylinder and that ©
is independent of the coordinate z, consistent with this single degree of freedom
model. Using equation (4.3) with the mass and stiffness results just obtained,
equation (4.4) becomes
) 3EI )
(o.zzmoe + cmgpp?e) R = cMngQ / adz  (4.5)
—d

Using 4 from Table 3.1 (with = 0), the integral in equation (4.5) is easily
evaluated. It is seen from this last result that Cpso is actually the added mass
coefficient C4. The virtual mass, or the coefficient of ¥ in equation (4.5), thus
arises in a natural way in this formulation.

Ezample Problem 4.2. Solve Example Problem /.1 shown in Figure 4.1, but
this time include the fluid drag term. Then linearize the resulting equation of
motion following the method discussed by Berge and Penzien (1974).

The steps in the solution are summarized as follows. The equation of motion
is

(e—d)
motl + 10 + kv = / Gdz = p1(t) (4.6)
—d
The loading term is
g= cMng%z - cmipr? i+ Cp \/2/7pD (u— )0 (4.7a)

in which o, the standard deviation of the relative velocity (u — v), is

g =

- 1/2
% /O (u— z';)th} (4.7b)




CLASSIFICATION OF FLUID LOAD REGIMES 87

Here, Tp is the time required for several oscillations of the cylinder. When
equations (4.6) and (4.7a) are combined, the result is

(mo+ CM%,)D%) i+ [cl + Cp\/2/mpDt a] b+ kv

(e—d) (e~d)
:CM%pDz/ udz+CD\/2/7rpDo/ udz (4.8)
—d

—d

where mg and k; are given in Example Problem 4.1.

With the values of u and @ from Table 3.1, together with the chosen system
constants, economical numerical solutions to equation (4.8) can be computed
by iteration. That is, with an initial guess for the standard deviation o, solve
equation (4.8) for v; recalculate o; and solve again for v. Continue this procedure
until o ~ const. Suitable convergence can be obtained after four or five iterations
(Berge and Penzien, 1974). Numerical solutions to the differential equation (4.8)

can be generated using the software package Mathematica ™~ (1999).

The results of the two dynamic models expressed by equations (4.5) and (4.8)
lead to two important conclusions regarding the fluid-structural interactions.
First, the added mass term is the same, whether or not velocity-dependent fluid
drag is present. Second, system damping is increased with the addition of fluid

drag, as is seen by comparing the coefficients of © on the left sides of equations
(4.5) and (4.8).

4.2 CLASSIFICATION OF FLUID LOAD REGIMES

The equation or method for calculating the load on a cylindrical structure in a
fluid wave flow field depends on the flow regime. Hogben (1976) states:

Loads on structures in waves may be conveniently classified under
three headings: drag, inertia and diffraction. The relative impor-
tance of these in a particular case depends on the type and size of
the structure and the nature of the wave conditions. Broadly it may
be said that drag loads are the result of flow separation induced by
the relative velocity of the fluid and are most significant for tubular
components of small diameter in waves of large height. Inertial loads
are due to the pressure gradient associated with the relative accel-
eration of the ambient fluid and are most significant for structural
components of large sectional dimensions. Diffraction forces are due
to scattering of the incident wave by the structure and are only sig-
nificant when the sectional dimensions are a substantial fraction of
the wave length.
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The following relationships between cylinder diameter D, the wave height H
{(peak to trough), and the wave length A serve to define the flow regimes more
precisely.

1. Drag: D/H < 0.1. In Morison’s equation the term involving Cp dom-
inates the term involving Cjs. Wave loads on the very small diameter compo-
nents of offshore structures such as conductor tubes will be drag-dominated. In
such cases § ~ gp, where gp is given by equation (2.10).

2. Inertia: 0.5 < D/H < 1.0. In Morison’s equation the term involving
Cps dominates the term involving Cp. The columns supporting the deck of a
gravity-type platform are designed to sustain wave forces in this regime. In such
cases ¢ ~ g where gr is given by equation (2.7).

3. Diffraction: D/X > 0.2. Wave forces on stationary bodies in this flow
regime were discussed in detail by Hogben (1976) and Sarpkaya and Isaacson
(1981). Generally, diffraction force calculations are based on the Froude-Krylov
pressure distributions derived from ideal, hydrodynamic flow and linear wave
theory. These forces are then modified by the experimental flow coeficients
Ch, C,, and Cy,

Consider the application of diffraction theory to the submerged cylinder
shown in Figure 4.2.

TOP VIEW
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Figure 4.2 Diffraction wave loading on a submerged cylinder or box-type caisson.
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For this example, the total horizontal force, vertical force, and overturning mo-
ment on the cylinder are

Piz(t) = CrhFra;  P12(t) = CoFiz (4.9)

Mo(t) =Co - (2Fkzs + ZFy,) = CoMy (4.10)

The terms Fj, and F},, defined as the Froude-Krylov forces, are the net pressure-
induced forces on the vertical sides and on the top horizontal surface, respec-
tively. Those forces, located at the respective centers of pressure z and Z, are
time-dependent. The basic assumption in the calculation of the Froude-Krylov
forces is that the wave pressure field is completely undisturbed by the presence
of the structure. Hogben and Standing (1975) recommended the following flow
coefficients for a submerged cylinder of diameter D and height h such as shown
in Figure 4.2. The water depth is d and the length of the incident wave is A.

h\'? 7D\?
=1 58 —= —~03| — 4.11
Cr=1+0 5(1)) 1 03(A> (4.11)
7D\? h Th
C=14074( =) =, LS .
C +074<)\> D for T < (4.12a)
D Th
Co=1+ 55\_ , for T >1 (412b)
Co=19— ().35%2 (4.13)
The restrictions on equations (4.11)-(4.13) are
h
E < 0.6, for Ch, Cy,Co (4.14)
h
03 < 5 <23, for Gy, Cy only (4.15)
h
0.6 < D < 2.3, for Cyp only (4.16)

With the complementary results for Fi., Fk., and M, derived in closed form by
Sarpkaya and Isaacson (1981), the total diffraction loading for vertical cylinders
can be calculated from equations (4.9) and (4.10).

Economical calculations for diffraction forces can be made on noncylindrical
shapes such as the submerged tank cluster of the monotower shown in Figure
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2.2. In this procedure, the irregular shape is simply replaced by a rectangular
box of the same overall dimensions as the irregular shape, a procedure that
greatly simplifies the calculation of the wave pressure loads. The justification
for this procedure was given by Hogben and Standing (1975), who found that the
total diffraction forces and moments are practically independent of structural
planform. The following example, parallel to the analysis of Nataraja and Kirk
(1977), illustrates this type of calculation.

Example Problem 4.3. Calculate Fy, and M, the Froude-Krylov hori-
zontal force and overturning moment on a rectangular box caisson resting on
the ocean floor. The box has cross section dimensions 2a x 2a and height h,
as shown in Figure 4.2. Assume that there is a single incident wave and that
linear wave theory is appropriate. Relative to the coordinate system of Figure
4.2, the dynamic pressure given in Table 3.1 becomes

H cosh k(2 +d)
2  cosh kd

in which & = 27/)\ and w is given by equation (3.16). The value of Fy, is
computed by integrating the pressure difference over the vertical sides of the
box normal to a right-traveling wave, or

p(z,z,t) = pg cos (kz — wt) (4.17)

(h—d)
Fiz = 2a/ [p(—a, z,t) — p(a, z,t)|dz (4.18)
—d

With equation (4.17), the last equation is integrated and use is made of trigo-
metric identities, which leads to

sinh kx . .
Fig = —2pgaHm sin ka sin wt (4.19)

The overturing moment is the sum of two integrals. The first is My, the moment
about 0 due to the side pressure forces. The second is My, the moment about
0 due to the pressure forces on the top of the box. Thus

(h—d)
Min = 2a/ [p(—a, z,t) — p(a, 2,t)](z + d)d= (4.20)
—d
My = 2a / 2}z, (b — d), t}dz (4.21)
where
My = Mpn + My, (4.22)

The evaluation of this latter moment in closed form using equations (4.17),
(4.20), and (4.21) is a straightforward exercise. With these results, the total
horizontal diffraction force p;,(t) and the overturning moment My(t) are then
given by equations (4.9) and (4.10), using the respective flow coefficients of
equations (4.11) and (4.13). The calculation of Fy. and its corresponding total
vertical load p;,(t) is straightforward. See Problems 4.13 and 4.14.
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4.3 FLOW REGIMES FOR OFFSHORE STRUCTURES

A perspective on the size of components (caissons, legs, bracings, etc.) for typi-
cal offshore structures is shown in Figure 4.3. The gravity and tethered buoyant
platforms, the most massive of the offshore structures, will experience diffraction
forces under most wave conditions. At the other extreme, the jackup platforms
with their relatively thin legs and small diameter bracing will experience mainly
drag forces.

T lTﬁllll T ) Illllll I ]l’llll_]
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TEATHERED BUOYANT COLUMNS —
PLATFORMS ——
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STRUCTURES LEGS
BRACING
[ ]
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RIGS
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CYLINDER DIAMETER, meters

Figure 4.3 Size perspective for cylindrical components of offshore structures
(Adapted from Hogben, 1976).

A further insight into the influence of wave height and cylinder diameter
on the occurrence of the three flow regimes was presented by Hogben (1976).
Such a mapping, shown here only for cylinders at the water surface (z = 0), is
lustrated in Figure 4.4. The following assumptions were used in deriving these
curves.

1. Linear wave theory, Table 3.1.

2. Deep water approximation, where w? ~ gk.

3. A wave length to wave height ratio of A/H = 15.

4. Cp = 2.0 for all flow regimes. Cp = 0.6 for postcritical drag where the
drag force changes abruptly at Re = 5 x 10°. Cp = 1.2 for subcritical drag.

5. Re based on the amplitude of the wave’s horizontal particle velocity.
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Figure 4.4 Regimes of forces on cylinders located at the sea surface, z =0
(Adapted from Hogben, 1976).

The five main observations of this study are summarized. First, gravity-type
platforms experience diffraction at wave heights up to 30 m, the upper extreme
for A = 450 m. Second, as the depth of the cylinder below the surface is in-
creased, the boundary of the diffraction regime remains fixed, but the boundary
of the inertia regime of Figure 4.4 expands upward, a result shown in other
studies for which z > 0 (Hogben, 1976). Third, towers supporting the deck of a
platform generally lie in the inertia flow regime in the extreme wave conditions
usually assumed for design purposes. Fourth, loads on very small diameter
components such as those of conductor tubes, legs of jackup platforms, and
jacket-template structures are generally drag-dominated, but in deeper waters
such as in the North Sea (150 m or more in depth) the main structural legs will
be large enough to incur both inertial and drag loads. Fifth, the ratio gp/gr
in Figure 4.4 shows the relative effect of fluid drag forces to fluid inertia forces.
When this ratio is 0.9 (the upper dashed curve), the drag and inertia forces are
of comparable magnitude; but when this ratio is 0.1 (the lower dashed curve),
the inertia forces dominate.

Because of the inherent assumptions in Hogben’s 1976 study, Figure 4.4 for
z = 0 and his companion results for z > 0 should not be used directly to design
offshore structures. However, calculated results presented in a similar form, but
based on flow coefficients and wave parameters appropriate to the site of the
offshore structure, can be quite useful in engineering design.
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4.4 SUMMARY OF FLOW COEFFICIENTS Cp AND Cy,

A survey of measured values for Cp and Cs made by the British Ship Research
Association (1976) is depicted in Figure 4.5. This chart is a composite of histor-
ical data for smooth, vertical cylinders. This chart shows the wide variability
of these flow coefficients and their dependency on the Reynolds number, the
Keulegan-Carpenter number, and the wave height to cylinder diameter ratio,
H/D. For the curves showing the detailed behavior of Cp and Cjs in the sub-
critical regime of Reynolds number, the reader is referred to the original report
of Keulegan and Carpenter (1958) and the summaries by Sarpkaya and Isaacson
(1981). For this lower range of Re, both Cp and Cjs depend strongly on Kc.

40
12— Cp—05 Cp=06, Cy=15
C D and C M
¢,=15
o Keulegan- Inertia forces are small o
M Carpenter Inertia forces are so errors in C,, are not =
Mn curves small so errors in qw s1gn1ﬁcant. Possible
& 30 are not significant; errors: 20% for total wave %
> possible error in wave forces, but may exceed 50%
% forces is 100% for local wave forces.
=4
& 12 — Cp,—06 Cp= 06, Cy,=15
Z
§ 204 Cy=15
<
; Wave forces can be
< zilcc;‘g:’f;;”g“f 112% XO“?X Shed‘!i;:g Data are sparce so
T \{ t :
8 where errors are larger w(;glelngt‘fe‘rv;n errors in wave for ce_s
5 fFicients: ibl may exceed those given
0 coethicients, possiv'e above in this range of Re.
¥ 10 error in wave forces
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=
5
For D/2~0.2, use Cyy= 2.0, Cp= 0 Q
For D/A4>0.2, use diffraction theory. E
0 Wave forces can be calculated to within an accuracy of 20%.
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REYNOLDS NUMBER, Re

Figure 4.5 Summary of C'p and C)y for smooth, vertical cylinders (British Ship
Research Association, 1976).
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The most important aspects of the data in Figure 4.5 are summarized.

1. The Cp and Cis values apply only to smooth cylinders in deepwater for
which d/(gT?) > 0.003, where d is the water depth, T is the wave period, and
g is the acceleration due to gravity.

2. No allowances were made for wave slamming or fluid interactions with
other structural members in proximity to the smooth cylinder.

3. No allowances were made for current-wave interactions.

4. Re and Kc were not always well defined in this data survey. This may
account somewhat for the wide scatter in the reported results for these coeffi-
cients.

5. The Cp and Cps values listed in this table should be used with a wave
theory appropriate to environmental conditions, where the wave theory chosen
is used as a basis for calculating Re and Kc. Approximate values of these latter
parameters are generally adequate for estimating the flow coefficients.

4.5 TRANSFER FUNCTIONS FOR WAVE LOADING

The basis for the formulation of the transfer functions in this section is linear
theory for a single water wave, often called a simple wave. Recall that for linear
theory, Table 3.1, the wave characteristics are defined by its height H = 2A, its
period T' = 27 /w, and its wave number k = 2x/\ where X is its wave length.
Recall also that for deep water waves where the water depth d > 0.5\, then
k =w?/g. See Problem 3.1.

The transfer function G(w) is defined as the function that relates H of the
incident wave to the load it imparts to the structural component. In general,
transfer functions are defined in the following harmonic form:

G(w) = Goeo*t, for j=+/—1 (4.23)

Here Gy is a complex number independent of time. Transfer functions for lin-
ear dynamic systems only are defined here, systems for which the drag and
restraining force terms are linearized. Since a simple wave is harmonic, the
loading functions g, p1(t), and My can also be written in the form of equation
(4.23). The connection between a loading function and its transfer function is

loading function

wave height =real{G(w)} (4.24)

‘The transfer function for a loading ¢ is calculated, for instance, by first finding
g/H, and then casting that result in the form of equation (4.23). The following
identities are useful in such a procedure:

% =cos a + jsinaw (4.25a)

cos(a + () = cos « cos 3 — sin a sin 38 (4.25b)
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sin(a + 3) = sin « cos B + cos a sin 3 (4.24¢)

where « and 3 are real numbers.
The square of the modulus of G(w), needed later for statistical response
studies of structures, is defined by

GW)]? = G(w) - G*(w) (4.26)

Here G*(w) is the complex conjugate of G(w) and is formed by replacing j by —j
in the transfer function. The calculation of transfer functions is now illustrated
with two example problems.

Example Problem 4.4. Calculate the transfer function for the flexible,
cantilevered cylinder of Figure 4.1. Assume that the fluid-induced forces are
inertia dominated and that the motion of the cylinder is much smaller than the
motion of the water particles. Thus

q= % pD% (4.27)

The horizontal wave particle acceleration from Table 3.1, corresponding toz = 0
or the average location of the horizontal wave particles on the cantilever, is

. H ,cosh k(z+d) .
U= Wt e sin wt (4.28)

Using equation (4.28) with (4.27), it follows that

q
H

qcosh k(z+d) .

P n wt (4.29)

= —%CMDpr

With equation (4.25a), the latter ratio yields the transfer function as

Vs

8

gcosh k(z + d)

Glw) = sinh kd

CuD?pw eIt (4.30)

The square of the modulus, calculated from equations (4.26) and (4.30), is

scosh k(z + d) 2

2 _ |7 2
G = | gCuD =y =

(4.31)

It is noted that the expression for G(w) just derived is for g and is a function
of the location z on the cantilevered beam. The transfer function required for
the lumped mass model, equation (4.4), must be based on the total load py(t).
This latter transfer function can be derived by simply integrating equation (4.30)
over the range of 2z = —d to 2 = (£ — d). The resulting transfer function and its
corresponding modulus will then be independent of z.
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Ezample Problem 4.5. Calculate the transfer function for the total hori-
zontal load on the box-type caisson shown in Figure 4.2 and described in Fzam-
ple Problem 4.3. Assume that the fluid-induced forces are diffraction-dominated.
It follows that the total horizontal load p1,(t) is the product of Fy, given by
equation (4.19) and the diffraction coefficient C}, given by equation (4.11). Thus
the total load-wave height ratio is

P1z(t) sinh kh . .
Azl - i 4.
i 2pgaCh, P ka sin wt (4.32)
The required transfer function is this ratio expressed in complex notation, or
inh kh -
Gw) = j2pgaC’h7€s—lcno—s—m sin ka /! (4.33)

These examples illustrate that there is a different transfer function for each
flow regime and for each structural component of an offshore structure. In
practice, transfer functions for all components are calculated and assembled
for the structure, all based on linear wave theory and a single, simple wave.
Such results can then superimposed to account for the loading effects of many
simple waves selected to simulate the design sea state at the site of the offshore
structure. This simulation involving the selection of simple waves over particular
ranges of H, w, and wave phase ¢ is discussed in Chapter 6. The corresponding
structural responses are then discussed in Chapter 7 for single degree of freedom
systems and in Chapter 9 for multi-degree of freedom structures.

PROBLEMS

4.1  The total force pi(t) on a submerged, flexible pile in the inertia flow
regime is given by the right side of equation (4.3). For a single, simple wave
evaluate p; (t) by carrying out the necessary integration.

4.2  The diameter of the submerged pile shown in Figure 4.1 is sufficiently
small so that the drag forces are comparable in magnitude to the inertia forces.
Evaluate p;(t) in this case by carrying out the integrations of equation (4.8).
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Figure 4.6 Monopod structure for Problems 4.3, 4.4, and 4.5.
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4.3 Shown in Figure 4.6 is a simplified model of a cantilevered monopod
structure in water of depth d. The deck mass is M, modeled as a point mass
at height £y above the sea floor. The leg has a diameter D, a uniform mass
per unit length of 79, and a bending stiffness FI. The leg is subjected to
a simple plane wave whose respective horizontal water particle velocity and
acceleration are much larger than those of the leg. Neglect drag forces and also
neglect any reduction in the leg bending stiffness due to the deck mass. Derive
for this structure a single degree of freedom mode] for the motion of the deck,
an equation similar to equation (4.5). Define explicitly the system mass and
stiffness. Carry out the integrations needed to describe the wave load, p1(t).

4.4 Solve Problem 4.3, but now include drag forces on the leg. Where
possible, carry out the integrations for wave loading.

4.5 Suppose that the structure of Figure 4.6 is flexible enough so that
its horizontal water particle velocity and acceleration are of the same order as
those of a simple, incident wave. Deduce the corresponding equation of mo-
tion that includes drag forces. Identify the mass, damping, stiffness, and fluid
loading terms for the linearized form similar to equation (4.8). Carry out the
integrations where possible. Then write down a brief outline of a numerical,
computer-aided procedure to calculate the time history of the horizontal dis-
placement for the platform.

4.6 Deduce the form of the wave loading term of Ezample Problem 4.1 for
which there are N simple waves. The i-th values of frequency, wave height, and
wave phase are w;, H; and &; respectively, where ¢ = 1,2,... , N. The phase ¢;
is added to the argument of the harmonic terms in u and @ of Table 3.1.
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Figure 4.7 Platform structure for Problem 4.7.

4.7 The unbraced platform shown in Figure 4.7 has four legs, each of di-
ameter D and length ¢, separated by distance £. The legs are subjected to a
single, simple plane wave for which A > D. Neglect the fluid drag forces and
also neglect the motion (¥, %) of the structure compared to the respective hori-
zontal motion parameters (u, @) of the wave particles. Derive the expression for
wave loading in each leg, accounting for the relative magnitude of the separation
length ¢ compared to the wavelength A. Then discuss the net wave-induced force
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on the whole structure for the three cases: /A < 1, /A =0.5, and ¢/\ = 1. If
the net structural load is zero for any of these cases, explain why the individual
wave loads on the legs can still be significant. Sketch possible leg deformation
patterns for each of these three cases.

4.8 Search the recent literature, such as the annual Proceedings of the Off-
shore Technology Conference, to determine whether diffraction coefficients such
as Cp,, Cy, and Cj have been measured for fixed objects other than vertical, right
circular cylinders.

4.9 For a deep water wave, show that equation (3.16) reduces to w? = gk.
Then, for a vertical cylinder of diameter D and height h, express the diffraction
coefficients of equations (4.11) through (4.13) in terms of g, D, h, and w only.

4.10 Determine an efficient analytical or numerical procedure to calculate
wave diffraction loads on a rigid, right circular conical monopod leg of an ice-
resistant offshore platform. Consult the classical references of Hogben (1976)
and also recent literature on the subject.

4.11 The legs of a jackup platform are cylinders of diameter 0.5m. Each
leg is subjected to a single, simple wave, with each impact occurring separately
and at a different time. For each ratio A\/H = 10, 15, and 20, determine the
range of H for which the drag, inertia, and diffraction dominates.

4.12 Based on the data of Sarpkaya and Isaacson (1981), deduce the values
Cum and Cp for cylinders in the flow regime of subcritical Reynolds numbers,
where 10 < Kc < 40. That is, add typical flow coefficients to the left column of
Figure 4.5.

4.13  Calculate the explicit expressions for the Froude-Krylov force Fj,,
and the overturning moment M}, for the solid box caisson of Figure 4.2.

4.14  With the results of Frample Problems 4.8 and /.5, together with
Problem 4.13, complete the calculations for the three most important wave load
transfer functions on the box caisson: those for the total horizontal load, the
vertical load, and overturning moment. Use complex notation to describe G(w)
in each case; then calculate each value of |G(w)| .
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Deterministic Responses for
Single Degree of Freedom
Structures

James F. Wilson

Once the single degree of freedom dynamic model for an offshore structure is
formulated and the loading conditions are identified, the structure’s response
characteristics are calculated using its equation of motion. The response char-
acteristics are of two types: the natural frequency, and the time history of
displacement v(t) or of rotation 6(¢). The frequency calculation is generally
necessary to assure the integrity of the structural design. This is because an
offshore structure in depths exceeding 70 m generally has a natural frequency
falling in the range of the expected wave frequencies, which may lead to a dan-
gerous condition of structural resonance.

The peak displacement or rotation response is sought where several possi-
ble extreme environmental loading conditions are applied, generally one at a
time. These loads include the effects of high winds, waves, and also earthquake
excitation. Typically, the peak dynamic response for each loading is then com-
pared to its static response, or its response if the same loading were applied
very slowly. This response ratio, dynamic to static, is called by several names,
including the dynamic amplification factor, the dynamic load factor, and the
impact factor. This response ratio can be applied to the expected static loads
for design purposes.

In this chapter, natural frequencies and dynamic responses of selected linear
and nonlinear structural models are evaluated. For linear systems, the classical
response functions due to harmonic and impulse loading are derived, followed by
the response due to a general, time-dependent loading. The response analysis
for nonlinear systems employs first order perturbation theory and numerical
methods. Example problems illustrate the calculations of the natural frequency
and the dynamic response for several types of offshore structures: a fixed-legged
structure such as a jackup rig in response to earthquake excitation at the sea
floor; and responses to a single design wave of a spread-moored ship and a SALM
buoy, both of which are supported by nonlinear restraints.

100
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5.1 NATURAL FREQUENCIES OF LINEAR SYSTEMS

In this section, two methods for calculating the natural frequency of linear single
degree of freedom structural models are presented: the Direct Method, which is
based on the equation of motion; and the Rayleigh Method, which is based on
energy principles. Several example problems are presented that illustrate the
relationships between these two methods.

Direct Method

The direct method of obtaining the natural frequency of a single degree
of freedom structure is to use its equation of motion. The structure’s natural
frequency wo is defined as the frequency compatible with an undamped structure
of constant mass, with a restraint force that varies linearly with the displacement
coordinate, and with no external excitation force. Under these conditions, the
governing equation of motion, written in terms of the displacement coordinate
v, is

mi+ kv =0 (5.1)

which is a special case of equation (2.2). When this linear structure is given an
arbitrarily small displacement amplitude vy and then released, then v exhibits
free harmonic oscillations of the form

v = vp sin wot (5.2)

When equation (5.2) and its second derivative are substituted into equation
(5.1), the result is

(=mw? + k1 )vo sin wot =0 (5.3)

In the latter equation, the term sin wyt is not zero for all time t and thus the
term in brackets must be zero. This leads the following equation for the natural
frequency of the structure:

k1

It is noted that the natural frequency is independent of the initial displacement
amplitude vp, which is characteristic of linear systems.

Ezample Problem 5.1. Shown in Figure 5.1a is a spherical buoy of mass m,
which is half submerged in water in its static equilibrium. The buoy is depressed
vertically by a small initial amplitude v and released, after which it undergoes
free oscillations along the vertical coordinate v. Derive the equation of motion
for the buoy, and from that compute its natural frequency in units of rad/sec
and in Hz. The buoy’s radius is R = 3.5 ft and the water density is v,, = 64
1b/ft3. Neglect system damping and the fluid drag forces. Let Cpy = 0.
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mg + W

(a) EQUILIBRIUM STATE (b) FREE BODY SKETCH

Figure 5.1 Spherical buoy in vertical oscillation, Ezample Problem 5.1.

Shown in Figure 5.1b is the free body sketch of the buoy with a vertical
displacement v. In the static state, v = 0 and according to Archimedes principle,
the weight of the buoy floating at its equator is given by the weight of the water
displaced by half of the sphere’s volume, or mg = 27 R3y,,/3. Also by Achimedes
principle, the incremental upward force §W for a downward buoy displacement
v corresponding to an approximate incremental water volume displacement of
TR%v, is 6W = mR?y,,v. When Newton’s second law is applied to the buoy of
Figure 5.1b, the equation of motion for the buoy becomes

mg — (mg — W) = mi (5.5)

After substituting the loads and rearranging, the above equation becomes
2
(ggﬂ'R‘g'yw) ¥+ (7TR2")/w) v=0_0 (5.6)

When equation (5.2) is used with the above result, the natural frequency of the
buoy is computed as

39 [3(32.2) ft/sec?

IV T 23R

= 3.71rad/sec (5.7)

In alternative units, the natural frequency is fy = wo/(27) = 0.591 Hz.

Ezample Problem 5.2. Consider the plane rocking motion of the monopod
concrete gravity platform which was first shown in Figure 2.2 and discussed
in Ezample Problem 2.2. This structure with typical nominal dimensions is
depicted in Figure 5.2. Compute the undamped rocking frequency for this
monotower as it interacts with its soil foundation. Assume that the structure is
rigid and that the rotations € in the plane are small, or less than about 10 deg.
The equation for its free vibration is a special case of the more general equation
(2.6) in which the excitation forces on the right side are zero and on the left
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side sin @ = 6, f(8) =0, and q(6) = kef (the soil foundation reaction moment).
Thus, equation (2.6) reduces to

Job + (kg — moghe + msghs) = 0 (5.8)

According to equation (2.78), the soil’s restoring moment coefficient is ky =
ap — wbg, where ag and by are soil constants. Here, w = wqg. Thus, the latter
equation of motion becomes

Job + (ap — woby — mogha + mpghs)8 =0 (5.9)
Assume a harmonic solution to equation (5.9), or
6 = fpsin wot; 0= — w% sin wot (5.10)

where 6 is a constant. When 6 and  from equation (5.10) are substituted into
equation (5.9), the result is a quadratic equation in wq, which can be solved for
the positive root wq using the quadratic formula. The result is

1

W = 5—(—]— {bg + 4J0(a0 - moghg + mbghb)]1/2 — bo} (5.11)
0
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Figure 5.2 Model of a monopod gravity platform with typical dimensions.
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Realistic system parameters used to compute numerical values for monopod
platform rocking frequencies are listed in Table 5.1. The soil properties are those
suggested by Nataraja and Kirk (1977), measured properties that span a range
in the North Sea where gravity platforms have been placed. Computations
for the structural properties were based on the nominal dimensions given in
Figure 5.2, together with the following assumptions concerning the structure’s
five elementary structural components.

1. The deck and deck equipment are lumped as a thin disc 55 m in diameter.

2. The uniform section of the leg above the still water line is an empty,
thin-walled pipe.

3. The uniform submerged section of the leg is a thin-walled pipe filled
with water.

4. The tapered, submerged section of the leg is a thin-walled cone filled
with water.

5. The caisson is approximated as a cylinder consisting of two parts. Part
(a) is a cluster of vertical, cylindrical tanks 50 m high, together displacing 70
percent of the volume of seawater occupied by a cylinder of height z = 50 m
and radius rg = 45 m. These tanks are filled with oil, and the average density
of the tanks with their contents is 900 kg/m®. This tank cluster is assumed
to be a homogeneous solid of this density. Part (b), the base and ballast, is a
homogeneous cylindrical solid 10 m high with a density of 2000 kg/m3.

The following items were calculated for each of these five elementary struc-
tural components: the actual mass and the buoyant mass, with their respective
locations from the base point; and the virtual mass moment of inertia about 0,
the base centerline point. Also, for the submerged elements, the added mass
coefficient was chosen as unity (C4 = 1). The properties of the solids in Ap-
pendix A, together with the parallel axis theorem, equation (2.5), were used to
compute Jy. In these calculations, the mass density of sea water and of con-
crete were chosen as 1025 kg/m?3 and 2500 kg/m3, respectively. More detailed
calculations for this same problem were presented by Wilson and Orgill (1984).

The composite values of mg, my, he, and h,, for the whole structure, together
with the rocking frequencies calculated from equation (5.11), are listed in Table
5.1. The important results of these calculations are summarized. First, since
the total actual mass (3.56 x 10®kg) is greater than the total buoyant mass
(2.59 x 108 kg), the structure will not float. Second, since the center hg of the
actual mass is 1.0 m below the center of buoyancy hy, this structure is inherently
stable under small motion. Note that the moment due to the buoyant force
opposes that due to gravity, as shown in Figure 2.12b. Third, a lower bound on
the rocking frequency based on G, = 10 MPa is wg = 1.41 rad/s or fp = 0.224
Hz. Fourth, the upper bound on the rocking frequency based on G5 = 50 MPa
is wo = 3.17 rad/s or fo = 0.505 Hz. Finally, since the period Tj is 1/ fo, then
the bounds on the natural period of the platform are 4.46 s and 1.98 s, which
correspond to the reported lower and higher limits for the soil shear modulus in
the North Sea.
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Table 5.1 System Parameters and Results for Example Problem 5.2

Soil properties Gs = 10 MPa to 50 MPa
ps = 2000 kg/m3; v, =0.33

Soil parameters ag = 3.63 x 102 N-m for G, = 10 MPa
by = 4.97 x 10" N-m-s for G, = 10 MPa

Structural mass, actual mg = 3.56 x 10° kg

Structural mass, buoyant mp = 2.59 x 108 kg

Center of actual mass hg =30.7m

Center of buoyant mass hy =31.7Tm

Structural inertia, virtual Jo = 1.46 x 10*2 N-m-s

Minimum rocking frequency wg = 1.41 rad/s
Maximum rocking frequency wq = 3.17 rad/s

The Rayleigh Method

In formulating the mathematical models for the cross beam and the jackup
drilling rig in Ezample Problems 2.7 and 2.8, only a fraction f; of each of the
structure’s flexible mass was lumped at the coordinate point v. By comparing
the expression for natural frequency wq derived by the Direct Method in those
examples to that derived by the Rayleigh Method that follows, f; can be com-
puted. It will be shown that the accuracy of f; depends on a judicious choice of
the fundamental mode shape of structural vibration, a choice that is tempered
by the beam’s end constraints, such as a clamped or free end condition.

Since fundamental mode shapes and end conditions are of basic importance
in the Rayleigh Method, consider first some sample shapes for beam-type struc-
tures. For an accurate calculation of wp, that mode shape should be a simple
one with a minimum of reversals in curvature from one end of the beam to the
other. Also, the chosen mode shape must match the beam’s geometric boundary
or end conditions. For instance, a simple form for the mode shape correspond-
ing to the natural frequency in the transverse bending vibration of a cross brace
clamped at each end is sketched in Figure 2.16b. One simple approximation to
that mode shape is

¥(z) =1 — cos %—m (5.12)

which satisfies the geometric constraints imposed at the ends: for displacement,

¥(0) = (¢) = 0; and for slope, ¥'(0) = ¢'(£) = 0. Here (') denotes the operator
(d/dzx).

For the jackup platform of Figure 2.17, a judicious choice of mode shape is

W(z) =1~ cos Zré_x_ (5.13)

which satisfies the geometric constraints: (0) = ¢'(0) = ¢'(£) = 0 and ¥(¢) =

2. The last constraint is nonzero, which is consistent with a nonzero amplitude
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for the deck. If this jackup platform were modified so that the deck was instead
hinged instead of clamped to each leg, then an approximate mode shape would
be
T

Y(z) =1 cos 57 (5.14)
which satisfies the geometric constraints of full fixity at the sea floor: ¥(0) =
¢/(0) = 0; and of nonzero displacement and slope at the deck level: ¥(£) = 1
and ¢'(€) = w/(2¢).

For the Rayleigh Method, the actual magnitudes of the nonzero end slopes
and deflections are unimportant, provided that the chosen mode shape ¥(x)
satisfies the beam’s geometric constraints. Then this method leads to an upper
bound value for wqg. A straightforward proof of this upper bound property was
provided by Den Hartog (1947).

The steps of the Rayleigh Method used to calculate wq for beam-type struc-
tures are summarized as follows:

1. Choose a simple mode shape () that satisfies the geometric boundary
conditions of deflection and slope. Express the lateral displacement of the beam
at location z along its length as

v =v(z,t) = vo¥(z) sin wot (5.15)

where vy is an arbitrary constant.

2. From the latter equation, calculate V' = U 4V, the total potential energy
for the beam. Here U is the elastic strain energy for bending of the beams (legs
and/or cross braces) and V is the loss in potential energy due to a downward
displacement of a mass, as for instance, the decrease in the gravitational energy
of a deck mass m,4 due to the lateral displacement of its vertical supporting legs.

3. Based on equation (5.15), calculate the total kinetic energy K: that for
the beam plus that for its end mass, if any.

4. Calculate wgy by equating the expressions for the maximum kinetic energy
(when V' = 0) to the maximum potential energy (when K = 0), or

Kma.x — Vmax (5 16)

Before the Rayleigh method is illustrated, consider some general forms of
system energy. From elementary beam theory, the strain energy for bending of
a beam element of length dx at position z is

2 2
aw="21 (gm—’;) do (5.17)

where v = v(z,t) is given by equation (5.15). The total potential energy of
N identical beams each of length ¢, and each with the identical displacement

v(z,t) is thus
N [t 82v\?
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If the structure consists of vertical beams and a deck of weight of mgg at z = ¢,
as for the jackup platform of Figure 2.17, then the decrease in the gravitational
potential energy of the deck as the horizontal leg displacement increases is

V, = —mgg Ah (5.19)

where Ah is the vertical drop in height of the deck due to curvature of the elastic
beams (legs). The beam element of arc length ds shown in Figure 2.17b can be
approximated using a binomial expansion, or

2
ds = (dz? + dv2)1/2 ~dx |1+ % (%) } (5.20)
Thus the drop in height of this arc element is
1(ov\?
ds —dzx = 5 <%> dz (5.21)

from which the total drop of my is calculated by integrating over the length of

the beam, or
14 2 2
1 ov
Ah _/0 (ds — dz) = 5/0 <%> dz (5.22)

With the latter result and equation (5.19), the decrease in the potential energy
of the deck mass due to the lateral leg motion is thus

1 ¢ ov\?
qu——imdg/o (8—37) dz (5.23)

Consider the kinetic energy for the beam and deck elements. For a sub-
merged beam element of length dx with a virtual mass per unit length of m, the
kinetic energy is m(9v/8t)2dx /2. (If the element is not submerged, replace m by
Mg, its actual mass per unit length.) The kinetic energy for a fully submerged
beam such as in Figure 2.16a is thus

1 [ (6w 2
K—§/0m<52> dx (5.24)

For N beams or legs only partially submerged, such as in Figure 2.17, the result

1S
N 4 (ov\? N [ (v’

where d is the water depth. For this jackup platform there is an additional
kinetic energy term due to the movement of the deck mass. If the rotational
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energy of the deck is small in comparison to that in translation along the v
direction, then its kinetic energy is

1 ov\?

Ezample Problem 5.3. Use the Rayleigh Method to determine wq for the
fully submerged cross beam clamped at each end, as shown in Figure 2.16a.
From this frequency, deduce the lumped mass for the single degree of freedom
model equivalent to the first mode of vibration.

1. Since ¥(z) as given by equation (5.12) satisfies the geometric constraints,
the harmonic, lateral displacement from equation (5.15) is

v(z,t) = v (1 — cos 27r7x) sin wot (5.27)

2. Since a single beam (N = 1) defines this dynamic system, the total
potential energy is due only to strain energy U. From v(z,t) above and equation
(5.18) it follows that

4 £ 4
1 4

for which sinwgt = 1 was used to obtain the maximum energy.

3. The maximum kinetic energy for this beam, computed from equations
(5.24) and (5.27) for sinwpt = 1, is

1 ¢ orx 2 3
Kmax = —ﬁwgwg/ (1 ~ €os ——) dz = ~mviwil (5.29)
2 0 14 4

4. When the energies of equations (5.28) and (5.29) are equated, then

/319.5E1
wo = W (5-30)

Now compare this frequency with that derived for this same problem mod-
eled previously in Example Problem 2.7 as a lumped mass, single degree of
freedom system. There, the equation for undamped motion without external
excitation was

192E71
3

which follows from equations (2.41) and (2.43). The total virtual mass of the
lumped system is m and is a fraction f; of the total virtual mass m¢, or

v=0 (5.31)

m = fiml (5.32)
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With the last two equations, the natural frequency from equation (5.5) becomes

[192ET

By equating the frequencies of equations (5.33) and (5.30), then f; = 0.370.
Note that this value of f; is tempered by the choice of ¥ (z). However, Den
Hartog (1947) points out that the exact frequency for this problem is only 1.3
percent lower than that of equation (5.30). Thus, lumping 37 percent of the
beam’s virtual mass at midspan is a good approximation in this case.

Table 5.2 System Parameters and Results for Ezample Problem 5./

Height of leg ¢ = 3180 in.

Depth of water d = 2880 in.

Leg, Young’s modulus (steel) E =30 x 10° psi

Leg outside diameter D =144 in.

Leg inside diameter D; = 140.25 in.

Leg pipe weight density (steel) ¥ = 0.283 Ib/in.?

Sea water weight density Y = 0.0375 Ib/in.3

Deck weight mqg = 1.02 x 107 1b

Second area moment, one leg I =n(D*- D})/4=2.114 x 10° in.*

Added mass coefficient Ca=1

Virtual weight per unit length, g = n7y,(D? — D?)/4
one leg (submerged) +1-7,7D?%/4 = 1417 Ib/in.

Actual weight per unit length, mog = 17,(D? — D?)/4 = 237 Ib/in.
one leg (above water)

Acceleration due to gravity g = 386 in./sec?

Length parameter, equation (5.37) ¢ = 897 in.
Length parameter, equation (5.38) ¢” = 296 in.

- 1/2
. 3.88x107*(1.86x10%—~1.02x 107
Equation (5.36): wp = [9.88><103+(0.545><103+26.4><103) = 1.36 rad/sec

Ezample Problem 5.4. Use the Rayleigh Method to calculate an equation
for the natural frequency in sway for the three-legged jackup rig shown in Figure
2.17. Then compare that frequency with wg computed by the Direct Method
based on the equation of motion derived in Fzample Problem 2.8. Use the
numerical parameters for this structure given in Table 5.2.

The solution using the four-step Rayleigh procedure is outlined below. It is
left to the reader to verify the analytical solution and numerical results.

1. Choose the mode shape 1(z) given by equation (5.13) for use in the
lateral displacement function v(z,t) of equation (5.15).

2. With v(z,t), calculate the maximum potential energy of the system based
on the sum of U and Vj of equations (5.18) and (5.23). Let N = 3 and approx-
imate the deck mass as a point mass concentrated at the top of the legs. This
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leads to

3 % 1 L ov\?
_ _1 v 34
Vinax 2/() EI (3$2)maxdx 2mdg/o (ax)maxdx (5.34)

3. Using the same function v(z,t), calculate the maximum kinetic energy
based on the sum of equations (5.25) and (5.26). The result is

3 g dv

1 ov

r=f

4. Compute the natural frequency by equating the energies of Steps 2 and
3, and cast the result in the following form:

 [(3x2EI/@ - mag) v/ (80)]” 5.30
wo = 3ml’ + 3mol” + my |
Here, the length parameters are defined by
3d ¢ 7d 4 2md
, 4t omd L 27d
E——S 5 St +16 sin — (5.37)
d 2rd
= —(e Q)+ Lsin T L gy 2d (5.38)

2 { 167 /

This same problem but without the dead weight effect of the deck was pre-
viously modeled in Ezample Problem 2.8 by equation (2.47), from which the
equation for undamped, free vibrations is deduced as

E
[3mfid + 3mo(€ — d) fy +ma] & + 366—;1; =0 (5.39)

When equation (5.2) is used with the last equation, the resulting frequency is

(5.40)

ky [ 36E1/¢3
wo = =

1/2
m | 3mfid+ Imo(f —d)fr + md:|
In the last two equations, 7 is the virtual mass per unit length of each submerged
leg, which is the sum of its actual mass per unit length /g and its added mass
per unit length, or

M = g + CApZ-D2 (5.41)
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Several important features about the two system models can be deduced
from their respective frequencies as given by equations (5.36) and (5.40). Those
features are summarized as follows:

1. The Euler buckling load for this three-legged structure is Py = 372EI /2.
The Rayleigh model frequency of equation (5.36) shows that increasing the deck
load reduces the effective bending stiffness of the legs. In fact, the structure
buckles if the deck load is sufficiently high, a critical condition for which wg = 0
and mqg = P, E-

2. If Pg > mgg, then the bending stiffnesses for the two models are nearly
the same, a result deduced by comparing the numerators of equations (5.36)
and (5.40). That is, the coefficients of ET/¢3 in these respective equations are
3r*/8 = 36.5 and 36.

3. If Pg > mgg and the deck mass is much greater than that of the legs,
then the system mass is simply mg for both models. However, such a design is
probably unrealistic.

4. If the deck mass is of comparable magnitude to that of the legs, then the
Rayleigh model shows that the virtual mass of the legs has a significant influence
on wy. For instance, in the special case where ¢ ~ d, then the parameters of
equations (5.37) and (5.38) become: ¢’ = 3¢/8, ¢ = 0, and the virtual mass of
the legs becomes m = 3m f1£. When the denominators of equations (5.36) and
(5.40) are compared, then 3m{’ = 9ml/8 = 3mfif, or fi = 0.375. This justifies
the assumption in Erample Problem 2.8 in which 37.5 percent of the virtual
mass for the submerged legs, together with 37.5 percent of the actual leg mass
above water, was lumped with the total mass of the deck to formulate the single
degree of freedom model. The recommended frequency expression for this case
is thus

(3n2EI/€2 — mag) n2/(86)] /"
3(0.375)l 4+ my ’

wo =

t=d (5.42)

in which the virtual mass for each of the three legs is given by equation (5.41).

Realistic numerical data for a jackup platform with three steel pipes for legs
are listed in Table 5.2. Listed also is the system frequency computed from equa-
tion (5.36): wo = 1.36 rad/sec or fy = 0.217 Hz. From the numerical values in
the numerator of wy, it is observed that the deck weight has a small effect on
the stiffness bending stiffness. However, numerical values in the denominator
indicate that the leg mass is a significant portion of the system mass. In con-
clusion, it is noted that the fundamental period of oscillation of this platform is
To = 1/ fo = 4.61 sec, which is well below the 12 to 15 sec periods of the highest
energy offshore waves in a typical sea state.

5.2 FREQUENCIES FOR NONLINEAR STRUCTURES

In the last section it was demonstrated that for linear structural models with
small motion, the free vibration frequency was independent of the amplitude
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of motion. Using first order perturbation theory, it will now be shown that
for structures with nonlinear restoring forces, the free vibration frequency will
be dependent on the amplitude of motion. In both the linear and nonlinear
systems considered here, this amplitude of free vibration is imposed as an initial
condition for the motion.

Consider the free, undamped motion of a virtual mass m with the indepen-
dent coordinate v and with a nonlinear restoring force given by equation (2.69).
The corresponding equation of motion is

mi + kv + ksv® =0 (5.43)

Recall that the restoring force term in the last equation was used to model the
line stiffness of a spread moored ship. See Erample Problems 2.10 and 2.11.
Now rewrite this last nonlinear equation as

b+ wivterd =0 (5.44)

in which w3 = k;/m is the square of the natural frequency if k3 = 0, and
e = ks/m. It is assumed that e is always small enough so that ev3 « w3v for
all solutions v = v(t).

An approximate solution to equation (5.44) can be derived as follows using
classical perturbation theory (Cunningham, 1964). At time t = O the mass is
displaced by the amplitude A and then released. At the instant of release, the
initial velocity is zero. These two initial conditions are expressed as

v(0) = 4; 00y =0 (5.45)

Now assume that the solution to equation (5.44) and its corresponding frequency
w are

v = vo(t) + evy () (5.46)

O = wi+ef(A) (5.47)

In equation (5.46), the quantity vg(f) is a time-dependent displacement and
should not be confused with the symbol vy used for the constant displacement
amplitude in Section 5.1. When the quantity v;(t) and the amplitude func-
tion f(A) are combined with the governing equation (5.43) and the result is
regrouped in ascending powers of e, the result is

(o + &%) € + [B1 + @%vy — f(A)vo + vi]e! +o(e?) =0 (5.48)

The coefficients of € and e! are each equated to zero and terms of higher in
e, or o(e?), are assumed to be small enough to be neglected. The result is the
following two linear differential equations:

Vo + @%vg =0 (5.49)
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1+ %v = f(A)v — v (5.50)

A particular solution to equation (5.49) that satisfies the initial conditions
of equations (5.45) is

vp = Acos &t (5.51)

This latter solution is then inserted into the right side of equation (5.50) and
the following identity is used:

cos® Gt = Z cos Wt + i cos 3at (5.52)

This procedure leads to the general solution to equation (5.50), or

3
1

A3 ¢
v1 = Bj cos Ut + Bysin &t + —— cos 30t + — | A f(A) — S A® (5.53)
32w 20
where By and B; are constants. In this solution, the last term on the right
is called the secular term, and this term is observed to become unbounded as
t becomes large. Unboundedness is not physically possible for this system so
restrained, and therefore the coefficient of ¢ in the secular term must vanish.
Excluding the trivial case for A = 0, this reasoning leads to
3
f(4) =1 4° (5.54)
When this amplitude function is substituted into equation (5.47), with e =
k3/m, then

5= (w4 28 2 . 5.55

W= (wo + Py ) (5.55)
This result clearly shows that the frequency of the nonlinear system increases
due to the addition of the cubic restoring force term, assuming that k3 > 0, and
that this increase depends on the initial system displacement A. However, if
ks < 0, then @ < wy.

Next vy is calculated from equation (5.53) by imposing the zero initial con-
ditions v;(0) = 91(0) = 0, with which the constants are evaluated as B; =
—A/(325%) and By = 0. When this result and the solution for vg, equation
(5.51), are used with equation (5.46), the first- order perturbation solution be-
comes

3

v = Acos &t — k3A~2 (cos @t — cos 3wt) (5.56)
32ma

This result shows that the free oscillation amplitude for the counterpart linear
system (k3 = 0) is distorted by a frequency component 3& when ks > 0.

Ezample Problem 5.5.  Calculate wg and & for both surge and sway for
the spread-moored ship described in Ezample Problem 2.10. Assume that the
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ship is displaced first in the surge direction by an amplitude of 3.0 ft from
its equilibrium state and then is released from rest. Then repeat the same
calculation for the sway state. The numerical values of m, k;, and k3 for each
motion are given as the coefficients of equations (2.72) and (2.73). The results
for surge motion are

[k 20,300
wo =\ =\ 3105 = 0.240 rad/sec

N 3(400)32
- 2 HWWM)OT
@ \/0.240 + 1(3.52 x 10°) 0.255 rad/sec

The results for sway motion are
12,700
wo = ”__—6.12 10 0.144rad/ sec

. 3(950)32
= . 2 — = U. d
@ \/0 144 +4(6.12>< 105 0.177 rad/sec

These results show that, although the surge frequency is increased by only
about 6 percent by the nonlinear restoring force term, the sway frequency is
increased by a significant amount, 22.9 percent. The calculation of the displace-
ment responses using equation (5.56) is straightforward.

Ezample Problem 5.6. Investigate the general behavior in free oscillations
of the nonlinear system modeled by equation (5.43). Consider two classes of
restraints: the hardening restraint for which the slope of the restoring force
q(v) = k1v + k3v® increases with v and k3 > 0; and the softening restraint for
which the slope of q(v) decreases with v and k3 < 0. Softening restraint occurs
in a mooring line with clumped weights attached to it at the sea floor, where
these weights lift off the sea floor when the side displacement of the tethered
structure is sufficiently large (Wilson and Orgill, 1984). In particular, choose
several fixed ratios k3/k;,both positive and negative, and plot the free vibration
amplitude A vs. the frequency ratio &/wg. Use ratios of k3/k; in the range
given for the moored LST in Example Problem 2.10 where k3/k; ranges from
0.02 ft=2 to 0.1 ft—2.

For ease of plotting and discussion, the governing equation (5.55) that relates
frequency to amplitude is recast in the following form:

|4k (&
A= ‘/3,63 (w% —1) (5.57)

The latter equation shows that for a hard restraint with k3/k; = 0.1 and 0.02,
then A is a real number only for &/wg = 1. These results are shown in the right
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half of Figure 5.3. For a soft restraint with k3/k; = —0.1 and —0.02, then A
is a real number only for &/wy < 1. These results are shown in the left half of
Figure 5.3.

S

FREE VIBRATION AMPLITUDE, A4 ft
[

soft q®) hard q»)

0 ! ] i ] !
0.7 0.8 0.9 1 1.1 1.2 13

FREQUENCY RATIO, &/wg

Figure 5.3  Free vibration frequency-amplitude behavior for a nonlinear structure.

There are several general conclusions for this study. First, for the same
absolute value of k3/ki, and the same percent change in &/wq from unity, the
results show that the soft restraint allows for smaller amplitudes than the hard
restraint. Second, as &/wq extends beyond the ranges shown, the results become
increasingly inaccurate because the perturbation solution begins to break down.
Strictly speaking, these solutions are valid only for & arbitrarily close to wyq.
Third, the vertical line at &/wg = 1 in Figure 5.3 is the condition reached as
|k3/k1|approaches zero. Here the amplitude of oscillation becomes independent
of frequency, as is characteristic of linear systems.

5.3 RESPONSE FUNCTIONS FOR LINEAR STRUCTURES

Sections 5.1 and 5.2 illustrated methods for calculating the fundamental, free
vibration frequency of several one degree of freedom structural models, char-
acterized by either linear or nonlinear restoring forces. The remainder of this
chapter makes use of these frequencies to compute the solutions v = v(¢) of
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these models in response to applied environmental loads p;(¢). The governing
equation considered now is of the linear form

mb + 10 + kv = p1(t) (5.58)

where it is recalled that the subscript (1) on the parameters is the designation
for a single degree of freedom system. In this section, v(t) is computed for a
harmonic load and an impulsive load. Then the response function is derived for
a general loading function.

Harmonic Response Function

The harmonic response function H(w), sometimes called the complex fre-
quency response function, is derived from equation (5.58) in the following way.
Choose a harmonic loading function of constant magnitude pg and frequency w,
or

p1(t) = poe?™* (5.59)
Then choose a harmonic solution of equation (5.58) in the form
v(t) = %)-H(w)ej‘”t (5.60)
1

After substituting equations (5.59) and (5.60) into equation (5.58), it follows
that

(52mw? + jerw + k)l H(w) = kyed“t (5.61)
Since j2 = —1, the harmonic response function is
H(w) = ki (—muw? + jeyw + ki)t (5.62)
and its modulus is
|H(w)| = [HW)H*@)]'/2 = k1[(ky — mw?)? + w7/ (5.63)

Note that for a linear structure in which the independent coordinate is the
rotation @ instead of v, the frequency response function is similar in form to
equation (5.62), but the constants would have a different meaning (Jy would
replace m, 6 would replace ¢ and so on).

In some applications it is convenient to recast H(w) and its modulus in
terms of the system’s undamped natural frequency wy and the damping ratio

¢, defined by

kl C1
=4/ = 5.64
wo ™ ¢ kim (564)

In terms of these latter definitions, the modulus of equation (5.63) becomes

—1/2

|H(w)| = ll - (“’%)T +4¢? (50)2 (5.65)
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Figure 5.4 Harmonic response function for a linear system with small damping.

The utility of this form will become apparent later in the analysis of random
motion.

Consider the four regimes of response as deduced from equation (5.65). Note
that the behavior of |[H(w)| is the same as that for |v(¢)| of equation (5.60),
since the latter quantities differ only by the multiple pg/k;. For the first regime,
0 < w/wo < 0.1, the case in which py(t) is applied very slowly. Then the system
response is essentially static, H(w) — 1, and

Z—(l) |H(w)| — Z—? = peak v(t) (5.66)
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For the second regime, 0.1 < w/wo < 0.5 and the response is quasi-static, or v(t)
is amplified only a little above its static value. For the third regime, w/wg — 1,
the response is in resonance and the peak response v(t) is large compared to
its static value, especially for ¢ near zero. In the fourth regime, w/wg — o0
(> 10 for practical purposes) and the peak system response approaches zero for
all damping ratios . The latter three response regimes for |H(w)| as a function
of w/wy for several values of ¢ are shown in Figure 5.4. The usual range for
structural damping is 0.02 < ¢ < 0.10.

For the case of structural excitation by a simple harmonic water wave, how-
ever, the response amplitude curves of Figure 5.4 become distorted and thus
should not be used directly. This distortion occurs because the wave loading
amplitude py is not independent of the wave frequency w. Recall from equation
(4.32) that pg = H - G¢ where H is the given wave height and Gy is the transfer
function which is dependent on w.

Impulse Response Function

The impulse response function h(t) is the solution to equation (5.58) for an
impulsive load such as a swift kick or a hammer blow. Define the impulsive load
as

p(t) = C6(¢) (5.67)

where C' =11b-sec or 1 N's. The Dirac delta function 6(¢) is defined as zero for
all time except at ¢ = 0; and in addition has the integral property

’ §(t)dt = 1 (5.68)

Using this loading, the impulse response function is derived as follows. Since
h(t) is a solution to equation (5.58) for p; () = 6(¢), then

mh(t) + erh(t) + k1 h(t) = 8(t) (5.69)

For t > 0, then 6(¢) = 0 by definition, and the general solution to the homoge-
neous form of equation (5.69) is

h(t) = (Cssin wgt + Cy cos wqt)e w0t (5.70)

where C3 and Cy are arbitrary constants. The damped frequency in terms of
wp and ¢ of equations (5.64) is

wa = wo(1 — ¢3)M/? (5.71)

One can verify by substitution using equations (5.64) and (5.71) that equa-
tion (5.70) is a solution to equation (5.69). The system is not displaced at
t =0, so h(0) = 0. With equation (5.70), then C4 = 0. Next h(0) is found by
differentiating equation (5.70) and setting ¢ = 0. The result is

h(0) = wyCs (5.72)
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This value of A(0) must be compatible with equations (5.69) and (5.68). This
is accomplished by integrating equation (5.69) term by term over the impulse
time ¢, the interval from ¢t =0~ tot = 0%, or

mh(e) + erh(e) + by / " htyt = / ” st (5.73)

As g — 0, the right side of the last equation approaches unity by definition,
equation (5.68); h(e) — O since the system is not displaced initially, and the
integral on the left side vanishes. Thus A = 1/m. With equation (5.72), C3 =
1/(mwgq), and with equation (5.70) the solution for the unit impulsive force
becomes

e«cwot

h(t) = sin wgyt (5.74)

mwy

Typical units for h(t) are inches per pound-second or meters per newton-second.
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Figure 5.5 Impulse response function for a linear, lightly damped system.

Shown in Figure 5.5 is a sketch of h(¢) for light damping or 0 < ¢ £ 0.1. The
corresponding period of free vibration is given by Tp = 27 /wq. For ¢ < 0.1, the
frequency ratio lies in the range 0.994 < wy/wp < 1.0, indicating that wy =~ wy
is a good approximation for lightly damped linear systems.

Convolution Integral

Consider the response or solution to equation (5.58) for an arbitrary loading
p1(t). At a particular time ¢ = 7, apply an impulsive load of magnitude p; (1)
over the time interval d7. This impulsive load is depicted as a shaded portion of
the function p;(t) in Figure 5.6. The response dv observed at time ¢ is simply
a multiple of the unit impulse response function over dr, which is

dv = pr1(r)h(t — 7)dT (5.75)
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For the last equation, note that the time between the application of the unit
impulse and observation of its response is (¢ — 7) instead of ¢ as in equation
(5.74), where the impulse was applied at 7 = 0. Define the arbitrary loading
p1(t) as zero for all times less than zero. Thus the total response due to all
impulses applied in the interval 0 £ 7 £ t is given by integrating equation
(5.75) over this time interval. Using equation (5.74), the result is

¢
v(t) = miwd/o p1(T)e o) sin wy(t — 7)dr (5.76)
P04
@)
0 , >
h———— 7 ———] "

Figure 5.6 Representation of an arbitrary load history.

This is a particular solution to equation (5.58) and is the form used to eval-
uate the responses of offshore structures in the present text. It is one form
of the convolution integral, sometimes called the Duhamel integral. Equation
(5.76) does not include the two independent solutions to the homogeneous form
of equation (5.58) for two reasons. First, their inclusion would necessitate the
use of initial conditions v(0) and ¥(0) to obtain the complete response solution,
and those initial conditions are rarely if ever known for an offshore structure.
Second, those homogeneous solutions die out rather quickly due to structural
and external damping. It is appropriate to employ the Duhamel integral as
given by equation (5.76) in computing steady state dynamic responses of off-
shore structures to the highly variable environmental loading conditions. The
Duhamel integral in the above form will be used in the next section for earth-
quake motion analysis and in later chapters for random motion analysis.

5.4 RESPONSE OF LINEAR STRUCTURES TO
EARTHQUAKE LOADING

Consider the motion of the fixed-legged platform shown in Figure 2.15. The
equation of motion for this platform with horizontal base or sea floor earthquake
excitation was derived in Chapter 2 as equation (2.36), which is repeated here
with the negative sign on the right side omitted:

mi + ¢c19 + kv = mi, (2.36)

In this simplified model, the horizontal ground acceleration ¥, gives rise to an
exciting force of magnitude p;(t) = m¥,. Assume that the dynamic response
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is given to sufficient accuracy (without consideration to initial conditions) by
equation (5.76), or

¢
v(t) = L / (1)~ gin wy(t — 7)dT (5.77)
0

W

For a structure with known characteristics wg and ¢, then wy is calculated
from equation (5.71). Given an earthquake measurement of 7y, the response
of this structure can then be calculated from the last equation by numerical
integration. Such results are available in the open literature (Wiegel, 1970).
For instance, the measured time history of 4, for the SOOE component of the
1940 El Centro earthquake shown in Figure 2.14 was used with equation (5.77)
to calculate several response histories v(t), one for each fixed pair ({,wq). For
each response history there is a maximum value of structural displacement vax

which occurs once during the time of excitation. Such a result is shown in Figure
5.7.

(G, ®) fixed

max

Figure 5.7 Typical time history of structural displacement resulting from horizontal
ground motion (an earthquake).

Since ground velocity is commonly used as a measure of structural damage
(Wiss, 1981), a peak ground velocity based on vpmax is defined for this purpose.
This is the pseudovelocity S, given by

Sv = WOVYmax (578)

A typical plot of the pseudovelocity is shown in Figure 5.8 as a function of the
structure’s period, Ty = 27 /wyg. It is noted that S, is strongly dependent on the
structural damping ¢. From plots such as these, the peak horizontal shear load
fmax at the sea floor, and the peak overturning moment M. can be estimated
from

fma.x - klvma.x (579)

Mmax = hOfma.x = hOkl'Uma.x (580)

where hg is the height of the platform.
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Other factors involved in designing offshore structures for earthquake resis-
tance not included in this simplified approach are inelastic structural behavior,
ground-structural interactions, and the interactions of vertical and horizontal
motions. Key references on these effects are included in the brief discussions of
Gould and Abu-Sitta (1980) and in the more extensive analyses of Clough and
Penzien (1993). There is some evidence, however, that the simplified approach
just presented is conservative in that it often overpredicts the motion of the
structure.
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Figure 5.8 Pseudovelocity response of a single degree of freedom structure to the El
Centro earthquake, south eastern component, May 18, 1940.

Ezample Problem 5.7. For the jackup rig shown in Figure 2.17, estimate the
critical responses to the horizontal motion of the 1940 El Centro earthquake for
which ¥, is given in Figure 2.14. The structural data needed for this calculation
are given in Ezxample Problems 2.8 and 5.3 as: hg = 3180 in., wg = 1.36 rad/sec,
and k; = 6.82 x 10* 1b/in. The structural period is Ty = 4.61 sec.

From Figure 5.8, the values of S, for ( = 0 and 0.1 are about 12 and 8 in. /sec,
respectively. From equations (5.78)-(5.80), the corresponding upper and lower
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limits for maximum displacement, horizontal shear load, and overturning mo-
ment are thus

Umax = 8.82 in. and 5.88 in
Frnax = 6.02 x 10° b and 5.56x10% 1b
Mpax = 1.19 x 109 in.-1b and 1.74 x 10° in.-1b

It is noted that these numerical results are quite sensitive to small changes in
the structural period. That is, since Tp lies in a trough, a 10 percent increase
or decrease in Ty would increase each of these calculated responses by about 50
percent. To avoid the many peaks and troughs that typify the S, vs. Tp curves
calculated directly from earthquake data, such curves are often smoothed in a
statistical sense before being used for design purposes.

5.5 RESPONSE CHARACTERISTICS OF NONLINEAR
STRUCTURES

It was shown in Chapter 2 that offshore cable-stayed installations such as spread
moored ships, floating platforms, and compliant towers all have nonlinear re-
straint forces. Under some special conditions these structures may be subjected
to disturbing forces that are approximately harmonic. For instance, Wilson
(1951) observed erratic surge oscillations of a ship moored in a harbor. The
ship’s excitation force was caused by harmonic harbor waves at a frequency
close to the natural frequency of oscillation of the water within the harbor
basin. The oscillation of the harbor waters was due to the waves in the adjacent
sea.

For a cable-stayed offshore structure, neither the wave-induced exciting force
amplitude pp nor the excitation frequency w ever remains constant. However, to
gain some physical insight about the response of the inherently nonlinear cable-
stayed structures, the following undamped structural model is investigated in
which pg and w are constant.

mi + k1v + k3v® = pg cos wt (5.81)
Responses to Harmonic Excitation

Solutions for this nonlinear structural model are now derived using the per-
turbation technique discussed in Section 5.2. Cast equation (5.81) as

B+ wiv + eksv® = epg cos wt (5.82)

where e = 1/m is arbitrarily small. A steady-state solution to equation (5.82)
is sought where this solution has the same frequency of oscillation as the wave
excitation frequency w. It is required that both this solution v(¢) and the fre-
quency w not differ greatly from their corresponding values values vp(t) and wo
of the linear system (k3 = 0). That is

v =p(t) + evy(t) (5.83)
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w? = wd + eg(a) (5.84)
Here v;(t) is the response correction function and g(a) is the amplitude function,
both arising from the presence of k3. The procedure for calculating v;(¢) and
g(a) follows that of Section 5.2, starting with equation (5.46). Also, the two
initial conditions here are those of equations (5.45). Note that w replaces the
symbol & of that previous formulation.

The procedure is summarized. When equations (5.83) and (5.84) are substi-
tuted into equation (5.82), the coefficients of €® and e! that result after some
algebra are each equated to zero. When the trigonometric identity of equation
(5.52) is applied and the higher order terms involving €2, e3,... are ignored,
the result is two linear differential equations in vy(t) and v;(¢). A steady-state
solution to each is found, they are superimposed according to equation (5.83),
and the initial conditions v(0) = @ and 0(0) = 0 are applied. The secular term
in this solution, which is one of the terms of v1(¢), is eliminated by equating
to zero the coeflicient multiplying the variable ¢. This procedure is physically
appropriate since it preserves the boundedness of the solution as time increases.
The result is

g9(a) = %kﬁz - %Po (5.85)
With e = 1/m and this last equation combined with equation (5.84), the sought-
after relationship among the system parameters is derved as

m(w? — wd)a + po = 2k36,3 (5.86)
This last result can be compared to the result for free oscillations. For free
oscillations, @ = A, po = 0 and w = &, for which equation (5.86) is identical
to equation (5.55), as it should be. Also it is not difficult to show that the
forced vibration response v(t) is given by equation (5.55), provided that w is
substituted for wg. Of course in the present case the amplitude @ depends on
the magnitude of the excitation pg, as well as on the system’s frequency and
stiffness. As for the previous case of free oscillations, the forced oscillation
response is distorted by a frequency component 3w.
Equation (5.86), the key result needed to study the behavior of this nonlinear
system, is recast in the following two forms using w3 = k1 /m :

4k (W2 4k

_3 1 ~ 1 Po

—c=|=-1lja—c—>—== .

@~ 3 T (w% ) a-z s b 0 (5.87)
KA — (92 -1)A-1=0 (5.88)

The nondimensional parameters of the latter equation are

ki_ 3 k3 (100)2 w
o TR (5.89)
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In these nondimensional parameters, pg/k; is the static deflection of its linear
system counterpart for a constant excitation force pg; and K is interpreted as
the nonlinear stiffness parameter, assuming that kq, py, and wg are constant.
For instance, when K = 0, the amplitude of motion is equal to that of the
undamped linear system previously derived. That is, |A| of equation (5.88) is
equal to |H(w)| of equation (5.65) for K = { =0.

Ezample Problem 5.8. 1In the San Diego harbor a ship moored with multiple
lines was observed to oscillate or gallop in an erratic manner, even though the
harbor waves were reasonably regular and were of normal height. The initially
rather taut mooring lines were then tightened further, and after that this ship
ceased to gallop and oscillated in the same regular manner as the ships moored
nearby. Can the initially erratic ship motion and its subsequent correction be
explained using a simple, nonlinear dynamic model?

Consider the simplified nonlinear dynamic model of the ship-wave system
described by equation (5.81) in which a single incident harbor wave produced
a hull force of amplitude pg at a excitation frequency w. The connection of the
ship’s response amplitude @ to w and the restraint constants is equation (5.86).
The task is to investigate the nature of the ship’s response amplitude to the
system parameters.

The mathematical question is: for what combination of system parameters
does @ of equation (5.86) have one or more real roots? If there is only one
real root for @, then the motion v(t) is given by equation (5.56) with & =
w, and is quite regular, without gallops. If more than one real root exists,
then the motion could pass from one amplitude to another, giving rise to the
observed erratic behavior of the moored ship. Fortunately, the nature of the
roots for a third-order reduced cubic polynomial in @, such as equation (5.87),
was thoroughly studied early in the sixteenth century, and the results presented
below are available in standard algebra texts (Rosenbach et al.,1958). Rewrite
the latter equation in the form

@ +aa+pB=0 (5.90)
where « and 3 are real, found by comparing equations (5.87) and (5.90). Define

1 3, 1o

R= T + Zﬂ (5.91)
where R determines the types of roots of equation (5.90). That is, there are
three distinct real roots, at least two equal real roots, or a single real root for
R negative, zero, or positive, respectively. With the values of « and 3 defined
by equation (5.87), R can be cast in terms of the present system parameters.
The three types of roots corresponding to R positive, zero, and negative are
summarized. There are three distinct real roots if

W W) > e

P (5.92)
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There are at least two equal real roots if

1,5, o 81

_ 2

7 (@~ @) = g (5.93)
There is only one real root if

Lo 213 81 o

E(w —wp)” < Tem3bo (5.94)

To explain the ship’s behavior, two reasonable assumptions are made. First,
the wave excitation parameters py and w remained constant, or nearly so, from
before to after the mooring lines were adjusted. Since the ship’s mass m re-
mained constant, then the right sides of equations (5.92)-(5.94) also remained
constant. Second, the inequality given by equation (5.92) was true before the
line adjustment since multiple real roots a lead to erratic motion, which is ex-
plained in more detail in the next section. This inequality (5.92) implies that
w > wg. The equality condition of equation (5.93) can be eliminated because
such exactness is rarely possible in the physical world.

After tightening the mooring lines, k; definitely increased; and k3 decreased
somewhat because the static restraint stiffness curve ¢(v) vs. v would tend to
straighten out as the initial slope of this curve increased. For a small increase in
k1, the w3 term increased, causing the term in brackets on the left of equation
{(5.92) to decrease. Since this latter term is to the power three, its decrease
more than offset the increase of 1/ks. The inequality of equation (5.92) with
its multiple amplitudes @ thus reverted to the inequality of equation (5.94), the
condition of a single amplitude a with regular oscillations.

Jumps

The erratic changes or jumps in the response amplitudes for the nonlinear
model described by equation (5.81) can be predicted from the | 4| vs. Q behavior
of equation (5.88). This behavior is shown in Figure 5.9 for two values of K.
Several observations can be made about these curves. First, as K is decreased at
constant €2, as from the solid curves to the dashed curves, the response behavior
approaches that of the undamped, linear system response [H(w)| of Figure 5.4.
Second, as K is increased at constant €2, the response curves lean more to the
right. Third, multiple amplitudes exist for values of Q > Q,, where 1, is
the value of Q at the knee of each curve. Fourth, if linear damping had been
included in the nonlinear model, equation (5.81), then that effect would have
shown up as the amplitude-limiting, small dashed line shown as the upper knee
for KX = 0.001, around the point labeled 2’ (Stoker, 1963).

Consider an example based on Figure 5.9 in which a particular set of con-
ditions can lead to a jump in response amplitude. For a wave load of constant
magnitude pg and for K = 0.001, suppose that the wave excitation frequency
initially given by w = 1.2wy is decreased very slowly. The response amplitude
follows the path from point 1 to point 2 on the lower knee of the solid curve,
at which point the amplitude must almost double in magnitude by jumping to
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point 3 to allow for a subsequent decrease in w. The response amplitude then
decreases in a regular manner along the solid curve to point 4.
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Figure 5.9 Response amplitudes and jumps for excursions in excitation frequency at
constant pg.

Again refer to Figure 5.9 and consider a second example for which pg is
constant and K = 0.001. Assume light damping with an initial excitation
frequency w = 0.8wp. Then w is increased very slowly from point 1 along this
solid curve to point 2 at the upper knee of the damped amplitude curve. If
there is a subsequent increase in w, this must be accompanied by a decrease in
amplitude of about a factor of ten, or a downward jump from point 2 to 3.
Then smooth amplitude behavior persists along the same curve to point 4.

Because of system inertia it takes a finite time for a jump in amplitude to
take place. If the total excursion time for the excitation frequency is much
larger than 2m/wy, then the time required for a jump is of the order of 27 /wp.
This is demonstrated in the problem of the oscillating buoy, which is discussed
in Section 5.6.
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Figure 5.10 Jump responses for excursions in pg at constant excitation frequency.

Ezample Problem 5.9. Discuss the possibility of erratic jumps in the re-
sponse amplitude of the moored LST described in Erample Problem 2.10. As-
sume that k1 /k3 = 30 ft2 and that the amplitude of the wave load increases very
slowly at a constant excitation frequency, where pg/k; changes in the range of
0.4 to 0.6 ft. Let ¢ = 0.05.

Shown in Figure 5.10 are the amplitude-frequency plots for this ship, or the
|a| vs. w/wp curves based on equation (5.87). The two curves shown, one for
the smaller load and one for the larger load, were generated by calculating the
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real roots of @ for 0.7 < w/wp < 1.3. As in Figure 5.9, the response amplitude is
negative or opposite in sign to pg to the right of the py = 0 line and is positive to
the left of this line. The two branches of each pg/k; curve were connected by the
broken lines to show the approximate effects of light damping, or { = 0.05. The
estimated peak amplitude of each was chosen as ten times the respective static
response, the same amplification calculated for its linear counterpart, Figure
5.4. Damping is discussed in detail by Stoker (1963).

With the damping shown and with a value of w/wg = 1.15 for the lower
load ratio of pg/k; = 0.4 ft, the system oscillates initially with an amplitude
of @ = 1.3 ft at point 1. For this lower load ratio and with system damping,
the response amplitude is single-valued at this frequency. As the load ratio is
increased to po/k1 = 0.6 ft, the response amplitude increases to @ = 2.85 at the
knee of the solid curve, or point 2. However, a response amplitude of @ = 5.4
ft could also exist on the upper branch of the solid curve. It follows that there
can be an upward jump in amplitude response between points 2 and 3 as the
excitation load ratio is increased. Furthermore, there can be a downward jump
from points 3 to 2 and then a smooth transition to point 1 if the excitation load
ratio were gradually decreased to its initially lower value. There is of course
the possibility of jump behavior at load levels between those given, not only for
w/wg = 1.15 but for larger values of the forcing frequency as well. The two load
level ratios chosen, however, sufficiently illustrate the combination of system
parameters that can lead to erratic jump responses in this nonlinear system.

Subharmonics

The preceding studies for the nonlinear structure modeled by equation (5.81)
showed high amplitude responses or resonance for excitation frequencies w near
wyp. This is not too surprising since resonance for w near wq is well-known in its
linear system counterpart (k3 = 0) and was shown in Figure 5.4. In nonlinear
systems, however, resonance near wy may sometimes occur when w is not near
wp. For instance, if high amplitude responses also exist near wp = w/n where
n=2,3,..., then the response is defined as a subharmonic of order 1/n. Such
responses do not occur in linear systems, but exist under special conditions in
nonlinear systems such as cable-stayed offshore structures in seas with regular,
harmonic wave components.

The subharmonic response most commonly observed is for n = 3, or the
one-third subharmonic (Wilson and Awadalla, 1973). There are several alterna-
tive, classical methods that can be used to show the existence of this and other
subharmonics (Stoker, 1963). For instance for w = 3w, Cunningham (1964)
applied first-order perturbation theory to equation (5.81) in the same, straight-
forward manner illustrated previously in this chapter. Cunningham’s results are
summarized as follows. The necessary relationship between the subharmonic re-
sponse of amplitude a, and its frequency of oscillation w, (close to wg), when
the system of equation (5.81) is excited by the force p;(t) = pg cos 3w;t, is

W W2t 3ks dmasw?  32a2m2wt
s T WoWs - + 2
Po Po

= Tog,3 P0 (5.95)
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Define the following three nondimensional parameters which will aid in inves-
tigating this last result relating the one-third subharmonic response amplitude
to the excitation frequency w = 3ws;.

w 3 ks (po)’ ki
Q — -s. KS —_ v i) H AS = — Qg 596
8 wo ’ 128 k1 <k1> Do “ ( )

Here, the frequency parameter €2, is of order unity and the stiffness parameter
K, is arbitrarily small (of order £). When these nondimensional parameters are
used with equation (5.95), the result is

08 — (14 32K, A2 + 4K, A02 — K, =0 (5.97)
1.5 T T T T T
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Figure 5.11 Effect of nonlinear stiffness on the amplitude and frequency of the
one-third subharmonic response.

It is observed that the last equation is cubic in 92 and quadratic in A, and
thus for a fixed value of K, the amplitude-frequency behavior can be deduced.
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Such results are shown in Figure 5.11. For accuracy and consistency with first-
order perturbation theory, neither K, nor €, should exceed the values shown.
The knees in these curves indicate that for each K, there is a minimum fre-
quency below which the subharmonic cannot exist. This minimum, derived
from equation (5.97) using dQ,/dA; = 0, yields the following equation from
which the critical points (roots) s = €, can be computed:

Qb -t - —;—KS =0 (5.98)

With these roots, the critical amplitudes A, = A,, are computed from

1

An approximate formula for the critical frequencies at the knee of each curve
of constant K can be derived by substituting €2, = 1 + ¢ in equation (5.98),
expanding the frequency terms, and ignoring terms in €2, €3,... . The result is

7
Qo —K, .10
1+ 16K (5.100)

This is an important result because it shows that, for hardening restraints where
k3 > 0, the minimum frequency for a one-third subharmonic to exist is just a
little higher than wg.

Other important results by Cunningham (1964) are summarized. First, the
subharmonic motion is stable only in the portions of the curves of Figure 5.11
that have positive slopes. No sustained subharmonic motion exists in the region
below the broken line shown in this figure. Second, the effect of including linear
damping of the form ¢;% in the nonlinear model, equation (5.81), is to decrease
Ay at constant K, and {Q,, and to eliminate subharmonic motion at some cutoff
value of Q, = Q. > Q,, > 1. The value of 2. decreases as the damping
increases. Third, for a subharmonic of order 1/n to exist for equation (5.81)
where the excitation frequency is nwy, the highest power of v in the restraining
force polynominal must be at least of order n. Thus, a one-fifth subharmonic
response cannot exist for equation (5.81), but a one-half subharmonic response
can.

In summary, it is clear from these classical results for a nonlinear system that
a resonance response amplitude A, of frequency w, (near to but a little greater
than wo) exists for excitation frequencies w = 3w,. Experimental evidence for
moored ship responses that support this analysis was presented by O’Brien
and Muga (1964) and by Wilson and Awadalla (1973). This evidence will be
discussed in Chapter 10.

5.6 NONLINEAR RESPONSES FOR A SALM BUOY

In practice, the responses to wave loading of offshore structures with nonlinear
restraints are generally calculated numerically from the governing differential
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equations of structural motion. Some possible responses such as jumps and
subharmonics were discussed above, based on closed form solutions to those
equations. Such possible responses greatly aid in the interpretion of computer-
derived numerical results, as the following example will demonstrate.

Many software packages are available to carry out numerical solutions. A

popular package is Mathematica™ (1999). For solutions to nonlinear dynamics
problems, such software usually employs a step-by-step integration method,
which was used in the following problem also. With this method, the response
was evaluated at successive increments of time where the restraint and drag
force terms were taken as constant during each interval and then updated at
the end of each interval. Clough and Penzien (1993) and Paz (1980) discussed
this basic method in the context of nonlinear structural dynamics.

The following problem is a rather comprehensive one. It begins with a phys-
ical description of the buoy, proceeds with a careful formulation of its dynamic
model with its accompanying assumptions, and concludes with a discussion of
numerical results relative to the closed form responses derived previously in this
chapter.

Physical Description and Dynamic Model

A type of open sea mooring system used to load crude oil into tankers is the
single anchor leg mooring (SALM) buoy. One of a wide variety of such buoy
designs is shown in Figure 5.12: a buoy with a long, upright cylinder stabilized
by cables to sea floor anchors and held in place by a short bottom chain to the
pipeline end manifold (PLEM). This PLEM is anchored to the seafloor with
pin piles. When the oil is not flowing through the flexible hoses to the ship,
the tanks within the buoy are full, and the buoy has just sufficient buoyancy
to keep it afloat. Then the tension in the bottom connecting chain is very
slight. It is under these conditions that the rotational motion of the buoy is
now analyzed. The chosen excitation is that of a single, harmonic, linear water
wave. Responses to a range of excitation frequencies are sought.

The mathematical model of the upright buoy with its geometry and its
loading are defined in Figure 5.13a. The buoy is treated as a rigid body rotating
at angle 6 about a frictionless pin at its base. The free body sketch of the buoy
shown in Figure 5.13b identifies: the net cable tension force F, at angle ¢ with
the horizontal; the damping force Fy acting at the mass center G; and the
total wave load p;(f). The center of buoyancy B is assumed to be coincident
with G. The buoy weight and its buoyant force are equal and opposite, and the
net restoring moment due to these forces is zero. The horizontal wave particle
velocity and acceleration are assumed to be much larger than those for the buoy.
When equation (2.3), the equation of plane motion for rotation of a rigid body
about a fixed point 0, is applied to the free body sketch of Figure 5.13c, the
result for small buoy rotations 6 is

Job + hoF.cos ¢ — heOF,sin ¢ + hgFy = — hypy(t) (5.101)
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Figure 5.12 A cable-stayed SALM buoy.

Here, the external moments and the virtual mass moment of inertia Jy are
those with respect to the base point 0. The vertical dimensions A, hq, and h,,
locate the respective forces F,, Fy, and p1(t). These latter three forces are now
evaluated.

The cable tension force is based on a buoy with four identical, symmetrically
arranged restraining cables where the wave force is in-line with two of these
cables. For small in-plane rotations, the contributions of the two out-of-plane
cables to the buoy’s restoring force are negligible. The cables have nearly the
same specific gravity as that of sea water so that their dead weight effects on
the buoy are negligible. Each cable is a three-strand polypropylene line that is
approximately straight and under a pretension force at § = 0. The increment
in the tension force F, required to stretch this line by an amount § while its
opposite line tends to go slack, is given in the form

F. = ag + b8 (5.102)

where ag and by are material constants derived from experiments. If the buoy
diameter is much smaller than the cable length, it follows from the geometry of
the single stretched cable shown in Figure 5.13c that § is approximately

6 = hfcos ¢ (5.103)
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Figure 5.13 Mathematical models of SALM buoy and cable restraint.

Thus, if the variables on the right side of the latter equation are known, the
cable force can be computed from equation (5.102).

The damping force Fy is modeled as linear-viscous and proportional to the
horizontal buoy velocity hq# at its mass center. That is

Fy = Cphab (5.104)

where C}, is the linear drag coefficient. For computations it is necessary to
assign a realistic numerical value to C;) so that the buoy oscillations are lightly
damped. To do this, the homogeneous form of equation (5.101) is rewritten using
equations (5.102)-(5.104) and then linearized. The terms involving 62,62, ... are
neglected since 8 is small. The result is the linear differential equation

0+ 2Cwod + Wi =0 (5.105)

for which the corresponding natural frequency for the undamped system is

2 2
wo = 1| ol cos” @ (5.106)
Jo
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The compatible value of the drag coefficient in terms of the damping factor and
the other system constants is

Cp = %,/aoh% cos? ¢ (5.107)

For this study 5 percent damping was chosen, or ¢ = 0.05.

The last force component needed in equation (5.101) is that due to wave
excitation, or p;(t). The assumptions used to model this force are summarized.
The wave is a simple one based on linear theory with characteristics as described
in Table 3.1. The compatibility equation relating the wave frequency w, the wave
number k, and water depth d is given by equation (3.16). The wave loading on
the buoy is dominated by the inertia term g7 in Morison’s equation, where the
ratio of buoy diameter to wave height falls in the range 0.5 < D/H < 1. The
inertia coefficient has an average value of Cps = 2. The horizontal wave particle
acceleration 7, evaluated at z = 0, is used to calculate the total horizontal wave
load on the buoy. When §; of equation (2.7) is integrated over the submerged
height of the buoy, this load is calculated as

0 0
pi(t) = / grdz = %CMpD2 / adz = —%CMpD%Jszin wt  (5.108)
d —d

The location of this load from the sea floor is
hpy=d+ 2z (5.109)
where its location from the still water line is

fi)d 2qr dz 1 —cosh kd
[° qdz K smh kd

z=

(5.110)

It is noted that Z is negative because it is below the still water line, and the
coordinate z is measured positive upward from the still water line.

When equations (5.102)-(5.104), (5.108), and (5.109) are substituted into the
original equation of motion (5.101), the result gives the final nonlinear model as

JoB + (aph? cos® $)8 — (agh? sin ¢ cos ?)6|9)
+(boh’ cos* $)8° — bohtsin ¢ cos® $)6° |9

+Cph2 8 = (d + 7) = CarrpD*w? H sin wt 5.111
d 8k

In this model, the absolute value sign was used on the even-order restoring force
terms to preserve the proper sign of that force, or to assure that the restoring
force is always antisymmetric about § = (. For a fixed wave frequency and water
depth, k£ is calculated from equation (3.16), and 2 is calculated from equation
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(5.110). With a suitable choice of ¢, the damping constant is determined from
equation (5.107). Then with a choice of wave height and Cjy, together with
the fixed system characteristics of geometry and inertia, all of the coefficients
in equation (5.111) are known. The system parameters used to compute these
coefficients are listed in Table 5.3.

Table 5.3 System Parameters for the SALM Buoy

Buoy diameter D =240 in.

Buoy height 2hg = 1320 in.

Buoy moment of inertia Jo = 5.57 x 10° Ib-in.-sec?
Cable angle ¢ =30 deg

Cable location on buoy he = 960 in.

Cable material parameter ~ ag = 2.82 x 10* Ib/in.
Cable material parameter bo = 1.34 x 10° 1b/in.3
Damping factor ¢=10.05

Drag force location on buoy hgq = 660 in.

Flow coefficient Cu=2

Water depth d = 1200 in.

Water weight density pg = 0.0372 Ib/in.?
Wave frequency range 0 <w < 15 rad/sec
Wave height H =120 in.

Numerical Results and Conclusions

Numerical solutions to equation (5.111) were obtained using a step-by-step
Runge-Kutta integration procedure, subjected to the at-rest initial conditions
of #(0) = 6(0) = 0. The discrete values of buoy rotation 6, as well as its angular
velocity and angular acceleration, were calculated at a time step sufficiently
small to show response behavior accurately. This time step was chosen as one-
tenth of the smaller of either the natural period Ty = 27 /wg of the equivalent
linear system, or of the excitation period T = 27 /w.

Shown in Figure 5.14 as a function of the wave forcing frequency w is the
absolute value of the horizontal amplitude of displacement at the top of the buoy:
2ho0, where 6, is the computed amplitude of rotation. This figure displays three
important features. First, the amplitude behavior is similar to the simpler
nonlinear hard (cubic) restraint system, Figures 5.9 and 5.10: an amplitude
curve that leans to the right. Second, the ratio of the peak dynamic response to
the static response in Figure 5.14 is 5.4/0.5 = 10.8, which compares favorably
to the response ratio of 10 for a linear system with ¢ = 0.05, shown in Figure
5.4. Third, in the range of wave frequency 7.8 < w < 8.8 rad/sec, the buoy’s
amplitude is multi-valued, indicating the occurrence of jumps.
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Figure 5.14 Response amplitude of the SALM buoy with harmonic excitation.
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10 ft and frequency w = 8.7 rad/sec.
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A typical time history of buoy response is shown in Figure 5.15. This re-
sponse is for a wave excitation frequency of w = 8.7 rad/sec, an excitation
frequency that produced three distinct amplitudes (jumps) as shown in Figure
5.14. The time history clearly shows an amplitude variation between the ex-
tremes of 5.4 in. and 3.2 in. However, the oscillation between these extremes is
not so abrupt as the word jump implies because it takes two or three response
cycles to effect an amplitude excursion. Further, the time history shows that al-
though the excitation frequency is constant, the response frequency is not, since
the time between crossings is not constant. This is characteristic of systems
with nonlinear restoring forces.

PROBLEMS

‘f_’ﬁ 1~~~ 3..-Equilibrium

~{ D |

Figure 5.16 Cylindrical buoy. Figure 5.17 Spherical buoy.

O
\ Equilibrium

5.1  The cylindrical buoy shown in Figure 5.16 is weighted so that it has
a low center of gravity. Its diameter is 2.5 ft, its weight is 2000 lb, and the
density of the sea water is 64 1b/ft3. Assume that the frictional resistance of
the water is negligible, that Cy; = 0, and that the surface of the water is
relatively undisturbed while the buoy undergoes vertical oscillations. Let v
be its displacement from vertical equilibrium and let the restoring force equal
the weight of the water displaced by the motion v. Using its free body sketch,
derive the equation of motion for the buoy in free oscillations. Then calculate
its natural frequency and the time required for one full cycle of oscillation.

5.2 The spherical buoy shown in Figure 5.17 is a thin steel shell of mean
radius R. It is weighted so that in static equilibrium it floats half out of the
water, where its mass center is a distance h > 3R/8 below its geometric center.
The mass center of the displaced water (the center of buoyancy) is at h = 3R/S;
and Jg is the mass moment of inertia for the buoy with respect to its rotational
axis through its mass center. Using its free body sketch, set up a dynamic
model for small angles § of rolling motion. Neglect the frictional resistance of
the water. From this equation of motion, derive an equation for the buoy’s
natural frequency in roll. If R = 3.5 ft, h = 1.75 ft, and the period of oscillation
is 2 sec, calculate Jg.
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Figure 5.18 Cross section of a ship in roll motion.

5.3 A simplified model of a ship in roll motion is shown in Figure 5.18.
The ship of actual mass mg is buoyed by a force W = mypg equal to the weight of
the water displaced. For small roll angles 8, the intersection of the line of action
of the buoyant force with the ship’s centerline defines the metacenter, or the roll
axis at distance h from the mass center. Let Jy be the ship’s mass moment of
inertia with respect to the roll axis. Neglecting the frictional resistance of the
water, derive the equation of motion for roll, and from that deduce an expression
for its roll frequency. The average cross section of the ship is approximately
square with the dimensions 60 ft x 60 ft; and the ship has an approximate
uniform distribution of mass. If h = 3.5 ft, calculate Jy in terms of mg. Then
calculate the roll frequency and its period of oscillation.

5.4 Assume that the uniform beam of Example Problem 5.3, shown in Fig-
ure 2.16a, has hinged ends instead of clamped ends. Show that the following
mode shape satisfies the geometric boundary conditions.

z) =sin —
¥(z) = sin 7
Then calculate an expression for the natural frequency wg similar in form to
equation (5.30). By comparing this result to the frequency derived only from
beam stiffness and the total virtual mass m = f;m¢, deduce a numerical value
for the fraction f;.

5.5 A three-legged platform is identical to that of Example Problem 5.4
except that its legs are hinged instead of fixed to the deck. Using the Rayleigh
Method and an appropriate mode shape, derive the expression for wg in a form
similar to equation (5.36). Using the data of Table 5.2, calculate a numerical
value for f; and wo for this platform, assuming ¢ ~ d. Discuss the meaning of
your results in comparison to those computed in Ezample Problem 5.4, its more
constrained counterpart.

5.6  The rotation f of the monopod gravity platform shown in Figure 5.2
will result in an offset of the center of buoyancy B from its centerline to a
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new position B’. Examples of this shift are shown in Figures 2.13. Discuss
qualitatively how this offset can affect the rocking frequency of the structure.

5.7  For the gravity platform of Example Problem 5.2, suppose that the
ballast density is changed so that the center of mass and center of buoyancy
are coincident. Discuss qualitatively how this coincidence can affect both the
rocking frequency and the dynamic stability of this structure.

5.8 Suppose that the only motion for the gravity platform shown in Figure
5.2 is horizontal sliding, v = v(t).

(a) From the free body sketch of this structure, derive the equation of motion
for free, undamped horizontal sliding. Model the soil foundation stiffness k;
according to equation (2.76).

(b) Assuming harmonic motion for the horizontal displacement in the form
v = g sin wyt, derive an explicit expression for wg similar in form to equation
(5.11).

(c) Based on the soil and structural parameters given in Table 5.1, calculate
wo and its corresponding period Ty for this platform. Compare your frequencies
for both the lower bound and upper bound values for G, given in Table 5.1
with the respective natural frequencies for rocking motion computed in Ezample
Problem 5.2.

(d) If both rocking and sliding motion were taking place simultaneously,
which of these two vibration modes do you think would dominate the structure’s
free vibrations? Explain.

5.9  Your task is to design, construct, and perform free vibration experi-
ments on a desk-top model of a three-legged or four-legged jackup rig. The legs
should be securely fixed to a solid base, and can be either hinged or fixed at the
deck level.

(a) Design your model so that its two lateral periods of free vibration Tp, one
in air and one in water, are sufficiently long to be measured accurately with a
stop watch. Use any theoretical method you wish to predict Ty for both cases.

(b) Construct your design.

(c) Perform free vibration experiments for the model in air and then with its
legs mostly submerged in water. Measure Tj in both cases as an average value
over several oscillations.

(d) Compare your measured periods for the two types of experiments, and
compare each to the theoretical values you calculated previously. Explain rea-
sons for any discrepancies between your measured and predicted results.

5.10 Based on the numerical values given in Example Problem 5.5 and
the perturbation solution given by equation (5.56), plot the free vibration dis-
placement v(t) as a function of &t for a ship in sway motion. Superimpose on
this plot the harmonic displacement for its linear system counterpart (ks = 0).
Discuss the distortion in the free vibration oscillations due to nonlinear cable
restraints.

5.11  Derive the differential equation for the horizontal sliding motion only
of the gravity platform shown in Figure 5.2. The structural geometry is given in
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the figure, other system parameters are summarized in Table 5.2, and the equa-
tions governing its soil foundation stiffness and damping are given by equations
(2.76) and (2.77).

(a) Calculate an upper and lower bound for Ty, the undamped period of free
horizontal vibration.

(b) Deduce a damping factor ¢ for the upper and lower bound values of Tj.

(c) Assume horizontal ground excitation by the El Centro earthquake whose
pseudovelocity response is given by Figure 5.8. Based on the numerical values
of Ty and ¢ just calculated, estimate the bounds for the peak values of hori-
zontal displacement, the horizontal shear load on the soil foundation, and the
overturning moment. You may smooth the pseudovelocity curves to estimate
these bounds.

(d) The preceding response calculations do not include the damping effects of
the surrounding water. Deduce whether such additional damping would increase
or decrease the system responses to this same earthquake excitation.

5.12  Use first order perturbation theory to derive the amplitude function
g(a) given by equation (5.85). Using this result, deduce equation (5.86).

5.13  Include linear, viscous damping in equation (5.82) and use first order
perturbation theory to derive an algebraic result analogous to equation (5.86).
Then predict the peak response amplitude for the two curves of Figure 5.10, for
¢ = 0.05.

5.14 Predict the excitation frequency w = w,, below which there will be
no amplitude jumps in the system modeled by equation (5.82). Do this in two
ways: first by differentiating equation (5.88) to find a minimum €; and then by
applying the rule of roots where R = 0 in equation (5.91).

3.15 Use first order perturbation theory to derive the one-third subhar-
monic relationship given by equation (5.95).

5.16  Derive equation (5.97) from (5.95). Then show that the frequency
ratio €, above which a one-third subharmonic response can exist is given by
the lowest real root of equation (5.98).

5.17  For the nonlinear system modeled by equation (5.82), the minimum
frequency ratio €,, below which a one-third subharmonic response cannot ex-
ist is predicted from equation (5.98) or approximately from equation (5.100).
Which of these relationships predicts the lower value of ,,7 Choose some
realistic numerical values of K to validate your answer.

5.18 Assume a solution to the linear equation (5.103) of the form
0 = Gge ! cos wyt

where 0 is a constant and wy is given by equation (5.71). Use this solution to
derive the following approximate expression for the damping ratio ¢ :

1 01
n =
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Here, 6; and 62 are any two consecutive peak ampitudes during free vibration.

5.19  Carry out the necessary integrations in equations (5.108) and (5.110)
to verify the expressions given for the buoy wave loading p1(¢) and its location

zZ.

5.20 Starting with equation (5.111), calculate an expression for the quasi-
static response 6, of this buoy, or the value of 8 for w <« 1. For the quasi-static
load, use the amplitude of the wave loading given by the right side of this
equation. Delete all terms involving 6 and é, and delete all terms containing
f with powers greater than one. Then solve the result for § = 8. Use the
numerical values of Table 5.3 to calculate 8, and compare your result with
that obtained from Figure 5.14 for a small value of w (w = 0.05 for instance). If
these two results do not coincide, explain possible reasons for the discrepancy.
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Statistical Descriptions
of Offshore Waves

Bruce J. Muga

Regular waves were treated in Chapter 3 in a classical, deterministic sense in
which the analyses were based on nonviscous hydromechanic flow applied to
either idealized surface wave forms or, in the case of the free-stream function
theory, applied to a prescribed surface wave form of finite length. In this chap-
ter, irregular waves based on experimental measures of surface wave heights are
analyzed in a statistical sense to obtain wave spectra and other statistical pa-
rameters which will prove useful in predicting the response of offshore structures
to irregular waves.

6.1 INTRODUCTION TO WAVE SPECTRA

A short time record representative of measured irregular surface wave forms
offshore is shown in Figure 6.1. For such irregular forms, the wave periods
and wave heights take on new meanings as statistical ways of describing these
waves are now explored. Procedures are now defined to portray the important
fluctuations and to condense these data into manageable forms.

Consider first the time interval at which the wave record is sampled at dis-
crete points to give an adequate representation for n(t). For instance, the record
in Figure 6.1 can be marked off in equally spaced time intervals of At = 1sec
such that the sequence of ordinates, when connected by a smooth curve, re-
produces the important details of the record. One suspects that there is an
optimum time interval which is neither too fine nor too coarse and which best
approximates the record. It is apparent that a 10-sec interval is too large, but
also the choice of 100 points over the time interval 10 seconds is far too many.
The Nyquist sampling theorem aids in the selection of an optimum interval Af.
This theorem states:

The continuous time record n(t) can be adequately represented
by, and reconstituted from, a set of sample values 7,,7,, -+, pro-
vided that fs, the number of sample values per second, is at least
twice the highest frequency fmax present in n(t). That is, fs 2 2 fmax-
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Figure 6.1 A 100 second section of a 17.07 minute record of surface wave height
recorded at Macquaire Island in the Southern Ocean on May 13, 1989 (Young, 1999).

To apply the Nyquist theorem, let frnax = 1/(2At) where At is the shortest
time between two consecutive crossings of the n = 0 axis. Thus, an appropridte
sampling frequency is fs = 2/(2At) = 1/At, and the corresponding time interval
between sampling of 7(¢) is simply At. For the 100- sec section of the wave record
shown in Figure 6.1, At = 2sec. However, if the whole 17.07- min record were
considered, then a shorter time would be apparent, or At = 1sec (Young, 1999).

Consider a Fourier series representation of this whole 17.07 min or 1024 sec
wave record. To reproduce this record, one would need N = 1024 sample points
7. The Fourier series in this case would consist of 1024 terms involving a sum
of sines and cosines, or

N2 2nnt Nz 2mnt
t)y=2 Qy, COS dt+ 2 b, sin 6.1
10 =23 ancos Tt 23 bnsin 2 6)

where 7 is the 1024 -sec period and the mean value of 7(t) is zero (ag = 0).
The coefficients in equation (6.1) are

1 [7° 2nmt

a, = — t) cos —— dt
To Jo n(®) To
1 [7 2mnt
b, = — / n(t) sin T at (6.2)
To Jo To

The total wave energy is proportional to the average of the squares of 7(t),
and this energy is equal to the sum of the energy content of each of the individual
wave components. This is shown with Parseval’s theorem, which states that for
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any periodic function of time represented by equation (6.1) where the mean is
zero (ag = 0), then the variance of n(¢) is

- n/2
1 0
o n®))Pdt =2 (a% + %) = o3 (6.3)
n=1

for which the root-mean-square (rms) value for 7(¢) is op,.
Now define the wave spectral density, S,(w), as

/ " Sy(w) dw = 02 (6.4)
0

It is observed that this spectral function is the resolution of the variance of 7(t)
into its frequency components. That is, the value of S, (w,) at each discrete
frequency w,, can be approximated by the sum of the Fourier coefficients, or

2
Sn(wn) ~ E(ai +b2) (6.5a)
where
Wp = 2n_7r; Aw = 2r (6.5b)
To To

Here, Aw is the spacing between adjacent harmonics. It is emphasized that
the sampling interval At must satisfy the Nyquist sampling theorem to avoid
falsely distorting the Fourier coefficients. In practice, an experimentally - based
discrete energy spectrum is usually fit to a continuous function by smoothing.
Examples of smoothed spectra are discussed later in this chapter.

The character of the function Sy,(w) depends on the surface wave elevation
record. For example, S,(w) for unidirectional swell is a narrow-banded function
centered about the dominant swell frequency. On the other hand, sea waves
in general are most often characterized by a broader-banded spectral function
than that for swell waves.

The interest in wave spectra arises from the need to select a representative
design-loading history acting on the proposed offshore structure. The design
wave spectrum, usually furnished by a specialist in hindcasting or forecasting,
is chosen to represent the worst possible combination of waves which would
lead to the highest loading for the structure. To complicate matters, there
may be many different surface water wave elevation histories characterized by
essentially the same spectrum. In other words, a one-to-one correspondence
between the surface water wave elevation record and the spectrum does not
generally exist. However, all records that yield identical spectra do have the
same statistical properties, although details in the records may vary widely.
The suggested procedure, then, is to select a number of water wave elevation
records corresponding to the design wave spectrum and to analyze the proposed
offfshore structure under these alternative conditions.
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It is important that the mathematical model used to represent the sea sur-
face (the time history of wave height) should conform as closely as possible to
the actual waves. In practice, there are two ways to accomplish this. First,
a purely deterministic method can be used in which the sea surface records
are fitted to a harmonic or Fourier series. This representation is unaffected by
nonlinear wave effects. Second, a statistical method can be used in which the
sea surface records are fitted to a spectral function in the frequency domain.
It is emphasized that the second method is based on the concept of superpo-
sition and is adequate only for linear seas. Various efforts have been made to
include nonlinear phenomena in spectral descriptions but these methods are
not widely utilized. For purposes of structural design, however, linear models
usually provide adequate descriptions of the sea surface.

For further discussions of offshore waves as random processes, the reader is
referred to the works of Longuet-Higgins (1963), Munk (1950), Kinsman (1965),
Pierson and Neumann (1966), and the overview of Young (1999).

6.2 CONCEPT OF THE SIGNIFICANT WAVE

The concept of the significant wave was first published by Sverdrup and Munk
(1947), and later discussed by Wiegel (1949), Bretschneider (1959), and Kins-
man (1965). The significant wave height is a useful parameter for describing an
irregular sea surface and its wave spectra.

What is the significant wave height? The significant wave height is not an
identifiable wave form that propagates like a physical wave as in the classical
wave theories. The significant wave height, H,, is defined as the arithmetic
average of the highest one-third of the waves in a wave record. Its associated
statistical parameter, the significant period T, is defined as the average period
of the highest one-third of the waves in this wave record. It is noted that the
symbols Hy/3 and T7/3 are also commonly used to denote H; and T, respec-
tively.

The significant wave height is an important parameter in statistical analysis
of wave mechanics for a number of reasons. The statistical distribution of wave
heights and most energy spectrum analyses are related to the significant height.
In fact, the major portion of the wave energy of the spectrum surrounds the
significant wave height. Thus, it has been the practice historically to report sea
conditions in the form of significant wave heights. Also, the effects that irregular
seas have on many types of fixed and floating objects and on shore processes
such as littoral transport, have been related to significant wave heights, with an
accuracy sufficient for these engineering applications.

In summary, the irregular sea can be described in an abbreviated format by
two parameters: the significant wave height and the significant period. However,
designers of offshore systems sometimes need to know other statistical features
of the sea, such as the maximum wave height or the maximum water surface
elevation. This led to a number of studies that attempted to establish further
statistical correlations for offshore waves. A brief summary of these correlations
is now presented.
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Wave Height Distributions

Examinations of offshore wave data have shown that the surface wave heights
H follow the Rayleigh (1880) probability density function, p(H). The following
exposition involving this probability follows that of Goda (1985) and Young
(1999), originally proposed by Barber (1950) and Putz (1954). The particularly
useful form of the Rayleigh probability density function is

2H  _ 22
=z H*/H.,., (6.6)

Tms

p(H)

in which H,., is the root-mean-square (rms) wave height of a given record. The
square of this latter quantity is defined as

H? =H?= / H%*p(H)dH (6.7)
0

As the notation v/ H2? implies, H,, is formed by squaring the height of each
wave in a given record, taking the arithmetic average of these quantities, and

then taking the square root of the result. The mean or average wave height is
defined by

Ho = /0 ~ Hp(H)dH (6.8)

Based on the Rayleigh distribution, the average wave height, Hy, the signif-
icant wave height, Hs, and the 1/10 highest wave height, H,/10, are deduced
as

Ho=087Hyms;  Hy = 142H,ms;  Hijio = 1.80Hms (6.9)

These three wave heights are depicted in Figure 6.2, which is a plot of the
Rayleigh distribution given by equation (6.6). Also shown is the height of the
most probable wave, which is at the peak of the curve.

Further, the most probable maximum wave height, H,,x, depends on the
duration of the storm or length of the wave record. The following relationship
is often used to approximate this maximum wave height:

Hpoax =0.707TH;In N (6.10)

Here N is the number of waves in the record. When N is not known, a reasonable
approximation to this maximum wave height is

Hpox = 1.77H, (6.11)

For very severe storm waves or for waves in very shallow water near the breaking
point, equations (6.10) and (6.11) should be used with caution.
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Figure 6.2 The Rayleigh distribution of wave heights.

A few selected results of wave height statistical correlations derived from
field data, theoretical considerations, and from experiment are given in Table
6.1. From these data, it is seen that H,/Hy ranges from 1.35 to 1.63, and
H,/y0/H, ranges from 1.27 to 1.29. These ratios compare favorably with the
respective ratios derived above and given from equations (6.9), which are

H,/Ho=163;  Hyo/Hs =127 (6.12)

Further, Hpax/H, in Table 6.1 ranges from 1.50 to 1.87, which compares fa-
vorably with the ratio of 1.77 of equation (6.11). One can conclude from these
results that the Rayleigh probability distribution is a reasonable model for ir-
regular surface waves offshore.

Experts in the field are in more agreement on wave height - distribution than
on wave - period distribution. The average wave period T can be obtained from
the energy spectrum. Sometimes the term mean apparent period is employed as
a more precise definition to indicate the average elapsed time between successive
crossings of the mean ordinate level of 7(t). Both expressions are related to the
mean value of the instantaneous frequency which can be determined from a
simple ratio of the first-and zero-order moments of the spectrum about its
mean. In other words, the average period corresponds to the abscissa through
which passes the line of action of the center of gravity of the spectrum. As
indicated earlier, the significant period T is defined as the average period of
the highest one-third of the waves in the record. Conceptually, it is closely
identified with the period of maximum energy in the spectrum.
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Table 6.1 A Compilation of Wave Height Statistical Correlations

Reference Data Type H,/Hy Hyj10/Hs Hmax/Hs
Munk (1944) Field data 1.53 — —
Seiwell (1949) Field data 1.57 — —
Wiegel (1949) Field data — 1.29 1.87
Barber (1950) Theoretical 1.61 — 1.50
Putz (1950) Field data 163  — —
Longuet-Higgins (1952) Theoretical 1.60 1.27 1.77
Putz (1952) Theoretical 1.57 1.29 1.80
Darbyshire (1952) Field data 1.60 — 1.50

Hamada et al. (1953) Experimental 1.35 — —

For typical irregular sea conditions where the average period ranges from 4
to 10 sec, studies have shown that 7T, is nearly equal to the average period, T.
For longer average wave periods (>> 10 sec), it has been found that the average
period is only 75 percent of the significant period. Based on a comprehensive
study of wave conditions in many locations, the International Ship Structures
Congress (ISSC) concludes that the average period can be taken as 90 percent
of the significant period (Price and Bishop, 1974). It is emphasized that the
average period as defined here does not correspond to the period of the average .
wave height.

‘Wave Height - Wave Spectrum Relationships

A historical advance in the description of irregular ocean surface waves was
accomplished by Pierson (1952), who merged key concepts from classical me-
chanics and the theory of stochastic processes with the energy spectrum in order
to predict the behavior of offshore waves (Kinsman, 1965). In its simplest form,
the energy spectrum allocates the amount of energy of the sea surface according
to frequency. As shown in Chapter 3, a small-amplitude sinusoidal wave has
the form

n(z,t) = Acos(kx — wt) (6.13)

The total energy per unit surface area of this wave is
1 2 _ 1 2
E=5pgA" = gpgH (6.14)

where H (= 2A) is the wave height measured from crest to trough.

One of the fundamental premises of the spectral approach is that irregular
waves are the result of the superposition of an infinite number of simple sine
waves of small amplitudes that have a continuous frequency distribution. This
process can be approximated with a finite number of small-amplitude sine waves
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having discrete frequencies. Under these conditions the mean total wave energy
per unit surface area is given by

1
E:gpg(Hf+H§+H§+---+H,2L+-~) (6.15)

where H,, is the wave height associated with the frequency w,,.

Tllustrated in Figure 6.3 is the distribution of wave spectral density as a
function of wave frequency. The ordinate of each block is the spectral density
Sp(w) in units of (length)-time; and associated with each block is a wave height
H,, of frequency w,, n =1,2,... . Indications of height are intended merely to
point out that the spectral density for a specified frequency corresponds to an
identifiable wave. Wave records can be synthesized from the superposition of
a finite number of discrete wave forms, as will be demonstrated at the end of
this chapter. Amplitude spectra obtained from such synthetic records are indis-
tinguishable from amplitude spectra derived from measured records of offshore
waves. Such synthetic records are often quite adequate for engineering purposes.
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Figure 6.3 A representation of a wave spectrum.

The computation of spectra from wave records depends crucially on several
factors, which include: the length of record, the sampling interval, the degree
and type of filtering and smoothing, and the length of a statistical parame-
ter called the autocovariance function. In general, some compromise between
numerical stability, confidence, resolution, and the practical limitations of com-
puters must be achieved. Historical analyses were developed by Blackman and
Tukey (1959) and Borgman (1972). Present analyses include the use of computer
packages such as Mathematica® (1999).

A general analytic form of the surface wave energy spectrum is

Sp(w) = Agw™™e B (6.16)
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in which the empirical coefficients Agy, B, m, and n define the spectrum. In the
most widely used forms, m = 5 and n = 4. Several empirical results for the
coeflicients Ag and B, including their dependence on wind speed and significant
wave height, are presented after the following alternative descriptions of wave
spectra.

6.3 DESCRIPTIONS OF WAVE ENERGY SPECTRA

There are significant and sometimes subtle differences among the analytical
descriptions of wave spectra as they appear in the open literature. Differences
exist in terminology, notation, and even in the basic definition of S, (w). These
alternative descriptions are depicted in the abscissa and ordinates of Figure 6.4.
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Figure 6.4 Alternative nomenclature for wave spectra.

Alternative Definitions

For the abscissa of the energy spectrum, the cyclic frequency f = 1/T (Hz),
the angular frequency w = 27 /T (rad/sec), and the apparent period T are used.
Experimentalists most often use f to present data; and those who expound
theory use w.

The ordinate is referred to as power spectral density, or simply spectral den-
sity. The average energy of the wave system is related to the sum of the square
of the wave component heights H? or amplitudes A% = (H/2)2. The follow-
ing terminology was suggested by Michel (1967) for identifying the ordinate in
terms of the significant wave height.

1. Amplitude spectrum: The following forms, used by Pierson (1952) and
Pierson et al. (1955) define the spectral density as a function of the square of
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the wave amplitude, for which the significant wave height is related to (area),
under the spectral curve, or

H, = 2.83+/2(variance) = 2.83+/(area); (6.17)

2. Amplitude half-spectrum: Rather than using twice the variance, some
investigators use the variance directly. In the later case, the spectral density is
related to one-half the square of the wave amplitude, and the significant wave
height is related to the variance, the (area)s under the spectral curve, or

H, = 2.83./2(variance) = 4/variance = 4,/(area), (6.18)

When equations (6.17) and (6.18) are compared, the results are: (area); =
2(variance) and (area)s = variance.

3. Height spectrum: Other investigators choose to use wave heights, for
which the area (area)s under the spectral curve is four times the area obtained
when wave amplitudes are used. This is because (wave height)? = 4(wave
amplitude)?. Therefore, the spectral density is a function of (wave height)?, and
the relationships of the significant wave height to the areas under the three types
of spectral curves are

H, = 2.834/2(variance) = 2.83/(area);

= 1.414+/4(area); = 1.414+/(area)s (6.19)

4. Height double spectrum: Investigators found that by taking twice the
(height)? rather than the (amplitude)?, the constant relating significant wave
height and the square root of the area (area), under the spectral density curve
could be made equal to unity. Accordingly, the area is eight times that given
when amplitudes are used, and the significant wave height relationships are

H, = 2.83+/(area); = /8(area); = +/(area)4 (6.20)

The following precautions should be used when working with wave energy
spectrum prepared by others. First, establish the units of the spectral density.
Is this in Traditional English units of ft2>-sec/rad or ft?/Hz, or is it in SI units
of m?-s/rad or m?/Hz? Second, establish the frequency units of the abscissa.
Is this in units of Hz for cyclic frequency f, or in units of rad/sec for circular
frequency w? Third, determine the specific formulation on which the ordinate
is based. Sometimes this last step can be accomplished by simple examination
of the symbolic notation; or the author of the data can be questioned. In any
case, the Rayleigh distribution coefficient used to predict significant wave height
(or wave amplitude) from the energy spectrum should be consistent with the
nomenclature.
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Empirical Forms

Particular forms of deepwater wave spectra in common use are those of
Pierson and Moskowitz (1964) and Bretschneider (1959), which are based on
theory and require sufficient data to fit the constants. The spectra of Pierson-
Moskowitz are termed wind-speed spectra since wind speed is included directly
in the spectral density function. The spectra of Bretschneider are termed height-
period spectra since significant height H, and the significant or mean apparent
period T, = 27 /w,, are used directly in the spectral density function. It is em-
phasized that in deducing these spectra, use was made of the distribution func-
tions originally derived theoretically by Longuet-Higgins (1952), and supported
by the empirical relations based on the wave data of Putz (1952). These deep-
water spectra have the form of equation (6.15) in which the constants (Ag, B)
differ, depending on whether the height-double or amplitude-half spectrum as-
sumption is made in reducing the data.

Another spectrum in common use is JONSWAP, which investigators have
found appropriate for the design of offshore structures in the North Sea. Un-
like the spectra in the form of equation (6.15), which are referred to as fetch-
unlimited spectra, the JONSWAP spectrum includes the fetch in its formulation,
and is called a fetch-limited spectrum. It is noted that the term fetch, denoted
by X, is the distance from the shoreline of the wave field under consideration. A
fetch-limited wave spectrum is one based on a wave field at distance X that has
reached a steady state or time-independent condition. Such a condition can oc-
cur in deep water if the wind has blown for a sufficient length of time, out to sea,
and in a direction perpendicular to a regular shoreline. These and other factors
that affect the fetch, together with experimental measures of X appropriate for
fetch-limited spectra, are thoroughly discussed by Young (1999). Useful forms
for both fetch-unlimited and fetch-limited spectra are summarized.

Wind-Speed Spectra. The Pierson-Moskowitz fetch-unlimited spectra has
the general form

2 4
Sp(w) = 0.0081 %5— e B/lw (6.21)
where g is the acceleration due to gravity. When the wind speed is known, then
4
B=074 (—g-) (6.22)

v

where V is the wind speed at a height of 19.5 m above the still water level.
Any consistent set of units for the quantities g,V, and w are appropriate for
equations (6.21) and (6.22), provided that w is expressed in radians per unit
time.

Significant Wave Height-Period Spectra. When the significant wave
height rather than the wind speed is known, the constant B of equation (6.21),
for H, in units of m/s, is

3.11

B=Hs2

(6.23)
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The source of the latter relation is the International Towing Tank Conference
(ITTC) (Price and Bishop, 1974), and the resulting spectrum is known as the
ITTC spectra. Shown in Table 6.2 are the ITTC recommended values for
significant wave height and average wave period for several wind speeds.

Table 6.2 ITTC Recommended Data for Equations (6.21)-(6.23)

14 T, Average H,, Significant
Wind Speed, Wave Period, Wave Height,
m/s s m
5.14 2.7 —
10.3 5.3 3.1
154 8.0 5.1
20.6 10.7 8.1
25.7 134 11.0

Another form of the wave height-period spectra, developed by Ochi and
Hubble (1976) from the work of Bretschneider (1959), is
. 4 4
Sp(w) = 1725 :—?Hf e 125(wm/w) (6.24)
in which w,, is the frequency at the maximum of the spectrum, where the cor-
responding period is T, = 27 /wp,. Listed in Table 6.3 are empirical equations
for wy, in terms of the significant wave height H, and its probability of occur-
rence. Also listed in that table are values for w,, and T, for the special case of
Hs; = 12.2 m, a case considered later in Fxample Problem 6.1.

It is emphasized that the spectra expressed by equations (6.21) through
(6.24) are amplitude half-spectra and that the square root of the area under each
spectral diagram must be multiplied by 4 in order to obtain the corresponding
significant wave height. That is, H, = 44/(area)s.

Table 6.3 Spectral Model Data (Bretschneider, 1959 and Ochi, 1978)

Equation for For H, = 12.2 m: Probability
Win, Tad/s Wm, 1ad/s T, s of Occurrence
0.048 (8.75— In Hy) 0.30 20.9 0.0500
0.054 (8.44—1n H,) 0.32 19.6 0.0500
0.061 (8.07—1n H,) 0.34 18.5 0.0875
0.069 (7.77—In H,) 0.36 17.3 0.1875
0.079 (7.63—1n H,) 0.41 15.5 0.2500
0.099 (6.87—1n H,) 0.43 14.5 0.1875
0.111 (6.67—1n H,) 0.46 13.6 0.0875
0.119 (6.65— In H,) 0.49 12.7 0.0500
0.134 (6.41-In H,) 0.52 12.0 0.0500
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There are two general observations concerning significant wave height statis-
tics. First, different wave time histories can have approximately the same sig-
nificant wave height, but still have widely different spectral properties. Ochi
and Whalen (1980) and Ochi (1981) offered a rational explanation and experi-
mental documentation for such observations. Second, extensive global data, for
significant wave height based on nine years of satellite measurements taken in
the 1990s were presented as contour maps by Young (1999). These data show
mean monthly values of H, values which could be expected to be exceeded
10 percent, 20 percent, ... ,90 percent of the time. The highest value of H,
reported was 6 m with a probability of exceedence of 10 percent. Since confined
events such as hurricanes affect such monthly averages very little, these satellite
data have very limited use in the design of offshore structures.

Fetch-Limited Spectra. The JONSWAP spectra has the general form

Sp(w) = ag?exp[—1.25(w/wm)?] Pl (w—wm)* /207 ] (6.25)

where

v = 3.3 for mean of selected JONSWAP data

v = 7.0 for a very peaked spectrum

o= 0.07 for w < wp,

o= 0.09 for w > wyy,

Wi = 27(3.5)(g/V)(X) %33 peak frequency

a=  0.076(X)"%% or a = 0.0081

X= gXx/vV?

X = fetch length; V = wind speed

6.4 SELECTION OF DESIGN WAVE SPECTRA

The preceding spectra are best-fit curves of a number of individual spectra,
each derived from actual wave records which are measured in generally similar
sites and environments. They represent the mean of the points of the family
of actual spectra and in no sense can be considered as theoretical spectra. For
instance, a comparison of many individual spectra with formula spectra showed
that the individual spectra height had a sigma variation of 30 percent or more
from applicable formula spectrum (Hoffman, 1974).

This observation, which is consistent with the observations of other investi-
gations, was explained by Ochi and Whalen (1980), who introduced the concept
of families of wave spectra and provided a meaningful insight into this behavior.
For example, using the two-parameter Bretschneider (1959) spectrum, equation
(6.24), Ochi and Whalen presented a family of this spectra along with their
probabilities of occurrence and their confidence limits. An example is shown
in Figure 6.5, which will be discussed further in Erample Problem 6.1. The
important point is that each of the spectra represents the same significant wave
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height, although the frequency corresponding to each peak is different. This
characteristic, which is partly reflected by a shape parameter -, must also be
considered in specifying design wave spectra. A shape parameter of v = 7 gives
a very sharply peaked JONSWAP spectrum, whereas by comparison, v = 3 pro-
duces a lower peak and wider band about the peak. For a Pierson-Moskowitz
spectrum, some investigators suggest that v = 1. For further details, see Rye
and Svee (1976) and Young (1999).

50 T T T T T
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Figure 6.5 Illustration of a spectral family (Ochi, 1981).

The selection of wave spectra used to evaluate the design of a particular
structure depends on several factors, including the risk criteria adopted by the
owner of the structure. That is, the owner of the structure must decide what
risk can be economically justified for a particular structure located at a given
site. This presumes that all other design criteria are satisfied. In one case, for
instance, the most economical overall design may be based on a storm occurring
on the average once in 20 years, and in another case, once in 100 years. A
comprehensive discussion of risk criteria was presented by Borgman (1963).

From another perspective, Freudenthal and Gaither (1969) suggested that
the wave spectra eventually selected for design purposes should be based on the
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probability of occurrence of waves of a given intensity at the chosen site. This
information is normally developed from hindcast studies in which the paths of
all known storms that might have caused waves at the site are determined. From
the data available on each of the storms, beginning usually with a knowledge of
the wind field, estimates can be made of the intensity, duration, and direction
of the wind-generated waves that reach the site. From this meteorological infor-
mation, the lengths, periods, and heights of waves at the site can be determined.
This approach is not exactly the way it is done in practice, but it does explain
the basic methodology.

In practice, the way to forecast (or hindcast) waves is to forecast (or hind-
cast) the spectra of waves. From a spectrum one can obtain many of the prop-
erties of a wave such as height, average period, and average wavelength. Thus,
one begins with a deepwater wave spectrum at a location that is not necessarily
the same as the particular site for the structure. Then, using transformations
which depend on the distance, direction, hydrography, and spectral and storm
properties, one can determine the wave spectrum to be expected at the site
under consideration. The well-known work by Pierson, Neumann, and James
(1955) is highly recommended as an excellent introduction to the subject.

The significant wave heights to be expected at a known location depend
on the historical climatological record. For instance, data for H; at various
water depths in the Norwegian North Sea, the Gulf of Mexico, and the Gulf of
Alaska are shown in Table 6.4. At these sites, the significant wave heights are
those generated by a storm with a recurrence interval of 100 years. These data
were collected from a number of sources, each with a different database, and
are presented only for comparison purposes. Alone, such data are insufficient
for structural design since other special features such as subsea soil strength
or floating ice at each geographic site must also be considered. However, these
data illustrate that for a 100-year storm the significant wave heights of 12 m to
20 m are considerably higher then the mean values of 6 m (with the probability
of exceedence of 10 percent) measured worldwide by satellite (Young, 1999).

Table 6.4 H, at Three Sites, Based on a 100-Year Storm

Site Hy;,m Water Depth, m
Norwegian North Sea 14 to 15 30

Gulf of Mexico 12 to 13 30 to 180

Gulf of Alaska 18 to 20 > 180

The selection of a design significant wave height can be done only after a
hindcast study has been completed for the specific site. This hindcast study
should yield both the significant wave heights corresponding to the selected
storm recurrence intervals and the associated probability functions governing
the modal frequencies w,,. With this information and with a suitable spectral
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model, the family of wave spectra can be derived. The following example illus-
trates these ideas.

Ezample Problem 6.1. The hindcast studies for a particular site in the
Gulf of Mexico indicate that H; for the 100-year storm is 12.2 m. Assume that
the wave spectral family can be described by the two-parameter Bretschneider
(1959) model, equation (6.24), and that the modal frequencies, wyy,, the corre-
sponding periods T,,, the probabilities for ocurrence of H,, for this family are
those listed is Table 6.3. The results in Table 6.3 were derived by Ochi (1978)
from selected wave data. Note that the sum of the probabilities for occurrence
(or weighting factors) of Hj is equal to unity.

The equation for the most probable spectrum is obtained by substituting
into equation (6.24) the frequency at the maximum of the spectrum: w,, = 0.41
rad/s from Table 6.3, for which the probability of occurrence is the maximum
of 0.25. With H; = 12.2 m, the spectrum of equation (6.24) becomes

Sp(w) = % g0-03532/w - 12 -s/rad (6.26)
Equation (6.26), which is plotted in Figure 6.5, corresponds to the most probable
spectrum associated with a storm of a 100-year recurrence interval. As such,
this curve is not a design spectrum but a member of the family of spectra to be
considered in design. Other members of the family are also shown in Figure 6.5,
with selected frequencies w.,, and the corresponding probabilities of occurrence
as given in Table 6.3, together with their confidence limits.

The ideas illustrated in this example can be extended to more complex spec-
tral formulations such as JONSWAP, which may be more appropriate for other
sites such as the North Sea. The reader is encouraged to consult the most re-
cent references so that the most up-to-date data can be used to generate the
family of design spectra. Once these spectra are chosen, they can be employed
for preliminary dynamic analyses of alternative structural designs, as will be
illustrated in succeeding chapters.

6.5 SYNTHESIS OF TIME HISTORIES FROM SPECTRA

In the analysis of offshore structures, time domain solutions are frequently re-
quired. However, if the wave height excitation is expressed in the form of spec-
tral density, it is necessary to transform this design spectra into an ensemble of
representative time histories. This may be accomplished by utilizing Borgman’s
(1969) procedure for wave simulation. This is now presented with slight modi-
fications.

The wave elevation 7(t) can be represented as

n(z,t) = /000 sin(kz — wt + )/ A%(w) dw (6.27)
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where A%(w) is the amplitude spectrum ordinate and ¢ is a random phase angle
picked from a list of random numbers uniformly distributed over the interval
from zero to 2w. The integral is discretized by partitioning the spectrum into
equal portions (areas), instead of taking equidistant points on the frequency
axis. This procedure avoids the presence of periodicities in the resulting time
history.

Consider the partition

wp<w <wg<...<wy=F (6.28)

where wq is a small, positive value and F is a value beyond which the spectral
ordinate is zero, for all practical purposes. Let

Aw, = wyp — wp—1 (6.29)
wnzfﬁé‘i’"—‘—l, n=1,2...,N (6.30)

The integral of equation (6.27) is approximated by the finite sum

N .
Wz, t) = Z sin(knx — Gnt + £, )/ A2(Tn) Awn, (6.31)
n=1 .

where @2 = k,g and the overbar denotes the average value of the parameter.
Let S(wy,) represent the cumulative area under the spectral density curve, or

S(wn) = Zn: A% (wy) Awy, (6.32)
n=1
Thus
A%(@,,) Awp, = S(wp) — S(wn_1) = a? (6.33)

where a2 is a constant. It follows that

N
Nz, t) =Y _ sin(knz — Tnt + £0)V/S(wn) — S(wn_1) (6.34)
n=1
Na? = S(wn) ~ 8(x) = / ~ A%(w) dw (6.35)
0

Recall the form for the Pierson-Moskowitz spectrum, equation (6.16), or

A 4
Sp(w) = A%(w) = w_g e B/ (6.16)
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Then from equations (6.16) and (6.32)
. A() —B/w4 o AO —B/w4
S(w) = / 5 ¢ dw = 15 ¢ (6.36)

Equation (6.35) then gives

A

2 A

= 1BN (6.38)
Now determined are the positions of the partition frequencies wg, w1, ws, ... ,wN.

From equation (6.36) where w = F, it follows that

AO _ B/F4
iB=¢ S(F) (6.39)
Because of the equal area partition
S(wn) = L S(F) = 20 o=Blut _ g(F)B/F'eBlA  (6.40)
"N 4B
It follows that
N eB/F = ¢Blwn (6.41)

n

When equation (6.41) is solved for w,,, the result is

B 1/4
n = , =1,2,...,N 42
o~ (wemrmE) =L (¢4
which determines the partition frequencies.
The first-order simulation can be obtained by arbitrarily choosing the coor-
dinate x equal to zero. Thus equation (6.34) becomes

7i(t) =a Z sin(—wpt + €5,) (6.43)

n=1

The random phase angles ¢,, can be generated using one of the many available
codes, but once selected, they are identified with a specific set of frequency
components on a one-to-one basis. On the basis of some unpublished work by
this writer, it has been found that an N value of at least 15 to 20 is necessary to
produce time histories with statistical features similar to those predicted from
low-order spectral moments. Time histories of other parameters such as water
particle velocity, acceleration, and pressure can also be derived following the
above approach.



162 STATISTICAL DESCRIPTIONS OF OFFSHORE WAVES

A second order simulation of wave elevation for an irregular wave, derived
by Longuet-Higgins and Stewart (1961), is

N N
_ . 1 o . .
7(t)=a _S_ sin(—wnt + €,) — 3¢ E ky sin 2(—@nt + €n)

n=1 n=1

N n-1
- Z Z a2k, cos(—w,t + €, ) cos(—Wnt + £5)

n=lpn'=1

—kp sin(—wpt + €5) sin(—w, t +€,) (6.44)

In Chapter 10, this synthesis is illustrated for the case of surface wave exci-
tation of a barge that deploys an OTEC pipeline.
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Statistical Responses for
Single Degree of Freedom
Linear Structures

James F. Wilson

The three commonly used methods for computing the dynamic responses of off-
shore structures to waves are shown schematically in Figure 7.1. The first two
methods involve the time domain and have been discussed in previous chapters.
Here, the time history of structural response is computed either for a single
design wave (the first method), or for multiple waves deduced from the parti-
tioning of measured sea wave spectra (the second method). The third method,
the topic of this chapter, involves the frequency domain. That is, for a single
wave height spectrum and a transfer function relating wave height to structural
loading, the statistical responses of the structure are calculated directly.

1. Time Domain 2. Time Domain 3. Frequency Domain
Simple Design Wave Amplitude Wave Amplitude
Wave Spectral Partitioning Spectra
l l l
Transfer Function Transfer Function Transfer Function
! 1 1

Single Harmonic Load Multiple Harmonic Loads Load Spectra
1 ! !
Time History of Time History of Statistics of
Structural Response Structural Response Structural Response

Figure 7.1 Three approaches to the dynamic analysis of offshore structures.

The statistical structural responses for the single degree of freedom stuctures
considered in this chapter are those for a single, nondirectional wave spectrum,

165
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and for stationary wave excitation. The derived structural responses are analo-
gous to the steady - state time domain responses considered previously. Closed
form solutions are derived by two statistical methods: the classical station-
ary stochastic analysis of Khintchine (1934) and Weiner (1949), and covariance
propagation analysis originally applied by Bryson and Hu (1975) to electrical
control systems. In both methods, the structural response spectrum is predicted
in terms of the wave force spectrum on the structure, and the result leads to
the root-mean-square (rms) structural displacement response and its probabil-
ity of exceedence. These statistical ideas lay the mathematical framework for
Chapters 9 and 10 in which statistical responses are deduced for multi-degree
of freedom structures and for continuous structural elements.

7.1 AVERAGES AND PROBABILITIES

It is assumed a priori that the surface wave height 7(¢), the wave load p(t)
and the structural displacement v(t) or rotation 6(¢t) all have time histories of
the general form shown in Figure 7.2. The variable y = y(t) is used to denote
such a general time history, which is defined as a random, stationary process
of zero mean. A random, stationary process looks essentially the same over a
time interval 7, no matter where this interval starts or stops. The interval 7¢
is of sufficient duration to capture the essential character of y(¢), and there is
no startup, shutdown, or transient behavior for y(¢). A more precise definition
of stationary will be given later in this section. The condition of zero mean is
expressed as

1 T()/2
Ely] = — y(t)dt =0 (7.1)
TO —T0/2

In place of the expectation symbol E[y], other notations commonly used to
denote the time average of a function y = y(t) are § and < y(t) >.
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Figure 7.2 Typical time history of a stationary random variable of zero mean.
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From the viewpoint of structural dynamics, equation (7.1) implies that the
fluctuations are about a static, zero mean. For such cases the wvariance o,
defined as the mean square value of y(t), is often used as a measure of these
fluctuations. That is,

2 1 To/2 2
Ey] = — ye(t)dt = o

(7.2
TO ’—T0/2 )

2
Yy

When equation (7.1) is satisfied, the standard deviation or the root-mean-square
(rms) of y(t) is defined as the positive square root of equation (7.2), or o,.

Once o, is calculated, its value needs to be interpreted in a statistical sense
to be useful to the structural design engineer. For instance, if the rms value
of deflection y = v = v(t) is 0, = 2 m, a practical question is: What are the
chances that v will be smaller or larger than 2 m? Also, if the structure will
fail statically for v > 5 m, what are the chances that 2.50, = 5 m will be
exceeded? Thus, the probability distribution function, P(v), and the probability
density function, p(v), expressed in terms of o,, are defined to answer these
important questions.

Stripped of mathematical elegance, the increment of the probability distri-
bution function, AP, is defined symbolically at y = yg as

AP = Plyo <y < (yo + Ay)] (7.3)

This is the probability that y is between a fixed value yy and (yo + Ay). Specif-
ically, AP is defined as the fraction of the total time 7¢ that y(¢) is in this
bandwidth Ay. The vertical strips of Figure 7.2 show the typical time incre-
ments Atq, Ats, ... within this bandwidth. Thus

AP = Ti(Atl At .. (7.4)
0

The probability density function is defined as a limiting process, or

AP dP

p(y) = lim(Ay —— 0) X d (7.5)

where yo is replaced by y for generality. Thus it is possible to obtain a plot
of p(y) versus y by dividing a sample trace y(t) of duration 7¢ into a sufficient
number of levels y = yg, measuring the time spent at each level in each time
band, and forming the ratio AP/Ay ~ p(y) where AP is given by equation
(7.4). With automated digital sampling (see Problem 7.3), this is accomplished
in an efficient way.

In the statistical response calculations involving structures, p(y) is rarely
calculated. Instead it is assumed a priori that p(y) has a Gaussian or normal
distribution of zero mean, given in terms of the variance o, or
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Figure 7.3 Gaussian probability density function of zero mean.

ply) = exp (—%) (76)

A /2#0%

Equation (7.6) is depicted in Figure 7.3. In addition it is often assumed that
the probability density function for the peaks of y(t), with the amplitude a, is
given by

a a?
p(a):o—gexp 207 ) 0<a< (7.7

Here o2 is the variance of the amplitude. Equation (7.7) is known as the
Raylelgh probability density, which was presented in a somewhat different form
for wave height in Chapter 6, or equations (6.6), (6.7), and Figure 6.2.

It is apparent from the above definitions that once the probability density
function and the variance are established for a particular process, the proba-
bility of occurrence within prescribed limits of that process variable (y(¢) or its
amplitude a) can then be calculated. These ideas are now illustrated.

Ezample Problem 7.1. 1f y(t) is a Gaussian process, what is the probability
that y(t) lies within the +30, limits? Also out of 100 peaks of y(t), how many
would one expect to exceed 30,7 To answer the first question, write the proba-
bility symbolically and then calculate the needed result by integrating equation
(7.5) using equation (7.6). Thus

30y

Pl-30, <y <30y| = / p(y)dy

—30y

30y
/ exp ( ) dy = 0.9974 (7.8)
3oy

\/2ma?
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It follows that the probability of y occurring outside the +3c, limits is (1 -
0.9974) = 0.0026, or only 0.26 percent. This is why “safe” design limits for the
structural deflection, for y = v, for instance, are often chosen as +30,,.

To answer the second question, consider the probability that the peak value
of y(t) lies within the zero to 30, limits. Thus

30,
P0<a<30,] = / p(a)da = 0.989 (7.9)
0

which is based on the Rayleigh distribution, equation (7.7). It follows that the
probability that any peak chosen at random ezceeds 3o, is

Plla| > 304] =1 —0.989 = 0.011 (7.10)

This shows that about one peak in 100 exceeds 30,. Further, it is not diffi-
cult to show that, for both the Gaussian and Rayleigh probability distribution
functions, P is unity when the respective variable y or a extends throughout its
whole range, or

Pl—co<(yora)<oo]=1 (7.11)

Presented in the following sections of this chapter are two methods for eval-
uating the standard deviation o, or o4 for a structural displacement coordinate
v or rotational coordinate 6. For the first method, it will be shown that solutions
for ¢, and op can be based on a single measured surface wave height spectrum
Sy(w), the wave-to-structure load transfer function G(w), and the structural
response functions h(t) and H(w). For the second method, which is the newer
of the two and based on control theory for electrical systems, the standard devi-
ation is computed in closed form in terms of a three parameter spectral density
representation of the excitation force. With the standard deviations computed
by either method, appropriate probability density functions can then be used,
as in the examples just presented, to evaluate probabilities of occurrence of
structural displacements and rotations under wave loading.

7.2 STATIONARY AND ERGODIC HYPOTHESES

With the assumption that y(¢) is both stationary and ergodic, the statistical
calculations leading to the structural standard deviation in displacement are
simplified enormously. Although these assumptions are rarely checked in prac-
tice, it is nonetheless illuminating to elaborate on these two hypotheses from
an “experimental” viewpoint, as suggested by Muga and Wilson (1970). To do
this, cut a sample record y(t) such as in Figure 7.2 into J equal charts, each
of time duration 7¢. Again, 79 is of sufficient duration that it captures the
essential character of y(¢). This ensemble of J charts is denoted as
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Figure 7.4 Ensemble of traces cut from Figure 7.2.

yW,y®, Ly,

where ¢ denotes a typical one. Figure 7.4 shows three typical charts of such an
ensemble where each trace begins at time zero. The two broken lines across the
ensemble correspond to arbitrary times ¢y and to. The stationary hypothesis is
warranted if both of the following criteria are substantially met:

1. At a fixed time ¢;, measure y(t) = y(?(¢;) at £ = t; on each chart. The
average y(t) is

1<
S Zyu) (t1) (7.12)

The numerical values of equation (7.12) should be about the same for any value
of t1 one chooses, where the value of J is a very large number.

2. Pick a constant time interval r. For a time ¢ and another time ¢, where
(t2 — t1) = 7, measure the values of y(9(¢;) and y(¥(t2) on each chart i and
form the sum

J
EDMRIAPLICY (7.13)

=1
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The numerical values of equation (7.13) should be about the same for any value
of t; and t9, as long as (to —t1) = 7 and J is very large.

The ergodic hypothesis is in two parts. The first part of this hypothesis
states: the average value of y as given by equation (7.12), based on a constant
t, over an ensemble of charts, is equal to the time average of y over just one
typical chart. This must be true for all values of ¢;. Suppose that the typical
chart, which is representative of the ensemble of charts, is called y(*)(). Sup-
pose further that the chosen time interval over which y(*)(t) is considered is of
sufficient duration that it represents the behavior of y reasonably well. Then
the time average of y(*)(t) can be approximated as

1 N
>y t) (7.14)

where y(k) (t,) is the value of y at time t,, in the time interval 7. The values of ¢,,
are equally spaced, and the total number of measurements is V. If expressions
(7.12) and (7.14) are nearly equal, the first part of the ergodic hypothesis is
approximately satisfied, or

1 1<
7 >y (t) = I Zy(k)(tn) (7.15)
1=1

n=1

where J and N are both large numbers. In other words, the first part of the
ergodic hypothesis is satisfied if the ensemble average of y for J charts is equal
to the time average of y from a typical chart.

For the second part of the ergodic hypothesis another type of average is
defined by

N
% Sy O ) 5Ot + 1) (7.16)

n=1

where y(*)(t) is measured at N discrete times t = t,, and ¢t = t,, + 7 along the
one typical chart. Here 7 is constant. If equations (7.13) and (7.16) are nearly
equal, the second part of the ergodic hypothesis is approximately satisfied, or

J N
1 ; ; 1
= (@) () ~ (k) )
PRCIAOES S WAIGILCEU N GY

Based on this “experimental” viewpoint, these definitions are summarized.
To the extent that the averages of equations (7.12) and (7.13) remain con-
stant, y(t) is stationary. To the extent that equality holds in equations (7.15)
and (7.17), y(¢) is ergodic. It is observed that the ergodic condition implies
a stationary condition, but y(¢) may conceivably be stationary without having
ergodic properties.
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7.3 AUTOCORRELATION AND SPECTRAL DENSITY

On the basis of the preceeding developments, two statistical parameters are
defined. The first is the autocorrelation function, which can be thought of as
the time average value of the product y(¢)-y(¢+r). Dropping the (k) superscript,
this average is given approximately by equation (7.16), or

N
Ry(r) =~ —]1\7 > y(tn) y(tn +7) (7.18)

n=1

which is independent of time but not the time difference 7, provided that y()
is stationary. More precisely, R,(7) is defined by replacing the finite sum in
equation (7.18) by the integral over the duration 7o where N = 70/At and
At — dt in the limit. That is,

1 T70/2
Ry (r) =lim(ro — 00)— /_ VO v )= By ) (119)

It is noted that R, (7) is sometimes referred to as the autocovariance function
of y(t). As 19 — 00, y(t) fluctuates between positive and negative values and
R,(7) — 0. Since Ry(r) depends only on 7 and not on absolute time ¢, then
R, (1) is symmetric about 7 = 0, or Ry(7) = Ry(—7).

The second important statistical parameter needed in this analysis is the
power spectral density function or simply the spectral density, Sy(w). This func-
tion was introduced in Chapter 6 to characterize wave height, where S, (w) was
approximated by equations (6.5), and the Fourier coefficients were calculated
from equation (6.2) for a given wave chart n(t). Actually, Sy(w) is defined
precisely as the Fourier transform of R,(7), or

S, (w) = 51; /_ ¥ Ry(r)e—mar (7.20)

The reciprocal or inverse relationship is
R,(r) = / S, (w) T dw (7.21)
—o0

For 7 = 0, it is observed that R,(0) = 02, the variance as defined by equation
(7.2). Using the symmetry property, it follows that

o2 = Bly?] = /_ " 8, (w) dw =2 A ” 8 (w)dw (7.22)

In principle Ry(7) can be calculated from equation (7.19) for a given y(t),
provided that 7¢ is sufficiently large, and S,{(w) and Ug can be subsequently
calculated from equations (7.20) and (7.22), respectively. The software package
Mathematica® (1999) offers a convenient method for calculating the Fourier
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transform and the inverse Fourier transform from digitized data. In practice,
however, it is usually more efficient to calculate Sy (w) directly from experimental
time histories (for n(¢), for instance) by means of an electronic instrument called
a frequency analyzer such as described in Problem 7.4, or by means of computer-
aided Fast Fourier Transform (FFT) methods to evaluate the Fourier coefficients
of equation (6.2) for use in equations (6.5). Newland (1975) elaborated on these
methodologies, and Cooley and Tukey (1965) presented efficient algorithms for
calculating the Fourier coefficients.

Ezample Problem 7.2. A linear, single degree of freedom flexible stucture
is subjected to a total wave force p; (¢), in line with the motion of the structure.
Assume a distribution of simple, linear waves for which the wave height 7(t)
is stationary, ergodic, and Gaussian, with a zero mean and with a spectral
density S,(w). Starting from basic definitions, relate the spectral density of the
wave load Sp1(w) to Sy(w) through a known transfer function G(w) defined by
equation (4.24).

First, rewrite the structural load-wave height relationship as

pi(t) = n(t) |G(w)| (7.23)

Then rewrite equation (7.20) twice using equation (7.19), first substituting # for
y and then p; for y. The results for the respective spectral densities are

Sp(w) = / E[n(t) n(t + 7))e”“"dr (7.24)

Sp1(w) = / Elpy(t) pa(t + 7))e " dr (7.25)

When equation (7.23) is substituted into equation (7.25) and this result is com-
pared to equation (7.24), the required relationship is deduced as

Sp1(w) = |G(w)|*Sp(w) (7.26)

7.4 STRUCTURAL RESPONSE STATISTICS: PART 1

The derivation of response statistics that follow are based on a linear model

in the form of equation (2.43), written in terms of the displacement coordinate

v. However, similar results can be obtained based on a linear model in the

form of equation (2.81), written in terms of the rotational coordinate 6. After

going through the following derivation for the displacement model, the reader

is encouraged to then derive the response statistics for the rotational model.
Given the linear structural model

mb + 10 + kv = pi(t) (7.27)



174 STATISTICAL RESPONSES FOR LINEAR STRUCTURES

for which the load spectral density S, (w) is known through equation (7.26), the
task now is to calculate the response spectral density S,(w) and the variance o2.
Because these results are so important in applications, all of the assumptions and
mathematical details needed for this derivation are included here. Because two
particular response functions for equation (7.27) are required eventually, these
are repeated for convenience. One is the harmonic response function given by

equation (5.62), or
H(w) = kl(-—mw2 -+ jclw + kl)_l (728)
‘The other is the impulse response function given by equation (5.74), or

1
MWy

h(t) = et sin wyt (7.29)

The Fourier Transform

A preliminary step is to relate H(w) to h(t) through the Fourier transform.
To do this, the steady - state solution to equation (7.27), as given by the convo-
lution integral in equation (5.76), is first written as

t
v= / p1(TYh(t — T)dr (7.30)
— 00

Here the lower limit 7 = 0 was replaced by 7 = —oo since p;(t) vanishes for
T < 0, leaving the value of the integral unchanged. Further it is recalled that
h{(t — ) is the response to a unit impulse at (¢t — 7) = 0. For (¢ — 7) < 0, the
response v is zero because the unit impulse has not yet come into existence.
Thus for 7 < t, h{(t — 7) = 0, and the upper limit ¢ = 7 may be extended to
t = oo without changing the value of this integral. That is

v = / pr(7) Bt — 7)dr (7.31)
Now define a variable change: 6 = t — 7, where dr = —df. The lower limit
T = —o00 now changes to § = oo, and the upper limit 7 = oo changes to
8 = —oo. It follows that
v= [ me-ope) -0 (7.32)
Change the sign of the integral and reverse the limits of integration, or
v= / pu(t — 0)h(6)d8 (7.33)

Now rename the dummy variable of integration, or let § = 7, which gives

v = /jo p1(t — TYh(T)dT (7.34)
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To show the relationship between h(t) and H(w), the solution v must now
be expressed in terms of H(w). To do this, set

Pr(t) = poci® (7.35)
which can be rewritten as
p1(t — ) = poe?“te T (7.36)
With this last result, the solution to equation (7.34) becomes
. oo .
v = pge?*t / h(T)e 7“7dr (7.37)

It is recalled that equation (5.60) is the solution to equation (7.27) compatible
with equations (7.28) and (7.35). That is,

v= 120 (w)ele? (7.38)
kq

When the last two results are equated and the dummy variable is changed to ¢,
the connection between h(t) and H(w) is established as

k'll H(w) = /_ Z h(t)e 7« dt (7.39)

The function H(w)/k; is the Fourier transform of (27)h(t). The inverse Fourier
transform of the latter yields

1 o0 ot
h(t) = 5 /_oo ™ H(w)e dw (7.40)
The Autocorrelation Functions

From the definition of the autocorrelation of response R,(7) given by equa-
tion (7.19) and the solution v given by equation (7.31), it follows that

Ry(7) = E[v(t)v(t + 7)]

—E [ /_ Z h(81)p1(t — 61)d6, / " h@)pa(t 7 - 92)d92] (7.41)

—00

where 6; and 6, replace T to avoid confusion. Assume that v(t) is stable and
that these integrals converge. The term R, (7) can then be written as a double
integral where the order of averaging and integration is interchanged. That is

Ro(r) = E [ /_ Z /_ Z RO h(B2)p1 (¢ — B)pr(t + 7 — 92)d01d92]
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= [ e E - b+ 7 blabias, (7.02)

Next assume that p,(¢) is stationary and ergodic. The autocorrelation func-
tion for this loading is then independent of time t and that portion of the
integrand of equation (7.42) involving p;(t) can be written as

E[pl (t - 91)p1(t +T7 - 92)] = Rpl (7' - 62 -+ 91) (743)

Equation (7.43) is simply the autocorrelation function for p;(7) with a time lag
of (=83 + 61). The last two equations are combined to give

Ry = [ [ 06 R (7~ 02+ br)abnasy (144

Response Parameters

The spectral density of the response v is defined as the Fourier transform of
R, (7). That is, from equation (7.20),

Sy(w) = % /_ OORU(T)e—j“’TdT (7.45)
When the last two equations are combined, then
1 o0 . [e ) {ee]
Sp(w) = %/ e‘””dr/ / h(61)h(02) Rpi (T — 02 + 01)d0:dby (7.46)
—00 —~00 J —00

After interchanging the order of integration in equation (7.46) and inserting the
following identity in the integrands,

eI w1 g—jwbs ,—jw(8:1-02) _ | (7.47)

the result is a product of three integrals given by

Sv(w):/ h(gl)ejwoldgl./ h(82)e~ 742 dg,

—00 —00

-2-1— / Roi (1 — 02 + 6, )e 3T =02461) 47 (7.48)
™ —

When compared with equation (7.39), it is observed that the first two integrals
on the right of the last equation are H(~w)/k; and H(w)/k1, respectively. With
equation (7.20), the last integral in equation (7.48) is identified as the power
spectral density of p;(t) with a time shift of (—62 + 6,). The product of these
first two integrals is

1 1
() H@) = 5 H@)? (7.49)
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With this last result, equation (7.48) becomes
1
So(w) = 75| H(w)[*8p1 (w) (7.50)
i

This last remarkably simple and useful result relates the power spectral
density of p;(t) to the power spectral density of v(¢) through the complex fre-
quency response function. As shown in Ezample Problem 7.2, Sp1{(w) is given
by equation (7.26) in terms of S, (w) and G(w). With this and the modulus of
the harmonic response function given by equation (5.63), the response spectral
density of equation (7.50) for the linear structural model of equation (7.27) is
deduced as

|G(w)[*Sp(w)

Sulw) = (k1 — mw?)? + c3w?

(7.51)

The variance of the response is then

w 2 W
o> _2/ (kllG( W) 4, (7.52)

mw?)? + c2w?

which follows from its definition given by equations (7.22) and (7.51).

These results are summarized. To calculate o, the model parameters k1, c1,
and m are identified. Then G(w) is calculated by the methods discussed in
Chapter 4 where linear small-amplitude wave theory is assumed. After a design
wave height spectrum is chosen, such as the Pierson-Moskowitz form of equation
(6.21) or the JONSWAP form of equation (6.24), then o, is calculated from
equation (7.52) in which the limits of integration (0,c0) can be replaced for
practical purposes by (0.16, 1.60) rad/sec.

It is important to note that for a linear structure, if n(t) and p; (t) are Gaus-
sian, then the response v(t) is also Gaussian (Newland, 1975). Thus, with the
assumption that the excitation is Gaussian, then the probability that v(t) will
exceed the calculated + 30, limits is only 0.26 percent. Thus if a static displace-
ment of v = £30, yields peak stresses within the allowable limits, the structure
is a practical one from the general viewpoint of structural dynamics. However,
this type of calculation does not exclude the possibility of local material failure
by fatigue.

The following comprehensive example brings together many of the basic ideas
elaborated on in this and preceding chapters. In working through such problems,
the reader is reminded of the many and sometimes subtle assumptions involved
in this analysis and is cautioned to temper the interpretation of numerical results
accordingly.

Ezxample Problem 7.3. The free, undamped lateral motion of the three-
legged jackup rig shown in Figure 2.17 has already been investigated in Ezample
Problem 5.4. Now include light damping, and subject this structure to steady,
unidirectional linear waves with a significant wave weight H; = 15 m and with a
distribution given by the Pierson-Moskowitz spectrum, equation (6.21). Based
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on the result given by equation (7.52) for a single degree of freedom structural
model, calculate the variance o2 for the horizontal displacement of the deck.
Then assuming that the wave height distribution is Gaussian, calculate and
interpret the following quantities based on +30,: the horizontal deck displace-
ment, the horizontal shear force in each leg, and the overturning moment. State
any further assumptions needed to make these calculations.

The first step is to clarify the mathematical model of equation (7.27). Iden-
tify the coordinate v, the constants for the stiffness ky, the mass m, and the
damping ¢;. Let v be the absolute horizontal displacement of the deck where v is
on the average much smaller than the horizontal wave particle velocity u. From
Ezxample Problem 5.4, the undamped natural frequency wyg for this structure is
given as the last item in Table 5.2, or

k1 6.82 x 10* 1b/in.
“Vm~ =1. 7.
“o m \/3.68 x 104 Ib-sec? /in. 1.36 rad /sec (7.53)

In this calculation, the equivalent stiffness and the virtual mass are: k; = 8.18
x 10° 1b/ft and m = 4.42 x 105 slugs (or Ib-sec?/ft). Lacking the required data
for ¢;, assume ¢ = 0.05. With equation (5.64), it follows that ¢; = 2(y/kym =
6.01 x 10* Ib-sec/ft.

The second step is to choose a reasonable wave theory and then calculate
G(w), the corresponding transfer function for wave loading of the legs. Assume
that the inertial flow regime dominates. Then p;(t), or the total horizontal
load on all three legs, is found by setting Cp = 0 and integrating g given by

Morison’s equation (2.14) over the range from z = —d to z = 0. That is,
r 0
pi(t) = 3C’MZpD2 / tdz (7.54)
z=—d

This last form implies that the wave forces on the legs are assumed to be statisti-
cally independent of each other so that the horizontal wave particle acceleration
1 is essentially the same on all three legs. Let = 0 be the location of the water
particles on each leg so that the value of % for a single wave as given in Table
3.1 can be employed, or

) H ,coshk(z+4d) .

SR i i M ¢ .

U T T g S (7.55)
where the wave period T was replaced by 27 /w and the wave amplitude A was
replaced by H/2. With this last result, equation (7.54) can be integrated to
give

1 Imw? ,

ﬁpl (t) = ———8—- 7 D CM sin wt (756)
Now assume deepwater waves so that the wave number-frequency relationship of
equation (3.16) reduces to w?/k = g. Making this substitution in the righthand
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side of equation (7.56) and then expressing the result in complex notation leads
to the required transfer function, or

G(w) = j%rpgD2C’Mej“’t (7.57)
It follows that
2 3 2 ?
G = { 5 pgD*Cur (7.58)

Since it is tacitly assumed in the mathematical model that p;(t) is applied at
the deck level, this transfer function is conservative; that is, the predicted value
of 02 will be on the high side.

The third step is to specify the constants g and B of the Pierson-Moskowitz
wave height spectrum of equation (6.21), or

2 4
Sp(w) = 0.0081—5363/“ (7.59)

In this example, traditional English units are used so that the numerical coef-
ficient of the exponential term above is (0.0081)(32.2)? = 8.40 ft2/sec*. From
equation (6.23), B = 3.11/H2 = 3.11/15? = 0.0138. Note that the constant 3.11
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Figure 7.5 Pierson-Moskowitz wave height spectrum for H, = 15 m.
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in this calculation requires that H; be expressed in meters. The latter equation
thus becomes

Sp(w) = %—}4?06’0'0138/‘”4 ft?-sec/rad (7.60)
The units displayed for equation (7.60) are appropriate only if w is given in
rad/sec. A plot of equation (7.60), given in Figure 7.5, shows that for all
practical purposes the wave energy is confined to frequency range of 0.16 to 1.6
rad/sec, the limits of integration in the variance integral. With equations (7.58)
and (7.60), the variance equation (7.52) is thus

2 1.6 —0.0138/w*
o2 = (E;—W-pgDQCM) 2 / 8.40¢ duw (7.61)
0

8 16 WO[(k1 — mw?)2 + c2w?]

where

pg = 64.3 Ib/ft3, water density

D = 12 ft, single leg diameter

Cy = 2.0, assumed inertia coefficient

m = 4.42 x 10° slugs (Ib-sec?/ft), equivalent mass

k1 = 8.18 x 10% Ib/ft, bending stiffness

1 = 6.01 x 10* Ib-sec/ft, damping

When equation (7.61) was evaluated numerically, the variance was 02 = 0.276
ft?, giving 0, = 0.526 ft for the rms deck deflection. For a Gaussian process,
the probability of exceeding the following dynamic responses is 0.26 percent:

deck displacement: v =30, =1.58 ft

horizontal shear load per leg:  finax= k1v/3 = 4.30 x 10° Ib
overturning moment: Munay = oy = 1.14 x 108 ft-1b,
(leg height: ¢ =265 ft )

Approximate Responses

In some applications, the spectral density of the loading Sp1(w) can be ap-
proximated as a constant Sy over a frequency band between the limits of w;
and wy and as zero outside that frequency band. That is

Sp1(w) = |G(w)|2S,(w) = Sp = const., w; < (w,wo) < wa (7.62a)

Sp1(w) =0, w<wy and w > we (7.62Db)

Equations (7.62) define band-limited white noise. The designation white noise
originated with the description of white light for which the spectrum is nearly
uniform over the range of frequency for visible light. In the present appli-
cations, it is noted that Sy is a one-sided spectrum since it is based on the
one-sided experimental wave spectrum S, (w). Further, it is assumed that the
undamped frequency wy of the single degree of freedom system is within the de-
fined frequency band of equations (7.62). With these equations it follows that
the variance of the deflection response, equation (7.52), has the following form:
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Figure 7.6 Three idealizations of the load excitation spectrum: (a) band-limited
white noise; (b) white noise with a cut-off frequency; and (c) ideal white noise.

0% =28, / du (7.63)

(k1 = mw?)? + c2w?
The solution to the latter equation, given by Crandall and Mark (1963), is

780
o2 —

v = E[I(wz/wo) — Iwi/wo)], w1 €wp<ws (7.64)

in which the integrals I{w;/wg), i = 1,2, are computed from

1 2¢(wi/wo)

O

N ¢ n 1+ (wi/wo)? + 2(w; Jwo)V/1 = ¢
2rv1—=¢" 1+ (wi/wo)? — 2(wi/wo)V1 ¢

This solution includes, in addition to band-limited white noise, two other special
cases: white noise with a cut-off frequency w,, and ideal white noise. These three
cases are depicted in Figure 7.6. For white noise Sy with a cut-off frequency we,
then w; = 0, wy = w, and the integral term of equation (7.64) becomes

(7.65)

H{we/wo) —~ 1(0) = I(we/wo) (7.66)

For ideal white noise where Sy is uniform for 0 < w < oo, the integral term is

I(wz/wo) - I(O) = I(OO) =1 (767)

The latter result follows from the behavior of the arctangent term in equation
(7.65): as wg — oo, its argument is large and negative, and tan~! (—oo) — 7.
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Also, as wy — o0, the argument of the natural logrithmic term approaches unity
and In (1) = 0. Thus, for ideal white noise, Sp is uniform for all frequencies and

o 7S
0% = ——
Y ki

(7.68)

Ezample Problem 7.4. For the jackup rig described in Ezample Problems
5.4 and 7.3, compute the upper bound for the rms deck deflection, ¢,, for each
of the three idealized loading spectra shown in Figure 7.6. In all three cases,
choose

So = |G(w)[2S,(w) = (4.76 x 10%)(336.3) = 1.60 x 10'! Ib?-sec/rad

Here the quantity 336.3 ft2-sec/rad is arbitrarily chosen as one-half the peak
value of the wave height spectrum shown in Figure 7.5, the value that corre-
sponds to the frequency of w = 0.324 rad/sec. The results are summarized.

(a) For the band-limited spectrum of Figure 7.6a, choose the same frequency
limits that were used in the direct integration of equation (7.61), or w; = 0.16
rad/sec and wg = 1.6 rad/sec. Compute the variance by evaluating equations
(7.64)-(7.66), from which

0, = 3.1066 ft

(b) For the cut-off frequency spectrum of Figure 7.6b, choose w; = 0 and
w2 = w, = 1.6 rad/sec. Compute the variance by evaluating equations (7.64)
and (7.65) using (7.67). The result is

o, = 3.1079 ft
(c) For ideal white noise, use equation (7.68) to give
o, =3.1976 ft

These results show a small but progressive increase in the rms deflection as
the band width increases. However, these idealized approximations all led to a
gross overestimate in ¢, by about an order of magnitude, compared to the value
of 0.372 ft computed by direct integration of equation (7.61). The conclusion is
that direct integration gives the best answer, at least for this type of problem
in which the structure’s fundamental frequency wy is at the very low end of the
wave height spectrum.

Extensions

There are several possible extensions to the classical statistical results ob-
tained thus far in this chapter. These extensions involve the relaxation of certain
restrictive assumptions upon which the variance of the response given by equa-
tion (7.52) was based. Two of those assumptions were: there exists a single,
stationary excitation wave force of a known spectrum Spi(w) and the wave
excitation force has a zero mean value. This assumption of zero mean was in-
vestigated by Tung (1974), who showed how a single, stationary wave excitation
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spectrum is modified when the mean is not zero, which corresponds to the case
of steady current forces and wave forces acting simultaneously on the structure.
In typical examples, however, Tung showed that such simultaneous action had a
definite but relatively small effect on the structural response. Thus the practice
of superimposing the effects of current as a static loading on the structure under
wave excitation seems to be justified, providing that all loading due to vortex
shedding in the current field is negligible.

Another extension is the case of two or more stationary wave excitation
forces that are uncorrelated or statistically independent, and all with a zero
mean value. Suppose that the N such spectral densities are known and denoted
by S;(w), i = 1,2,..., N . From lengthy but straightforward calculations, the
structural response analogous to equation (7.52) then becomes

N1
So(w) =Y ﬁ|H¢(w)|25i(w) (7.69)

i=1

where H,;(w)/k; is the ith harmonic response function.

Statistical response theories and numerical results for linear and occasionally
for nonlinear systems, subjected to stationary and nonstationary excitation,
appear from time to time in engineering and applied mathematics journals.
These analyses, although rarely lacking in elegance, do require experimentally
derived wave data (which are lacking) to be useful in applications to offshore
structures. For further expositions, the reader can consult the works of Gould
and Abu-Sitta (1980), Lutes and Sarkani (1997), Newland (1975), and Yang
(1986), all of whom include many source references. Of particular interest may
be the incorporation of a time lag in excitation such as discussed by Hedrick and
Firouztash (1974), an analysis applicable to response calculations for structures
whose components (legs, braces, etc.) are sufficiently close so that there is a
correlation of the wave forces among the components.

Presented up to this point was the classical statistical response analysis
for linear structures subjected to stationary excitation, an analysis that forms
the basis for similar studies of the multi-degree of freedom and of continuous
linear structures in Chapters 9 and 10. Presented now is an introduction of an
alternative to this classical statistical analysis.

7.5 STRUCTURAL RESPONSE STATISTICS: PART II

Modern control theory, developed mainly after 1960 for use by electrical and
mechanical engineers, offers some powerful techniques of dynamic statistical
analysis that are applicable to offshore structures. In this analysis, the linear
differential equations representing structural motion the excitation forces are
cast in state-variable form, those forms are transformed to a statistical repre-
sentation called covariance propagation, and the latter result is then solved to
obtain the statistical responses. These ideas are now discussed and illustrated
using a single degree of freedom linear structure subjected to stationary wave
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excitation. The theory is freely drawn from the expositions of Bryson and Hu
(1975), Lin (1967), and Hedrick (1984).

State Variable Form

Equation (7.27), governing the structural motion v = v(t), is rewritten as

. ) 1
D+ 2Cwot + wiv = Epl(t) (7.70)

kl (4]
_ . =t 7.71
wom\ S 2km (7.71)

The spectral density of a stationary excitation force, equation (7.26), is
Sp1(w) = 1G(w)[*Sy(w) (7.72)

where G(w) is the load transfer function and S,(w) is the surface wave height
spectral density. This force excitation spectral density is now arbitrarily fitted
to the following equation:

Sp1(w) ~ & {(1 - S;)z + (2&%)2} B (7.73)

Here, the constants &, @, and é“ are picked to give a best fit to the right side
of equation (7.72). There are two reasons for picking the latter form. First,
when |G(w)|? is constant, then S, (w) has this general shape of equation (7.73).
Second, that form is precisely the spectral density obtained by passing white
noise w(t) through a linear filter given by

P1t) + 200 p1(t) + &Pp1(t) = &%a  ?w(t) (7.74)
where the white noise has zero mean, or

E[w(t)] =0 (7.75)

Elw(t)w(t + 1) = Qb(T) (7.76)

and the intensity of the white noise @ is unity.
Equations (7.70) and (7.74) are now expressed in the state variable form, or
four first order differential equations in the following matrix form. That is

z2=Fz+Tw (7.77)

where F and I" are constant matrices and for brevity the argument t is omitted
from the variables z, w and their components. The state variables are defined
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from the two governing differential equations (7.70) and (7.74). These and the
other matrices of equation (7.77) are as follows:

. a7
z=[2; 2 z3 2z’ = ['u s P p—l} (7.78)
m m
H=0=12 (7.792)
Z9 = U = ~20wgze — w(2)21 + 23 (779]2))
133 = 21— = 24 (7790)
m
: 5 2 L . o.1/2
24 = —2Dzg — D23 + et (7.79d)
0 1 0 0
2
F=1 9 0 0o 1 (7.80)
0 0 —F 2w
1 T
Tw=1[0 0 0 Ecﬁa}/?w (7.81)

In this case, the only nonzero term of the 4 by 4 matrix T is I'y,4 which is
&*at? m.

Covariance Propagation Equation: Derivation

The next task is to cast the state variable form equation (7.77) in its sta-
tistical counterpart, the covariance propagation equation, also in state variable
form. It will be shown that solutions to this latter matrix equation yield statis-
tical responses, which include the variance of displacement o2 for a single degree
of freedom structure. The derivation that follows, based on the expositions of
Hedrick (1984) and Lin (1967), is general in that the results are applicable to
multi-degree of freedom linear structures also. However, zero mean is assumed
for both the state variable z and the white noise w, or

Ez] = Ew]=0 (7.82)
Define the covariance propagation matrix Z for zero mean. Let

Z(t) = Z = E[zz"] (7.83)
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The time derivative of the last equation is

d

2= 7 = Elzz” + 237 (7.84)

Substitute z of equation (7.77) into the last equation:
2 = E[(Fz+Tw)z" +z(Fz +I'w)T] (7.85)

Taking advantage of the linearity of the expectation operator E , the last equa-
tion becomes

7 = FE[zz"] + E[22T|FT + TE[wz"] + Efzw” T

=FZ+ ZF" + TE[wz"]| 4 E[zwT|lT (7.86)

What remains is to evaluate the last two terms on the right of the latter
equation. Begin by defining the state transition matrix ¢(t, T) with the following
properties:

Lot ) =Fotr),  Blt0) =1 (7.87)

Since the system is linear, it follows that
t
z(t) = ¢(t,70)z(to) + | &(t, T)Tw(r)dr (7.88)

to

Define the expectation as

‘ T
Elw(t)z(t)]=F [w(t) (¢(t,to)z(to) +/t ¢(t,T)FW(T)dT> j' (7.89)

Assume that the following expectation is valid:
Elz(to)w' (t)] =0 (7.90)

Use the last result and then invoke linearity to put the expectation operator F
under the integral of equation (7.89). Since w(t) is independent of the integra-
tion variable 7, include w(t) under that integral as well. Thus, equation (7.89)
becomes

Ew®)zT(t)] = | Ew@®)wT (n)ITé(t, r)dr (7.91)

to

Assume white noise of the form

Ewt)w?(r)] = Qé(t — 1) (7.92)
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with which equation (7.91) becomes

E[w(t)zT(t)] = t Q6(t — )TT @ (t, 7)dT (7.93)

to

With the identity relation of equation (7.87), the last result becomes

Elw(t)z"(£)] = ( [ t Qs(t — T)d’r) rT (7.94)

The problem in evaluating the last integral is that the impulse occurs at
the end point of the time interval. Use the symmetry property of the white
noise autocorrelation function, or R, (7) = R,(—7). The impulse can be ap-
proximated as the magnitude of any symmetric function whose time duration &
approaches zero in the limit. Choose a rectangular pulse at 7 = ¢t of duration ¢
and of magnitude ()/e. The symmetry property leads to the evaluation of the
integral of equation (7.94) as

t t+e/2

Qé(t — m)dr = / Qé(t — 7)dr = -;—Q (7.95)

to t—-E/2

With this last result and equation (7.94), the third term on the right of
equation (7.86) is determined as QLY /2, which, after some algebra, turns out
to be identical to the last term on the right of equation (7.86). Thus, the
covariant propagation equation (7.86) becomes

7=FZ+ZF +B, B=r1Qr? (7.96)

where the vector for the initial conditions Z(0) is given.

For the particular example of a single degree of freedom structure modeled
by equations (7.70)-(7.81), note that Z =F[zz”] is a 4 by 4 covariance matrix
whose diagonal elements are the variances of the corresponding state variable
z. Thus Z1,; = 02 is the variance of displacement. In this case B is the 4 by 4
matrix all of whose elements are zero except the element By 4 = &*&/m?2. Since
F is constant and B is statistically stationary, the steady-state solution for Z is
found by setting Z = 0.

Two general methods for obtaining steady state solutions to equation (7.96)
are discussed next: a numerical method and the Laplacian method.

Steady State Solutions

There are several numerical algorithms available for solving the steady - state
covariance equation (7.96) for Z where

FZ+ZFTtB=0 (7.97)

Davison and Man (1968), R. Smith (1968), and P. G. Smith (1971) discussed
such methodologies. In a typical procedure, the eigenvalues of F are first calcu-
lated, an arbitrary scalar parameter 3 is chosen as two and one-half times the
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real part of the largest eigenvalue, and successive matrix solutions are generated
by the following recursion formula:

Zni1= T+ V22, (VT (7.98)

The quantities of equation (7.98) are defined as follows, in which I is the identity
matrix:

= (fI—F)* (7.99a)

= U(BL+F) (7.99b)

W =23UBU” (7.99¢)
Z,=W+VWwWvT (7.99d)

The generation of the successive terms in the series is aborted when the succes-
sive changes in partial sums becomes sufficiently small, or less than one percent.

If the system is not too large, then the following closed form solution to
equation (7.97), based on Laplacian transforms, can be used (Lin, 1967). That
is,

Z= /00 exp(F - t)Bexp(F7 - t)dt (7.100a)
0

exp(F-t) = L7 1(sI - F)™! (7.100b)

exp(F - t) = L7 (sI — FT)~! (7.100c)

where £7! is the inverse Laplace transform and s is the Laplace operator.
A Closed Form Solution

The solution to the covariance propagation equation for the single degree
of freedom system described by equations (7.70)-(7.81) was calculated using
the integral solution of equations (7.100). One result is an expression for the
variance of the displacement in terms of the three structural constants (m, k1, ¢1)
and the three load excitation parameters (&, &, ¢ ). That is

ENPA Z e, 2"n7y | 26757
2an a;t+ay  azt oy

262 2e2 262 2¢?
+ Y173 n Y174 4 Y273 + Y374 (7.101)
a1 + a3 a1+ oy a9 + (3 a3 + 0y

where
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a=—ky/m; b=—c;/m; c¢=—0?
d=-2o; e=a%a"?/m
251 = d + (d? + 4¢) /% 289 = d — (d? + 4c)1/?

283 = b+ (b% + 4a)/?; 284 = b — (b + 4a)'/?
Oy = d(d— b)/[c(a — c)(d — b) — (be — ad)(c + d? — bd — a)]
Co=—Cilc+d® —bd—a)/(d—b)
Cs = —Ch; Ci=—(1+aCy)/c
1= (5101 + C2)/(s1—s2); 72 = —(5201 + C2) /(81 — 82)
v3 = (53C3 + Ca)/(s3 — s4);  vg = —(54C3+ Ca)/(s3 — 54)
o =—8;, 1=1,23,4

Although this integral solution is exact, it is recalled that the results are
an approximation to reality because of the assumptions inherent in the math-
ematical model. In addition to the single degree of freedom approximation for
the structure, the assumed form for Sp;(w), equation (7.73), does not exactly
replicate S, (w). Note that as w — 0, Sp1(w) — &, whereas S, (w) — 0. However,
these two spectra have similar behavior otherwise: both form a single peak and
both approach zero as w becomes large.

Ezample Problem 7.5. Consider the same jackup rig of Example Problem
7.8, for which the characteristic constants m, k1, and ¢; are given just after
equation (7.51). Based on the theory of covariant propagation, or the closed
form response results obtained in equation (7.101), compute numerically the
rms deck deflection o,. Use the Peirson-Moskowitz wave height spectrum with
a significant wave height of 15 m as the basis for the wave force excitation of
this structure.

The first task is to achieve an approximate fit for &, ¢, and & when the two
forms for the wave force excitation spectrum are equated. From equations (7.72)
and (7.73), then

& [(1 - g—z->2 + (2&%)21 ~ |G(w)[2S, (w) (7.102)

The two terms on the right side of the last equation are known from Erample
Problem 7.3: |G(w)|? = 4.76 x 108 1b%/ft2, and S,)(w) of equation (7.60), which
has its peak at 672.5 ft?-sec/rad at the frequency w = 0.324 rad/sec. Now match
the peaks for each side of equation (7.102) at w = & = 0.324 rad/sec, which
leads to

& = (20)2(4.76 x 108)(672.5) = 1.28 x 10'2¢” Ib%-sec/rad
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Arbitrarily choose ¢ = 0.1. Using the constants in equation (7.101), Mathematica®
(1999) gave the following result: ¢, = 0.135 ft. Note that this result is about
one-fourth the value calculated by a different theory in Ezample Problem 7.5. A
closer agreement between the two results can be obtained by choosing ¢ = 0.2,
for which o, = 0.196 ft. A least squares fit of the constants &, z , @ based on
equation (7.102) may lead to even closer agreement between the results for o,
obtained in the two statistical methods. This exercise is left to the reader.

PROBLEMS

7.1 If y(t) is Gaussian with zero mean and has a variance of oy, calculate
by numerical integration the probability that y(t) is outside the levels y = +0,
and y = £20,. Check your results using Gaussian probability tables such as
found in a statistics reference book.

7.2 Suppose that y(t) is Gaussian, exists only over a narrow band of fre-
quencies, and is a smooth function of time. Also assume that each cycle crosses
the mean level y(t) = 0 so that the maxima always occur for y(¢) > 0 and the
minima always occur for y(¢) < 0.

(a) Sketch a function y(¢) which behaves as defined.

(b) The probability distribution for the peaks of y(t) so defined is given by
equation (7.7), the well-known Rayleigh distribution. Sketch p(a) as a function
of the amplitude a of y(¢). Prove that the maximum value of p(a) occurs when
the amplitude is equal to the standard deviation, or a = o,.

(c) Compute the probability that any peak of y(t) exceeds these two values:
204, 30,. Note that the probability that any peak of y() exceeds a is given by

o0 d a2
/a pla)da = exp (—27‘—?2/)

7.3 A digital time history of y(¢) is available in the form of points y(¢,) at
even increments of time, n = 1,2, ... ,n. Qutline a computer-aided method that
will generate a probability density function p(y) from these data. How would
you check p(y) to see if it was Gaussian?

7.4 A schematic diagram of an instrument called a spectrum analyzer
is shown in Figure 7.7. The wave height input n{t) is assumed to be a sta-
tionary ergodic random process. This input is filtered by a filter whose har-
monic response function H(w) is a constant Hp in the narrow frequency band
(wo—Aw/2) <w < (wo+ Aw/2). The filter output y(t) is squared, and its time
average z(t) is calculated from

To/2
2(t) = B (1)) = o /_ LYo

The mean level of z(¢), estimated from the output meter for sufficiently long
time periods Ty, is
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Output: £[¥*] = const.

Figure 7.7 Schematic diagram of a spectrum analyzer.

(a) Based on this description and the definitions, deduce that

E[2(t) = /—00 |H(w)|?S,(w)dw ~ 2H2 Aw S, (wo), Aw € wg

(b) State the assumption that leads to E[z(t)] = E[y%(t)]. Then show that

the mean level E[z(t)] of the output meter is a direct measure of the wave
spectral density, or

Snlwo) = QEIE(E

7.5 The Pierson-Moskowitz wave height spectrum for a significant wave
height of H; = 15 m is given by equation (7.60) and is plotted in Figure 7.5.
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Use this equation and employ numerical integration, with reasonable limits for
the integral, to compute the area A under the curve of Figure 7.5. Then verify
the result discussed in Chapter 6 that H, = 441/2 = 15 m.

7.6 In Ezample Problem 7.4, three rms displacement responses o, for the
Jjackup rig were computed, each based on an idealized model: band-limited white
noise, white noise with a cut-off frequency, and ideal white noise. Using the same
parameters as for this example problem, solve equation (7.63) by numerical
integration to obtain ¢, for each of these three idealized models. Compare your
results to the corresponding results in the text that were derived from closed
form solutions to the integral. Explain possible differences in the results. Also
explain why these idealized models give results for o, that are about six times
that obtained from numerical integration of equation (7.61).

7.7 Reconsider the jackup rig described in Ezample Problem 5.4, with the
design parameters given in Table 5.2. The statistical responses to this same
structure were discussed in Ezxample Problem 7.5. Tt is proposed to add more
equipment to the deck of this jackup rig so that the deck weight mgg would
increase from 1.02 x 107 1b to 5 x 107 1b.

(a) What percentage of the Euler buckling load is this new deck load? Use
equation (5.36) to answer this and to explain whether the new deck weight will
increase the chance of structural buckling.

(b) With the new deck weight, the other parameters of Table 5.2, and
equation (5.36), calculate the following quantities: the equivalent bending stiff-
ness ki, the equivalent mass m, the equivalent damping constant c¢; based on
¢ = ¢1/+/4kym = 0.05, and the undamped structural frequency wy.

(c) Based on the same parameters of Ezample Problem 7.3, except for the
modified values of ki, m, and ¢;, use equation (7.61) and numerical integration
to compute the variance 02. Would you expect o, to be higher or lower when
compared to the original rig with the lower deck mass? Explain.

(d) Compute the response o, of the modified structure to ideal white noise.
Compare this result to that obtained in part (¢). What assumptions account
for the differences in these two results?

7.8  Consider the concrete monotower shown in Figures 2.2 and 5.2. This
structure is idealized as a rigid body consisting of a rectangular box caisson and
a uniform leg. The structure rotates in the plane with angle  about the base
point 0. The foundation is assumed to be linearly elastic with a stiffness ky and
damping cg, modeled respectively by equations (2.78) and (2.79), in which the
frequency w is identified as the fundamental frequency in free vibration, or wp.
Let Jo denote the virtual mass moment of the structure’s inertia about point 0,
and let M(t) denote the moment on the structure induced by wave action. The
governing equation (2.6) for rotational motion thus has the following form:

JoO + ol + ke = M(t)

(a) By comparing the symbols of the above equation to those for translational
motion v, or equation (7.27), deduce for rotational motion the harmonic response
function H(w) in a form similar to equation (7.28).
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(b) This monotower is subjected to a simple wave as described in Table 6.1.
Derive the explicit equations for the two major components of the wave-induced
moment M (t): the moment on the uniform leg, and the moment on the caisson.
HINTS: For the leg moment, use § of Ezample Problem 4.4, integrate § over
the leg height to calculate the total horizontal wave load on the leg, compute
the centroid of this load from point 0, and form the product of the last two
quantities to give the first component of the moment. The second component
of the moment, that on the caisson, was derived in Ezample Problem 4.3. Carry
through those calculations, expressed symbolically by equation (4.22).

(c) Based on the results of part (b), derive the equation for the transfer
function G(w) corresponding to the total wave-induced moment M(t) on the
whole structure.

7.9  Assume that the wave field imposed on the monotower described by
Problem 7.8 is stationary and ergodic.

(a) By comparing the symbols in the equation (7.27) to the equation of
motion for rotation 6 given in Problem 7.8, deduce without calculation the
explicit forms of Sp(w) and o3 for rotational motion. These results will be
analogous to equations (7.50), (7.51), and (7.52).

(b) For the quantities H(w), G(w), Ss(w), and 03 corresponding to rotational
motion, write down a consistent set of units, first in the traditional English
system, and then in the SI system.

7.10  The purpose of this problem is to obtain numerical results for the
responses of the concrete monotower, for which the theoretical results were
obtained in Problems 7.8 and 7.9. The system parameters for this tower are
summarized in Table 5.1, which also lists two values for the free, undamped
rocking frequency wqg based on two soil foundation stiffnesses.

(a) Based on the weaker soil foundation for which G, = 10 MPa and
w = wp = 1.41 rad/s, compute the soil foundation parameters kg and cs us-
ing equations (2.78) and (2.79).

(b) Compute the foundation damping factor ¢ = c5/+/dkgJo. This damping
factor is analogous to ¢ = ¢;/+/4k;m, the damping factor for equation (7.27).

(c) The monotower is subjected to steady, unidirectional waves with a sig-
nificant wave height H, of 15 m and with a distribution S, (w) given by the
Pierson-Moskowitz spectrum, equation (7.60). With this spectrum, the numer-
ical results of part (a), and the equation previously derived in Problem 7.9 for
the variance, compute ag by numerical integration.

(d) Based on the +30¢ limits, compute the angle of rotation, the horizontal
displacement of the deck, and the horizontal shear force at the base, and the
overturning moment for this 180 m high monotower.
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Multi-Degree of Freedom
Linear Structures

James F. Wilson

The first approximation to determining the motion of a structure in the offshore
environment is to model that structure as a single degree of freedom system
in which the motion is described by a single coordinate. This was done in
previous chapters. For instance, for an exploratory drilling rig rigidly fixed to
the mat at the sea floor, the sway motion was computed in terms of a single
displacement coordinate v = v(t) at the top of the rig; and for a rigid monopod
gravity platform on a compliant subsea soil foundation, the rotational motion
was computed in terms of a single rotational coordinate 6 = 6(t).

In a refined dynamic analysis, several independent coordinates are used to
describe structural motion, hence the term multi-degree of freedom system. For
the monopod gravity platform, for instance, if the rigid deck had flexible con-
nections to the rigid leg, then the rotation of the deck could be described by a
coordinate ¢; and the rotation of the legs by another coordinate 5. This dy-
namic model is a two degree of freedom system described by two ordinary, cou-
pled differential equations of motion involving these two coordinates. Coupling
occurs since one motion affects the other through the flexible deck-leg interface.
More than two independent coordinates could be defined if one needed to ac-
count for the flexibility of the legs and the deck, and these coordinates could
include horizontal displacement coordinates.

In this chapter, differential equations for multi-degree of freedom structural
models are derived using both the Newtonian and the Lagrangian approach and
solved using the popular normal mode method. These classical theories were
freely drawn and condensed from the expositions of Chopra (2001), Clough
and Penzien (1993), and Utku (1984), in which some changes in structural
nomenclature were made to avoid redundancy with the common symbols of fluid
mechanics. The basic assumptions used to formulate the structural models are:
(1) the number of independent coordinates N chosen to describe the motion is
equal to the number of degrees of freedom; (2) the restoring forces are linear
functions of the chosen coordinates (linear structures); and (3) the damping is
linear-viscous. Numerical examples illustrating these models are given in the
following chapters.
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8.1 EQUATIONS OF MOTION: GENERAL FORM

The general set of equations representing structural motion investigated in this
chapter are defined by the following matrix form:

ME+CE+KE=p (8.1)

Equation (8.1) represents a finite set of N ordinary, linear differential equations
in N independent coordinates (£;,&,,...,&,,...,&x), in which the coefficient
matrices M, K, and C are constant. The single and double overdots of a coor-
dinate represent the velocity and acceleration, respectively, of that coordinate.
That is, (') is the operator d/d¢. The notation is that each upper case, boldfaced
letter represents an (N x N) matrix, and that each lower case, boldfaced letter
(€, p) represents a (1x N) matrix or column vector of time-dependent elements.
When N = 1, equation (8.1) reduces to a single degree of freedom structural
model, equation (2.43), and the respective terms of these two equations have
an analogous meaning. That is, the respective values of &, p, M, K and C are:
the coordinate vector, the loading vector, and the mass, stiffness, and damping
matrices. Each of these terms is now discussed in general and evaluated for
simple representations of offshore structures, for N = 2 and 3.

The Coordinate Vector, &

The first step in modeling an offshore structure for dynamic analysis is to
carefully define a set of NV independent coordinates ¢;, i = 1,2,..., N, that
contain the dominant features of the structural motion. These coordinates are
the elements of the column vector

§:[£Ia§2a~~~a§i7"'7£N]T (82)

in which the superscript T denotes transpose (the interchange of the row ele-
ments shown to its defined column array). This vector can be composed of a
mixture of displacement coordinates, designated in applications as vy, vs,... ,
and rotational coordinates, designated as 61,8,,... . Each chosen coordinate
describes the motion of a node point on the structure, such as the mass center
of a structural element or a junction point on a frame. Each chosen coordinate
must then be tested as follows for independence. Freeze the motion of (N — 1)
node points and then check whether the lone remaining node can have motion
when loaded. If and only if motion occurs at that lone node is its associated
coordinate independent. Then repeat this mental test for each of the remaining
nodes, one-by-one, to check for their independence.

Ezample Problem 8.1. 'To illustrate the choice of independent coordinates,
consider the simple representation of a jacket template structure shown in Fig-
ure 8.1a, a two-bay, four-legged tower fixed at the sea floor and in plane motion.
This tower, which is symmetric about its vertical centerline, is a scaled-down
version of the five-bay configuration discussed by Mansour and Millman (1974).
Assume that, as the whole tower sways side-to-side with wave loading, the deck
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at location 1 and the horizontal bracings at location 2 have negligible rotations.
Choose v; and w2 as the horizontal displacements from the equilibrium state of
levels 1 and 2, respectively. For convenience, these two coordinates locate node
points 1 and 2 on the single stalk model shown in Figure 8.1b. To test whether
these two coordinates are truly independent, mentally supress all motion of one
coordinate ( v; = 0) and check whether the structure can deflect at the other
coordinate (ve # 0) for a horizontal load po(t) applied at the latter coordinate.
Then repeat this mental procedure, where the roles of level 1 and level 2 for
coordinate supression and loading are reversed. Because of the structural ge-
ometry with its flexible leg sections separating v; and v, this structure passes
these two mental tests and thus the two chosen coordinates are judged to be
independent, and the coordinate vector is & = [£,£,])T = [v1, va]T

@ | ®)]

Figure 8.1 (a) A jacket template structure; (b) stalk model with external loads; (c)
free body sketches of the two masses.

In engineering practice in which a design has progressed well beyond the
conceptual stages, then the analysis for dynamic integrity will require more
than two or three independent coordinates. Even for a tower in plane motion,
with 10 bays in horizontal motion and with an additional degree of freedom to
account for deck rotation, a value of N = 11 would be an appropriate choice
for an initial analysis, but would be insufficient for a final design. With the
use of computer-aided finite element techniques, local flexibilities of the deck,
the legs, and the soil foundation, and out-of-plane motion, can be accounted
for; and such models can have literally thousands of independent coordinates.
However, the examples in this chapter, which limit N to 2 or 3, are of sufficient
complexity to illustrate the basic methods of dynamic structural analysis, and
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with this understanding, extensions of such analyses to higher degrees of freedom
systems become apparent.

The Loading Vector, p

The loading vector p =p(t) is comprised of N loads p;, ¢ = 1,2,..., N,
where the load p; = p;(t) is located at the respective node point i. The vector
representation is

P = [php?a"' yPiy - 7PN]T (8-3)

Ezxample Problem 8.2. To illustrate the formulation of a loading vector,
refer to Example Problem 8.1 and Figure 8.1. This jacket template structure
is subjected to a single, deepwater harmonic wave of height H, wave number &,
and frequency w. To compute the wave loading, make the following assumptions:
linear wave theory is applicable; the flow is predominantly in the inertia regime
so that inertia loading of the four legs gives most of the loading; the drag forces
on the smaller cross bracings are small by comparison to the inertial loading; and
all four legs, each of diameter D, experience the same water particle acceleration
% at any instant of time. The latter assumption is conservative and offsets
somewhat the omission of drag loading on the cross bracings. Note that the
largest amplitude of wave force will be transferred to the structure if % has the
same phase for each leg, as is assumed in this case. For £ = 0, then ¢ is a
maximum and it follows from Table 3.1 that

. H ,cosh k(z+d)
U=——w—
2 sinh kd
With this water particle acceleration, the components of the loading vector can
be computed from Morison’s formulation, or equation (2.14) with Cp = 0. The
loading per unit length of all four legs is thus

w? = gk tanh kd (8.4)

G(z,t) = 4Cy Z pD%i (8.5)

The total load acting at each node is approximated by integrating g(z,t) over
the appropriate portions of the four legs up to each node point. Recall that
the coordinate z has its origin at the still water line and is measured positive
upward. The results are

0 2 H k
p= [ = —GCw 0t H (1- T sinet (86

—(d—£2) k sinh kd
—(d=t2) s w? _sinh k¢
Ju— 7 e — 2_ —_——2 1
P2 = /_d q(z,t)dz = 2CM pD A H o sin wt (8.6b)

in which d is the water depth. For this case, the loading vector is expressed as

p = [p1,p2]” (8.7)
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The Mass Matrix, M

In the present analysis, M is assumed to be a diagonal matrix with elements
m; >0,4=1,2,... N, in which the element’s subscript is its associated node
point. The notation is as follows:

m 0 0
0 my - 0

M =diag(mi,ma,... ,my) = | . ) ] ) (8.8)
0 0 o my

The conditions under which M is diagonal are now discussed and typical calcu-
lations for M are illustrated.

Recall that each generalized coordinate represents either the displacement
or the rotation of a portion of the structure’s mass at a numbered node point.
Sometimes a fixed point labeled 0 is considered a node point. The question
remains: How does one determine the portion of the structural mass to be
associated with each node point? Equivalently: How does one formulate the
mass matrix?

The mass lumping method is probably the most popular method of dis-
cretizing the supporting framework and the rigid body portions of an offshore
structure. For a framework, the mass lumping requires some experience on the
part of the analyst. For flexural motion of structural frame elements, the an-
alyst can use as a guideline two particular cases discussed in Chapter 5. For
instance, it was calculated in Fzample Problem 5.3 that, if 37 percent of the
mass of a uniform beam clamped on both ends (a cross member of a supporting
framework) is lumped at midspan of an equivalent massless beam of the same
flexural stiffness, then the fundamental flexural frequencies of the two beam
models are the same, for practical purposes. In an another case, the jackup rig
of Example Problem 5.4, it was calculated that if 37.5 percent of a cantilevered
beam’s mass is lumped at the tip of its massless counterpart (an elastic beam of
the same geometry, restraint, and bending stiffness), then both configurations
have nearly the same fundamental flexural frequency. In such cases, the mass
not accounted for is of no consequence; but for argument’s sake it can be lumped
at a fixed end node point 0. In these two cases, then, the criterion for lumping
the mass is based on preserving the fundamental flexural frequency between the
continuous element and its simple lumped mass counterpart, and this frequency
equivalence is based on the conservation of potential and kinetic energy during
motion.

In practical cases, however, the end constraints for an element of a sup-
porting framework are not so simple as these two cases just discussed. Thus,
without making further calculations, the choice of the fraction of element mass
to be lumped at a node becomes quite subjective. Nevertheless, the experienced
analyst knows that lumping to a node between 25 percent and 40 percent of the
element mass surrounding that node usually leads to an adequate structural
dynamic model with a diagonal mass matrix.
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Lumping a portion of the structure modeled as a rigid body is not so sub-
Jective as that for a framework. For instance, for a rigid deck in plane rotation
about a node at its mass center G, or for a concrete monopod in plane rotation
about a fixed base point 0, all of the mass is used. For such a model, the rigid
structural mass is assumed to be symmetric with respect to a vertical centerline.
With this symmetry assumption, the diagonal element will be the mass moment
of inertia with respect to the node point and all of the associated products of
inertia terms due to antisymmetrical mass distribution disappear, leading to
zero off-diagonal terms in the mass matrix. An example of a diagonal M for
the coupled motion between a rigid deck and its flexible supporting structure is
given later in this chapter.

A variation of the lumped mass method called the consistent mass theory
can also be used to calculate M. This theory, however, is usually quite tedious to
implement and is beyond the scope of the present text. For further discussions,
the reader is referred to the following expositions: Clough and Penzien (1993),
who applied this theory to beams and frames; Chopra (2001), who illustrated
the method for plane frames; and Utku (1984), who based his rigorous analysis
on the principle that the sum of the kinetic energy for each discretized structural
element of a plane frame or truss is equal to the kinetic energy for the whole
structure. It is noted that the consistent mass matrix method leads to a banded,
symmetric matrix with some non-zero and some negative off-diagonal terms.
This writer has found that a judicious modeling of offshore structural supporting
framwork using the lumped mass method first discussed usually leads to quite
satistactory results, whereas refinements achieved by employing the consistent
mass matrix to the same model lead to results for dynamic responses that are
nearly the same in many cases.

In applying the lumped mass methods, it is always very important to inter-
pret the mass of all submerged components as virtual mass. It is this writer’s
experience that to neglect the use of virtual mass can lead to an error in a struc-
ture’s fundamental frequency of 40 percent to 50 percent; and such an error can
lead to comparable errors in the structure’s dynamic responses.

Ezxample Problem 8.3. Compute now the virtual mass for Example Problem
8.1, shown in Figure 8.1. Here, nodes 1 and 2 are on the vertical centerline of the
structure, in line with the base point 0, and the system mass is symmetrically
distributed with respect to this centerline. Choose node 1 at the mass center
of the deck and its equipment, at the height (¢; 4 ¢3) from 0 at the sea floor.
Locate node 2 at the mass center of the horizontal members, at height ¢5 from
0. The masses lumped at nodes 1 and 2 are approximated as follows:

my = my + 0.375 my1 (89)

mo = My + 0.375my1 + 0.375 mayo (8.10)

In the last equations, m,, is the total actual mass of the deck and its equipment
(not submerged), and m,y, is the virtual mass of the horizontal members at
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node 2. The subscripts v1 and v2 for the other mass terms denote virtual mass
for portions of the legs and nonhorizontal members (or supporting structure)
surrounding nodes 1 and 2, respectively. For simplicity, assume that all members
below the deck are fully submerged. The coefficient 0.375 is the proportion of
the structure’s mass that surrounds a particular node point, deduced from a
somewhat similar cantilevered structure using energy considerations, Ezample
Problem 5.4. The remaining mass of the whole system can be considered lumped
at the fixed node point 0, and is of no consequence. The virtual masses for each
node are approximated by

myp, = (actual mass of horizontal members at node 2) + Cy4 pV,

my1 = (actual mass of legs and X-members in £1) + Cy4 pVy
my2 = (actual mass of legs and X-members in £3) + CypVs

Recall that the quantities in added mass terms are: the added mass coefficient
Ca (which, lacking any experimental data for this geometry, can be approxi-
mated as unity); the mass density of water p; and the volumes of water Vy, V;
and V, displaced by the respective structural components: the submerged hor-
izontal members, the submerged members surrounding node 1, and the sub-
merged members surrounding node 2. The mass matrix for this example is
thus

M = diag{m;, ms) (8.11)

where m; and my are given by equations (8.9) and (8.10).

The Stiffness Matrix, K

The stiffness matrix for an N degree of freedom structure is a symmetric
array of N x N elements in the following form:

kir ko kin
koy k2 - kon
K=|. . . . (8.12)
knt  knz oo knn
The constants kg, where i¢,j = 1,2,... | N, are the static stiffness influence

coefficients, which are generated from the actual structure after each node point
and its associated coordinate is identified, but before any attempt is made to
lump the mass. In this section, a displacement &, means a generalized static
displacement of node 4: either a translation of node ¢ or a rotation about node
i. Also, a force g,; means a generalized static force at node i: a simple force
causing a displacement of node i along the line of action of that force, or a
moment causing a rotation about node .
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The constant k;; is defined as the force that is required at node i to coun-
teract a unit elastic displacement &s; = 1 imposed at node j, under the condi-
tion that all displacements &,; = 0 for ¢ # j. In this single displacement case,
gsi = kij(1) = kyj, i # j. If such a displacement condition is applied sequentially
to each node, then the net force at each node j can be obtained by superposi-
tion. For instance, the elastic force g;; at node 1 is a linear combination of the
forces at node 1 resulting from the unit displacements at all nodes, or

as1 = k1€ + k2o + -+ EinEoy (8.13)
Likewise, superposition gives the elastic force g5 at node 2 as
qs2 = ks + k2o + - + kanEn (8.14)
By induction, the force ¢4, resulting from deflections at all nodes is
N
si = kiasr +Riabso + -+ kil + o+ hinéoy = Zkijﬁsj (8.15)
j=1

Equation (8.15) can be expressed in matrix notation in the following two ways:

gs1 kin ki - kN £
qs2 ko1 koo - kon €
= , o (8.16)
gsN kni kn2 - kan EanN
qs = K&, (8.17)

Ezample Problem 8.4. In practice, a reliable structural computer package
(SAP 2000, for instance) is used to compute the K matrix. This general proce-
dure is illustrated for the simple jacket template structure of Ezxample Problem
8.1, shown in Figure 8.1. A plane frame, static force-displacement analysis is
made in the two stages depicted in Figures 8.2. In the first stage, Figure 8.2a, a
unit displacement £, = 1 is imposed at level 1, and {40 = 0 is imposed at level
2. The corresponding forces k11 and ko1 necessary to achieve those displace-
ments are computed. In the second stage, Figure 8.2b, £,; =0 and ¢, = 1, for
which the respective forces at levels 1 and 2 are ky2 and kos. Each such force is
assumed to be positive in the direction of its coordinate. If a force is opposite
to the direction of its coordinate, then that force is a negative number. In this
problem, it is intuitive that k1o (= ko1) is a negative number. The stiffness
matrix for this example is

kin ko
K = 8.18
[ ko1 koo } (8.18)

In the computer analysis of such a frame, a typical structural package re-
quires such input data as the coordinate locations of the junctions between the
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basic beam elements, the junction fixity (in this case, welded joints), and the
value of Young’s modulus, the cross-sectional area, and the cross-sectional area
moment of inertia for each beam element in the plane frame. In this example,
the deck can be modeled as a rigid body, or a beam with high flexural stiffness
compared to that of the supporting structural elements. Note that a computer
analysis requires units for the geometry and material properties, and that any
compatible set of units can be used. Thus, the unit displacements can be 1
m or 1 ft, for instance, depending on whether the SI or the traditional English
units are employed.

I-—I"{

k2l

(@ (b

Figure 8.2 Definition of the stiffness influence coefficients for Example Problem 8.1.

The Damping Matrix, C

For a stucture with N degrees of freedom, the damping matrix is defined as
a symmetric array of N x N constants ¢;; in the following form:

11 C12 o an
C21 €22 o GN

C = . . . . (8.19)
CN1 CN2 -'* CNN

In this analysis, the damping force qp; for the structural node coordinate ;18
assumed to be a linear combination of the generalized coordinate velocities ¢;,
t=1,2,...,N. The constants relating the nodal damping forces to the nodal
velocities are called the damping influence coefficients c;;; and the relationship
is analogous to force-deflection relation given by equation (8.15). That is

N
qpi = cinéy + Ciofy + -t oyl 4 Fanby =Y eisé; (8.20)
j=1



204 MULTI-DEGREE OF FREEDOM LINEAR STRUCTURES

Equation (8.20) can be expressed in matrix form in the following two ways:

a1 tn <z -GN €1
qD2 €21 €2 - CanN 13
= o (8.21)
dDN CN1 CN2 ' CNN EN
qp =C¢ (8.22)

The damping matrix can be cast in several different specialized forms, each
of which has the advantage of easily utilizing available experimental data to
determine the elements c;;. One such form is Rayleigh damping in which C is
proportional to the system’s mass and also the system’s stiffness. That is

C =a;M + a;K (8.23)

in which a; and a are constants. A more explicit form for C based on Rayleigh
damping will be presented later in this chapter.

Other specialized forms of C are beyond the scope of the present work.
Those forms include Caughey damping, for which Rayleigh damping is a special
case (Caughey and O’Kelly, 1965; Chopra, 2001); and complez stiffness damping
(Clough and Penzien, 1993).

8.2 EQUATIONS OF MOTION: NEWTON’S METHOD

One method of formulating the differential equations of motion for a lumped
mass structural model is to apply Newton’s second law to the free body sketch
of each discrete mass m;. To illustrate, let each such mass be located by a
coordinate §; and have an absolute acceleration &,. In these terms, Newton’s
second law is

> Fe, = mig, (8.24)

in which the sum on the left represents all forces applied to m; in the direction
of §;. Those forces, which have lines of action acting through the mass center of
each m;, include the the net restoring force q,; due to structural stiffness, the
net viscous damping force ¢p;, and the lumped value of the environmental load
p;. Note that equation (8.24) is analogous to equation (2.1) for a single degree
of freedom with one mass and one coordinate.

Suppose a portion of the structure can be modeled as a rigid mass m; whose
rotation is defined by the coordinate £;. Define J; as the mass moment of inertia
of m; about an axis perpendicular to the plane of motion and through its mass
center. Then, the form of Newton’s law of motion for this rigid body is

ZMéi = Jiéi {8.25)
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Here, the sum on the left represents all moments applied to that mass, moments
that are positive in the direction of ¢; and that lead to an angular acceleration £,.
Such moments arise from forces whose lines of action are not through the center
of mass of the body, moments due to structural stiffness, structural damping,
and environmental loading. The mass center need not be fixed.

Ezample Problem 8.5. Shown in Figure 8.1c are the free body sketches for
the two lumped masses of the jacket template structure. For each mass m;, and
for each corresponding coordinate £; = v;, there are three types of in-line loads:
gs; and gp;, which both oppose the positive direction of £;, and the positively
directed load p; induced by wind, waves, and currents. When equation (8.19)
is applied to mass m;, the result is

Pi — 4si — 9pi = MY, (8.26)

When the forces q,; and gp; of equations (8.15) and (8.20) are combined with
equations (8.26), the result is the set of two differential equations of motion, or

mMeU; + ¢;101 + Ciot9 + kv + kigvg = Di, 1=1,2 (827)

This same set of differential equations expressed in matrix form is
KRS a1
0 .. + .
me Vo C21 €22 V2

ki1 ki U1 P1
= 8.28
+[1621 k22][v2} {P2 (8.28)
which has the form of the general matrix equation (8.1).

Fzrample Problem 8.6. Newton’s method is now used to derive the equations
of motion for the three degree of freedom model of the jacket template structure
shown in Figure 8.3a. This structure is modeled as the stalk configuration of
Figure 8.3b with the mass lumped at nodes 1 and 2, as for Example Problem
8.1. The difference now is that the deck is allowed to rotate with angle 8 about
node 1 as nodes 1 and 2 undergo horizontal displacements v; and vs. Thus,
there are three degrees of freedom and the coordinate vector is

€ =161,£,&]" = [v1,v2,6]7 (8.29)
The loading vector, due to the external environmental forces and moments, is
P = [p1,p2, Ma)" (8.30)

in which p; and p; are the horizontal forces lumped at levels 1 and 2, and M}
is the net moment about the mass center G of the deck, due to wave slamming.
The mass matrix is

M = diag(mq,ms, Jg) (8.31)
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where miand mq are the same as for Example Problem 8.1 and are given by
equations (8.9) and (8.10); and Jy is the mass moment of inertia of the deck
only, taken with respect to an axis perpendicular to the plane of motion and
through G. Another way to express the latter quantity is J; = mgr? where my
is the deck mass and r is the deck’s radius of gyration.

NZZNNZUNYUNUNLNZN

(@), W)

Figure 8.3 (a) Jacket template structure; (b) three degree of freedom model with
external loads; (c) free body sketches.

The respective generalized stiffness and damping forces for node ¢ are special
cases of equations (8.15) and (8.20) for N = 3, or

9si = kav1 + kipva + ki3,  ©1=1,2,3 (8.32)

qpi = ciit1 + cioty + ci30, i=1,2,3 (8-33)

Here, the stiffness influence coefficients k;; for ¢,j = 1,2,3, are the forces and
moments defined in Figure 8.4. These coefficients are computed from a struc-
tural program based on the three sets of displacement conditions shown, respec-
tively, in Figures 8.4a, 8.4b, and 8.4c: v1 =1, vo =0 =0;v1 =0 =0, v3 = 1;
and v; = v = 0, § = 1. The damping influence coefficients will be determined
later in this chapter.
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Figure 8.4 Definition of the stiffness influence coefficients for Example Problem 8.6.

Refer again to Figure 8.3 in which the free body sketch for each of the two
masses is shown. For translational motion, the application of equation (8.24) to
each mass gives

P1— gs1 — gD1 = M) (8.34a)

P2 — gs2 — gp2 = maly (8.34b)

For rotational motion of m, (the total mass of the deck plus the lumped portion
of the virtual mass of the upper legs, as previously defined), the application of
equation (8.25) gives

My~ qs3 — qp3 = Jab (8.34¢)

When equations (8.32) and (8.33) are combined with (8.34), the results are
the three equations of motion, or

mydy + 139y + crals + €130 + k11vr + kigve + ki3f = py (8.35a)

Moty 4 Ca191 4 Caglia + 230 + ko1 vy + kaova + ks = po (8.35Db)

Jab + c3191 + cantio + c330 + ka1v1 + Eagvg + kazf = My (8.35¢)
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This same set of equations expressed in matrix form is

m; 0O 0 U1 11 2 3 01
0 mg O Vg |+ | e e co3 (&
0 0 Jd 9 C31 C392 33 6
ki1 ki ks v D1
+1 k2t koo koa v | = | p2 (8.36)
ka1 k3o k33 g My

which has the same form as the matrix equation (8.1). Further, equation (8.36)
reduces to equation (8.28) for its two degree of freedom counterpart in which
the coordinate 6 is suppressed.

8.3 EQUATIONS OF MOTION: LAGRANGE’S FORMULATION

Just as for Newton’s method, Lagrange’s formulation of the equations of motion
requires all of the system’s characteristics to be defined: £, p, M, K, and C.
However, unlike Newton’s method, Lagrange’s formulation does not explicitly
require a free body sketch for each lumped mass, nor does it require the elastic
restoring forces, but what is required are three scalar energy quantities for the
structural system: (1) the kinetic energy K; (2) the potential energy V, which
includes the elastic deformation energy and gravitational potential energy; and
(3) the virtual work done by all the nonconservative forces acting through their
associated virtual generalized displacements §¢,. There are two types of noncon-
servative forces in the present context: the external, time-varying forces imposed
on the structure, and the energy dissipating forces such as viscous drag. For
systems with a large number of degrees of freedom, Lagrange’s formulation is
often preferred because the three mentioned scalar energies are easier to form
than the vector restoring forces needed in Newton’s method.

System Energies

The first scalar, the system’s total kinetic energy K, is assumed to be a

function only of the system’s generalized coordinates ¢; and their velocities &,
or

K:K(£15£23'--35Na élaé?;-”?éi\f) (837)

Generally in offshore structures, the kinetic energy depends only on velocities
of the component masses.

The second scalar, the system’s potential energy V, is assumed to depend
only on the generalized coordinates, or

V:V(§17§27"- 7£N) (838)

The third scalar, the system’s virtual work §W, is the sum of the virtual
work done on each component mass by each generalized nonconservative force
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g as its associated mass undergoes a virtual displacement §£;, or

N
§W =" g:6¢, (8.39)

=1

It is emphasized that each virtual or variational displacement 6¢; is a small
and arbitrary change in the coordinate ¢, and that this virtual displacement
is not to be confused with the actual changes in displacement occurring in
structural motion. In the latter case, the notation is d¢,.

Hamilton’s Principle

The scalar quantities K, V, and §W are related through a variational equa-
tion which was originally introduced by Hamilton in 1834, and which later be-
came known as Hamilton’s Principle in the historical texts (Synge and Griffith,
1959; Whittaker, 1989.) The form of this variational equation and its descrip-
tion given by Clough and Penzien (1993) are particularly appropriate in the
present context. This equation and its description are

ty

12
S(K — V)dt + / SWdt =0 (8.40)
t

121

The sum of the time variations of the difference in the kinetic and
potential energies and the work done by nonconservative forces over
any time interval ¢; to t, is zero.

It is now shown how equation (8.40) leads to the equations of motion for struc-
tural systems.

Derivation for a Simple System

Lagrange’s equations are now derived for a simple dynamic system which
is defined by all of the following characteristics: a set of N generalized coordi-
nates is assigned, one for each degree of freedom (the system is scleronomic); an
independent variation can be given to each of the generalized coordinates with-
out violating the system constraints (the system is holonomic); the generalized
conservative forces, such as those due to elastic deformation and those due to
gravity, are all derivable from a potential energy function of the form of equation
(8.38); the generalized nonconservative forces are the externally applied forces
and those forces such as viscous fiction that dissipate energy irreversably.

Now compute the first variations § K and 6§V for equations (8.37) and (8.38).
Substitute these results, together with §W of equation (8.39), into the varia-
tional equation (8.40), which leads to

/l (Zagz‘sg *‘Z > /(Z 6£1+Zg155>

(8.41)
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For the second sum from the left, interchange the sum with integration and then
integrate by parts, or

b2 0K 2 9K d

. 0% 8¢, d 3 o (66;) di
OK jse,) = [ 5§]t2 _ / (aK ) 5¢, dt (8.42)
3¢, O¢; t o)

Since the variation of each coordinate is independent of time, it follows that
6¢;(t1) = 6&,(t2) = 0. Thus, the term without the integral in the last equation
vanishes. With this result and with a rearrangement of terms, equation (8.41)

becomes
+ N
2 d 0K 0K 8V
+ + g1 8¢, =0 8.43
A {Z{ dt of; = 0¢; 0, g} 5} (549)

i=1

Now choose a particular coordinate i = n for which 8¢, # 0, but for which
8¢, = 0 for all remaining N — 1 values of i. Again, this can be done since the
coordinates are independent. It then follows that the sum in equation (8.43)
disappears and the single square bracket that remains in the integrand contains
terms all with the subscript n. To satisfy this equation, that square-bracketed
term must vanish. Since n is arbitrary, this results holds for all values of n.
After a rearrangement of terms in this square bracket, and a change in index
from 7 to 7, the result is the set of N Lagrange equations of motion for a simple
system, or

d 0K 0K 08V
_——— — — 41, = 327"'7 .
@ oz, %, + o, =g i=1 N (8.44)

For ease of reference for applications, the three scalar energies are summa-
rized in their index and matrix forms. For small motion, the kinetic energy has
the following quadratic form:

l\')lr—‘

N N .. 1.7 .
=52 > mykid; = 5& Mé (8.45)
Jj=1i=1

Note that for a diagonal mass matrix, the elements of M are m.; = 0 for i # j
and m;; = m; for 1 = j.
For small motion, the potential energy can be expressed as

- %ZZ’% Gt V= —ETK£+V (8.46)

in which the double sum is a quadratic form, and V, can also be so expressed.
The term V, represents the sum of all gravitational potential energy changes
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of the system’s mass from the system’s equilibrium state. This term V, can be
safely omitted for lumped mass frameworks in which each mass has a negligible
rise and fall along the gravity vector. (The gravity vector points toward the
mass center of the earth). However, V can be important in determining the
dynamic stability of a relatively rigid gravity platform rocking on an elastic
foundation, as will be demonstrated in Chapter 9.

The virtual work in the present context is

N N
W =>"gi66; = (pi—qpi)6&, = ¢ g = 66" (p — qp) (8.47)

2=] =1

in which p is the vector representing the externally applied loads and qp is the
vector for viscous damping, given by equation (8.22).

Ezample Problem 8.7. Lagrange’s method is now used to derive the equa-
tions of motion for the two degree of freedom model of the jacket template struc-
ture shown in Figure 8.1. The two generalized coordinates are (£1,£,) = (v1, v2),
and the corresponding Lagrange equations from (8.44) are

dOK 0K oV

Rl LT - 4

dt (91)1 (91)1 + (9’01 9 (8 8&)
d oK 08K 9V

= X = .48b
dt 0t  Ovg * Ovg 92 (8 8 )

The kinetic energy is evaluated from equation (8.45):

1.7 e .. my 0 v 1 1
K = —5 M£ :5 [ V1 (%] ] |: ! ] [ U; :| = —2-m1’U% -+ —2-777,2'1)%
(8.49)

The potential energy based on the conservative forces is evaluated from
equation (8.45), assuming that V; is small relative to the elastic energy. Since
K =KT7, then ko1 = k12 is used.

Ll 1 ki1 k12 u
V=3¢ K§~2[v1 UQ][km ka2 V)
1 2 1 2
= 5]6111}1 + 5]622’02 + klg’U]UQ (850)

The virtual work for the nonconservative forces is evaluated from equation
(8.47):

W = g16v1 + g2bvs = (p1 — qp1)dv1 + (P2 — gp2)dv2 (8.51)
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With the values of gp; and gpe from equation (8.20), the generalized forces,
which are the coefficients of the virtual displacements, are as follows:

g1 = P1 — c1101 — C1209; 92 = P2 — 2101 — €200 (8.52)

The terms in equations (8.48) can now be evaluated as follows:

OK _ o doK . 0K
g VY G@tan, YN Gy
av
F k11v1 + k1ove
1
OK _ . dOK . 9K
e B P R W
ov
Fos kagvo + koiv;

With equations (8.52) and these last calculated results, the equations of motion
(8.48) become

m1ty + ky11v1 + k1ov2 = p1 — c1101 — c1202 (8.53a)

maov + kaove + k21v1 = pa — a2 — co101 (8.53b)

When the viscous damping forces in the above equations are rearranged to the
left sides, then it is observed that equations (8.53a) and (8.53b) are identical to
the results obtained using Newton’s Method, or equation (8.27) for i = 1 and
i = 2, respectively.

Comments

At this point, it is appropriate to add several comments and recommenda-
tions concerning the equations of structural motion formulated in this chapter.

First, it is highly recommended that the stiffness matrix K be computed us-
ing a well-tested, commercially available structural software package, SAP 2000,
for instance. In analyzing the supporting framework for tall offshore structures
in relatively deep water and with very massive decks and deck equipment, it is
recommended that the chosen software account for the prestress of the structural
elements, in particular, the axial compression of the vertical beam elements. Re-
call that, for the jackup rig analyzed in Chapter 5, the leg’s flexural stiffness was
reduced by the dead weight compressive load of the deck. However, if the static
Euler buckling load for the tower is much smaller than the deck load and its
equipment, then such prestress with its accompanying reduction in the flexural
stiffness of the framework can be ignored.
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Second, it is not difficult to show that the Lagrange equations (8.44) can
be equivalent to the matrix form of (8.1), provided that the dynamic system is
simple, that the motion is small, and that K and V are expressed in quadratic
form. To show this equivalence, let K,V, and §W have the forms of equa-
tions (8.45)-(8.47), except let V, = 0. When the terms of equations (8.44) are
evaluated using equations (8.37)-(8.39), then the result is

ME+K € =g (8.54)

Since the nonconservative force vector is g = p — qp, in which qp = Cé
from equation (8.22), then the last equation becomes identical to the linear
form, equation (8.1), or

ME+CE+KE=p (8.55)

The last comment is that, once the equations of motions are formulated,
with all time-varying environmental loads and the constant coefficients identi-
fied, then those equations can be solved directly to determine the time-varying
responses §; = £(t), 1 =1,2,... , N. To do this, the analyst has a wide choice of
a computer software packages, including PSI-Plot (1999) and Mathematica®
(1999). For such computations, 2N initial conditions must be specified, or

£(0) = [£1(0),£5(0), ... ,.&n(0)]" (8.56a)

£(0) =[£,(0),£,(0),... ,Ex(0)]" (8.56b)

In general, steady state solutions £,(t) with light damping are sought, and
those responses occur in the numerical solutions if the run time ¢ is sufficiently
long. In such solutions, the damping eventually eliminates the initial transient
responses so that the choice of initial conditions expressed by equations (8.56)
is of no consequence. Recall that for a single degree of freedom system, light
structural damping was based on the parameter ¢ = ¢, /2v/k;m in which ¢ was
in the measured range of 0.05 to 0.1. See equations (5.58) and (5.64). Using
this latter information, rough estimates of ¢;; = ¢;; can be made to obtain the
steady state numerical solutions. A more exact way to relate ¢ to ci; is discussed
later in this chapter.

Although numerical solutions can generally be computed by what is some-
times called the brute force method, it is quite appropriate and often more
physically meaningful to obtain closed form solutions to the equations of mo-
tion by the classical normal mode method. The remainder of this chapter is
devoted to this latter method: the computation of the system’s characteristic
frequencies in free vibration w,, and their corresponding modal vectors x,,, and
the superposition of these modal vectors to obtain the structure’s shape in terms
of the steady state response vectors &; = £,(t).
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8.4 FREE, UNDAMPED MOTION

The values of w,, and x,, are computed from the condition of free, undamped
structural motion. That is, C = p = 0, for which the governing equation (8.1)
becomes

Mé +KE=0 (8.57)
Frequencies

Assume a harmonic solution to equation (8.57) in the form
£=£e&vt (8.58)

in which £ is the time-independent amplitude vector and w is the frequency
parameter. When £ and & from the last equation are substituted into equation
(8.57), the result is

(~wME+K €)e’t = 0 (8.59)

Since e/“? is arbitrary, then the bracket term in the last equation is zero, which
can be expressed as

(K —w?M)¢ =0 (8.60)

This last result represents a set of N linear, simultaneous, algebraic, homoge-
neous equations in the vector components én, n = 1,2,...,N. By Cramer’s
rule, nontrivial solutions for é exist only if the determinant of the bracket term
vanishes, or

det(K — w?M) =0 (8.61)

When this determinant is expanded, the result is an Nth order polynominal
in w?, for which the N consecutive roots or eigenvalues are positive numbers,
designated as w?,w3,... ,w2,... ,w%. The numbers obtained from the positive
square root of each eigenvalue are the free vibration frequencies of the structural
system. For convenience, these frequencies are arranged from the smallest to
the largest in order of the ascending subscripts: wq,ws,... ,wp,... ,wy. For
N Z 3, the only practical way to determine these frequencies is to employ a
computer package, Mathematica® (1999), for instance.

Modal Vectors and Normalization

For the nth frequency w,, there is a corresponding modal vector én which
can be computed from equation (8.60), rewritten as

(K —wiM)E, =0 (8.62)

The modal vector in component form is

én = [élm é?m ?éNn]T = [1v an’ R ’gNn]T (863)



FREE, UNDAMPED MOTION 215

where, as is customary, the first component of the modal vector is assigned a
value of one. Thus, equation (8.62) can be displayed in component form as

ki1 — wimg k12 o kin 1 0

k21 koo —w2mg  --- kop on 0

kn1 kn2 <o kny - wima Enn 0
(8.64)

If any one of the algebraic equations in this last display is omitted, then the
remaining N — 1 linear equations can be solved for the unknown components
fzmé3m . ,E nn- For instance, if N = 3, the first two equations of this display
can be written as

k1o ks ] [ E2n } _ _[ kiy — wimy J (8.65)

koo —~wimy  kos €3n ko1

It is noted that, since each frequency w,, is distinct, and é in = 1, then there is
a unique modal vector £,, for each frequency.
After the N modal vectors are calculated in this way, those vectors are

normalized with respect to the mass matrix to form the new modal vectors x,,.
That is

S (8.66)

€n

where e, is a set of constants computed from the following equation:
T ~
£, M¢, =e;, (8.67)

Here, e, is always a positive real number, which follows since M is positive
definite and symmetric.

Orthogonality of the Modal Vectors

To achieve the uncoupling of the equations of motion (8.1), it is first neces-
sary to show that the modal vectors x,, are mutually orthogonal with respect
to both M and K. This orthogonality is defined as follows:

x,Mx, = 6, (8.68)

x, K %, = w? 6, (8.69)

in which é,, =1 for » = n and 6, = 0 for r £ n.
Consider the two cases for 7 = n. For M: when equations (8.66) and (8.67)
are combined, it follows directly that

xMx, =1 (8.70)
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For K: when equations (8.66) and (8.62) are combined, then
Kx, =wMx, (8.71)
When this last result is premultiplied by x!" and equation (8.70) is used, then
xI K x, = w2 xT Mx, =w? (8.72)

Consider the two cases for r # n. For M: let n = r in equation (8.71) and
take the transpose of both sides to obtain

xI KT =w2xI M7 (8.73)

r

Since both K and M are symmetric, then
xI'K =w?xI'M (8.74)
Postmultiply this last result by x,,:
x' Kx, = w?xI Mx, (8.75)
Premultiply equation (8.71) by xZ, which gives
xI' Kx, =w?xI Mx, (8.76)
Subtract equation (8.75) from the last result to give
(W2 —w))xFMx, =0 (8.77)
Since the frequencies are distinct (w,, # w, for n # r), then
xF Mx, =0, for n#r (8.78)

Thus, this last result, together with equation (8.70), completes the proof of the
orthogonality statement (8.68). For K: the right side of equation (8.76) is w?
for n = r by equation (8.70), but is equal to zero for n # r by equation (8.78).
This completes the proof of the orthogonality statement (8.69).

8.5 FORCED, DAMPED MOTION

Derived in this section are steady state solutions to the structural equations of
motion (8.1), which include both forcing vector p and system damping. These
solutions utilize the free, undamped modal vectors x,, and their associated un-
damped frequencies w,,, both derived in the last section. These solutions depend
on two important matrix forms: the modal shape matrix X and the modal
damping matrix C. Following the definition of these forms, a transformation
is introduced that uncouples the equations of motion, allowing for the normal
mode solutions to be displayed in closed form. The method of solution is then
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summarized. Numerical examples and applications illustrating the methodology
are deferred to Chapter 9.

The Mode Shape Matrix, X

The modal shape matrix is defined as the assembly of the normalized modal
vectors x,,, written in the following alternate forms:

X = [x;,X9,...Xp, ... Xp] (8.79)
11 T12 ce Zin ce T1IN
T21 Z22 ce Ton ce TaN

= . . . . . . (8.80)
N1 IN2 - XNn ' INN

Note that the nth normalized modal vector forms the nth column of X, where

Xp = [a:ln, Tony oo+ ,QINn]T (881)

With this definition of X, the respective orthogonality conditions of equa-
tions (8.68) and (8.69) can be restated as

XTMX =1 (8.82)

XTK X = diag(w,,) (8.83)

in which I is the N X NN identity matrix, with 1 for all diagonal elements and
zero for all off-diagonal elements. Recall that the notation diag(function of n)
represents an N x N matrix whose argument defines the n consecutive diagonal
elements (n =1,2,... , N), with zero for all off-diagonal terms.

Modal Damping Matrix, C

Modal damping is assumed in the form first proposed by Lord Rayleigh
(1945) and previously given by equation (8.23). That is

C= alK + (ZQM (884)

where a; and ag, the Rayleigh constants, are fixed for a given dynamic system.
When the latter equation is premultiplied by X7 and postmultiplied by X, then

XTCX = a; XTKX + a;XTMX (8.85)

With the orthogonal properties of equations (8.82) and (8.83), the last result
becomes

XTCX = diag(ayw? + ag) (8.86)
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The nth modal damping factor ¢, is defined in terms of the nth diagonal term
in equation (8.86), where

XTCX = diag(2¢,wn) = diag(a;w? + as) (8.87)
After equating the nth diagonal terms above, it follows that
Wy, 1
Cn = ”‘ér—al + 20,2 (8.83)
This last result shows that, for an N degree of freedom system for which
the N frequencies wy,wo,... ,wy are known, then the two Rayleigh constants

ay; and ag are uniquely determined if any two values of (,, are specified. For
instance, if {; and (,, are specified, then equation (8.88) yields the following
two simultaneous equations from which a; and as can be calculated:

Cp = %al + ﬁag; Cop = w_2,,1a1 + é—u—l);ag (8.89)
Then the remaining N — 2 values of ¢, for all n # m can then be calculated
from equation (8.88). In many applications, the first few modes will dominate
the motion, and in such cases it is reasonable to choose (; and (, (or k = 1
and m = 2) as the arbitrary numerical damping factors. Note that, as w,
(and thus n) becomes large, ¢,, — wnpa;/2 and for all practical purposes the
damping increases linearly with frequency. This is consistent with experimental
observations in which the higher modes have diminished amplitudes and are
difficult to detect because of the increased damping at high frequencies.

Uncoupling the Equations of Motion

Consider the governing equations (8.1) in which the external loading vector
p is an arbitrary function of time at each nodal point, or

MEé+CE+KE = plt) (8.90)

Define the solution vector for equation (8.90) by the following modal coordinate
transformation:

N
=Xy or ¢,= ank Yk (8.91)
k=1

Here, X is the time-invariant matrix of the normalized modal vectors defined
by equations (8.80) and the vector y = y(t) is to be determined. When this
transformation and its appropriate time derivatives are substituted into equation

(8.90), then
MXy + CXy + KXy = p(¢) (8.92)
Premultiply this last result by X7
XTMXy + XTCXy + XTKXy = X p(t) (8.93)
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In this last equation, it is noted that the coefficients of ¥, ¥, and y are defined
by equations (8.82), (8.87), and (8.83), respectively, which leads to

§ + diag(2(,wn)y + diag(w?)y = XTp(t) (8.94)

These transformed equations (8.94) are observed to be uncoupled. The equation
for the nth mode is thus

in + 20 pwny +wnyn = X5 P(2) (8.95)
Note that the right side of the last equation is a scalar quantity.

Steady State Solutions

It is recognized that the scalar equation (8.95) is in the form of the single
degree of freedom model, equation (5.58). The steady state Duhamel integral
solution, equation (5.56), was derived for the latter model in Chapter 5. For the

present case, this integral solution can be derived in the same way. The result
is

t T
v = / X0 PT) ot inlupan(t — 7] dr (8.96)
0 Wdn

where the damped frequency for the nth mode is

Wdn == Wny/ 1- Ci (897)

The vector y expressed in terms of its components computed from equation
(8.96) is

Y =[y1,92, - un]" (8.98)

From the transformation equation (8.91), the steady state solution for the modal
coordinates in component form is thus

51 T11 Ti2 T TIN n

&2 To1  Tap - IoN i)

N e _ (8.99)
En TN1 TnN2 ‘'t INN yn

8.6 SUMMARY OF THE NORMAL MODE METHOD

Summarized below is a ten-step procedure for obtaining the steady state modal
response solutions to the governing equation (8.1):

1. After formulating the N-degree of freedom model of the structure, deter-
mine numerical values for the elements of the M and K matrices.
2. Evaluate the loading vector p(t).



220 MULTI-DEGREE OF FREEDOM LINEAR STRUCTURES

3. With K and M and the characteristic determinant equation (8.61), cal-
culate the consecutive frequencies wy,ws,... ,wy, and order them from the
smallest to the largest. )

4. Compute the components of the non-normalized modal vectors £,, using
N — 1 of the simultaneous equations (8.64). Note that én =1,n=12,... N.

5. Compute the N scalars e, using equation (8.67); and then determine the
normalized modal vectors x,, using equation (8.66).

6. Assemble the vectors x,, to form the X matrix defined by equations (8.79)
and (8.80).

7. Fix two modal damping ratios (,, and ¢,,. For instance, pick & = 1 and
m = 2, and ¢; = {, = 0.05; compute the Rayleigh coefficients a; and as from
equations (8.89); and compute the remaining N — 2 values of ¢,, from equation
(8.88).

8. Using the results of w, from step 3 and ¢,, from step 7, compute the N
damped frequencies wq, from equation (8.97).

9. Compute y,(f) from equation (8.98) using numerical integration. That
is, generate a table of y,(¢) vs. ¢t for each value of n.

10. Compute the modal coordinates £, = £,,(t) from equation (8.99). The
peak values of the coordinate components are useful in design.

It is advisable to implement this ten-step solution in a general computer
program. Numerical examples will be illustrated in the next chapter.

PROBLEMS

8.1. Consider a two degree of freedom lumped mass model of the jackup
rig shown in Fig. 2.17 and described in Ezample Problem 2.8. Choose the two
independent coordinates as v and 6, the displacement and rotation of the deck,
respectively. Let py and My be the arbitrary loadings corresponding to v and
8. For the deck, the mass moment of inertia about its mass center is J;. Neglect
all changes in elevation of the deck. Include damping.

(a) Write down the coordinate vector, the loading vector, and the damping
matrix.

(b) Define in words and symbols the two nonzero elements of the mass ma-
trix.

(c) Each leg of the three-legged structure has a bending stiffness ET and a
length £. Use classical beam theory to compute the elements of the 2 x 2 stiffness
matrix.

(d) Show a free body sketch for each of the two masses.

(e) Use Newton’s method to formulate the two equations of motion in terms
of v and . Include linear viscous damping in the form of equation (8.20).

8.2. For the structure described in Problem 8.1, formulate the expressions
for the kinetic energy, the potential energy, and the virtual work of the noncon-
servative forces. With these three scalar quantities, use Lagrange’s method to
derive the two equations of motion for the structure.
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8.3 Suppose that the two frequencies in free vibration for the structural
model of Problem 8.1 are computed as w; and ws and that the modal damping
factors are estimated from experimental data as ¢; = 0.05 and {, = 0.07. With
these damping factors, compute the values of the Rayleigh constants a; and aq
in terms of the two frequencies.

8.4 Suppose that the jacket template structure shown in Figure 8.3a is
modeled as a four degree of freedom damped system with the independent coor-
dinates (v vg, 61, 62). Here, the first two coordinates are defined in Figure 8.3b;
the angles 6; and 6, are the rotations of the deck and the mass mo; and J; and
Jo are the mass moments of inertia for the deck and for my, respectively. There
are three loads only: the respective horizontal wave loading p; and ps at v; and
v2, and a wave slamming moment My on the deck.

(a) Write down the loading vector and the damping matrix.

(b) Identify the elements of the mass matrix. Include the virtual mass where
appropriate.

(c) Sketch the four diagrams, analogous to the three diagrams of Figure 8.4,
that define the elements of the stiffness matrix.

(d) For each of the two lumped masses, construct a free body sketch, anal-
ogous to the sketches in Figure 8.3c.

(e) Use Newton’s method to derive the four equations of motion for this
structural model.

8.5 For the structure described in Problem 8.4, formulate the expressions
for the kinetic energy, the potential energy, and the virtual work of the noncon-
servative forces. With these three scalar quantities, use Lagrange’s method to
derive the four equations of motion for the structure.
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9

Applications of Multi-Degree
of Freedom Analysis

James F. Wilson

This chapter has two main purposes. The first is to apply the time domain
theory of linear dynamic analysis formulated in Chapters 7 and 8 to selected
offshore structures. For instance, response time histories are calculated for a
jacket template platform with deterministic wave and earthquake loadings. The
second purpose is to develop in the frequency domain the response statistics for
linear structures subject to stationary, random wave excitation. This statistical
analysis represents an extension of the theory developed in Chapter 7, now
applied to multi-degree of freedom systems.

For the illustrative problems, the mathematical models are simple: they are
two degree of freedom systems, chosen more for the purpose of fixing the basic
ideas of dynamic analysis in the mind of the reader than for the purpose of
design. In actual practice, packaged computer codes utilizing the same essential
ideas would be employed in the final design stages where the structure would
be represented by perhaps several hundred degrees of freedom. However, back
of the envelope calculations for a structure modeled with only a few carefully
chosen dynamic coordinates have their place: they give the analyst a feeling
for the problem, they are economical to perform, and the results predict the
essential characteristics of motion for the same structure modeled as a higher
order system. For instance, for the simplified model of the gravity platform, the
fundamental frequency and the conclusions about the structural stability are
about the same as the results derived from the elaborate counterpart models
with many more degrees of freedom.

The emphasis of this chapter is on computational procedures and the inter-
pretation of numerical results for structural responses. As in Chapter 8, the
linear equations representing plane structural motion in this chapter are given
by the following matrix form:

ME + Cé + K¢ = p(t) (9.1)
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9.1 A FIXED LEG PLATFORM: TIME DOMAIN RESPONSES

Mathematical Model

A fixed leg platform or jacket template structure, discussed in some detail in
Ezxample Problems 8.1-8.5, is shown again in Figure 9.1. As in these previous
examples, the stalk model of this structure is used, as defined in Figure 9.2a,
a two degree of freedom model with the lumped virtual masses m; and mao,
located by the two independent horizontal displacement coordinates (£,&,).
The corresponding equations of motion for each mass, derived previously as
equations (8.28), are

[m10 §1]+[C11 012}[§1
0 mg & Co1 €22 P

ki k2 £ 1 Y41
+ — 9.2
[ ko1 ko2 €2 P2 (92)
Listed in Table 9.1 are the numerical values for the characteristics of the struc-
ture and of the incident harmonic water wave. The analysis of the structure’s

dynamic response begins with a calculation of the undamped natural frequencies
and mode shapes.
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Figure 9.1 A fixed leg platform.
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Figure 9.2 Stalk model of the fixed leg platform: (a) definition of coordinates; (b)
components of the modal vector £;; (c) components of the modal vector &,.

Table 9.1 Characteristics of a Fixed Platform and an Incident Wave

Platform Parameters Wave Loading Parameters
my = 4.69 x 10° kg; mg = 3.13 x 10% kg H=116m
k11 =7.35x10" N/m; ko =359 x 108 N/m T =154s
k12 = koy = —1.15 x 108 N/m k =0.0201 m™?
{1=0,=38m; d=6lm A=312m
¢y =¢,=0.05 w = 0.408 rad/s
D¢=55m; D.=43m p = 1031 kg/m3
Ny=4; N.=2 Cy =2
w =30 m

Frequencies

The two undamped structural frequencies for free vibration are computed
by solving the characteristic determinant, equation (8.61), for the two positive
roots w. The governing equation is

det(K — w?M) =0 (9.3)
With the numerical values above, this determinant becomes

73.5 — 4.69w? —115

6
~115 359 — 31342 | X107 =0 (9-4)
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which reduces to
w? —130.40w2 +900.9 = 0 (9.5)

Using the quadratic formula, the two positive roots w? to this equation are
calculated as: w? = 7.322 rad?/s? and w? = 123.04 rad?/s2, from which the two
frequencies are deduced as

w1 = 2.706 rad/s (or 0.431 Hz); wg =11.09 rad/s (or 1.77 Hz)  (9.6)

Modal Vectors and Normalization

For the nth frequency w,, there is a modal vector En which can be computed
from equation (8.62), or

(K —w2?M)E, =0 9.7)

In this case, £, = 1 EQn]T for n = 1,2 and the components £,,, can be com-
puted from the special case of equation (8.63), or

ki1 — w2 ma k12 1 0
n ~ = 9.8
k21 k22 - w%mQ §2n 0 ( )

The first of these two equations, when solved for é2n, gives
- 1 9
§on = T (wpma — k1) (9.9)
12

The reader can verify that the same numerical results for éZn can be obtained
from the second of equations (9.8) as from equation (9.9). For the numerical
values of this problem, then &,, = 0.341 and £,, = —4.38, which correspond to
the frequencies of wy, = 2.706 and w2 = 11.09 rad/s, respectively. These modal
vectors, which have no units, are thus

’21 = [gu ém]T = [1 0~341]T (9-103)

~ ~

&= [512 EQQ]T = [1 - 4-39]T (9-10b)

Shown in Figures 9.2b and 9.2¢ are sketches of £ ;1 and éQ, respectively. Note that
since the components £,; and &, were arbitrarily chosen as unity, a comparison
of magnitude between these two vectors is not meaningful.

The normalized modal vectors x,, are computed using equations (8.66) and
(8.67). That is,

X, = eign (9.11)
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in which the normalizing constants e,, are computed from
2 _ 2T are
e, =&, ME, (9.12)

For this problem, the two normalizing constants are as follows:

469 0 ][ 1

ei=[ 0‘341][ 0 313 || 0341

J x 10% = 5.054 x 10° kg
e; = 2248 kg!/?
e3=1{1 —4.39
e = 8063 kg'/?

With these results and equation (9.11), the two normalized modal vectors are
calculated as

469 0 }[ 1

= 6
0 313 —4.39 J x 10% = 65.01 x 10° kg

1 r_ [ 445 L4y 12
= (1 03417 = [ 5 } x 10~* kg (9.13a)
1 r_ [ 124 ey
Xo = g[l —-4.39]" = [ 54 ] x 107* kg (9.13b)

The modal shape matrix X, defined previously by equations (8.79) and (8.80)
as the assembly of the modal vectors x,,, is thus

X = [ 11 T19 } _ [ 445 1.4

—47,—1/2
To1 T 1.52 _5_44]“0 kg (9.14)

Response to a Harmonic Wave

Consider the steady state response of the structure in Figure 9.1 to a plane,
harmonic storm wave that has a recurrence interval of 100 years. This wave,
based on studies of severe storms in the Gulf of Mexico (Mansour and Millman,
1974), has a significant wave height of H = 11.6 m and a dominant wave period
of T = 15.4 s. The wave frequency is thus w = 27 /T = 0.408 rad/s.

To determine the appropriate wave theory needed for the structural loading,
first compute the two wave parameters, which are the abscissa and ordinate of
Figure 3.10. These are

d _61mx328ft/m 9
™= 5422 = 0.844 ft/sec

H 116 m x 3.28 ft/m
T2 15.42 52

These two parameters place this wave in the region of the Stoke’s second order
theory, in the intermediate water depth range. As discussed in Chapter 3 in

= 0.0489 ft/sec?
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Ezample Problem 3.2, the wave length X\ can be expressed in terms of the water
depth d, the wave period T, and the height H. In this case, the dispersion
relation has the following form:

A= T,/*‘Q’At h@~154\/3-8—1/\t A'61 (9.15)

The latter equation, implicit in ), was solved using Mathematica® (1999) with
the subroutine RootFind, with the result that A = 312 m. From this, the wave
number becomes k = 27/ = 0.0201 m~!. These two wave parameters are listed
in Table 9.1.

In computing the structural loading associated with this wave, the following
assumptions are made: (1) the motion of the structure is much smaller than
the motion of the wave, so that Morison’s equation (2.14) applies; (2) the flow
is predominately in the inertia regime so that the structural loading term of
Morison’s equation that involves Cp; dominates the fluid drag term that involves
Cp; (3) the four vertical legs (N; = 4) plus the two horizontal cross braces
(N. = 2), which are normal to the flow at node point 2, account for most
of the structural wave loading; (4) because of their relatively small diameter
compared to the legs, the wave loading of the cross bracings is mainly fluid
drag, a loading that is relatively small compared to the inertia loading on the
other six members to which Cys applies; (5) since the wave length A = 312
m is much larger than the distance w = 30 m between the vertical legs in
the direction of wave propagation, the phase of the wave can be neglected, or
z = 0 in the expression for the wave acceleration 4 . With these assumptions,
@ = u(z,t) of Table 3.2 has the form

Q- _ 2n%H cosh k(z + d) Sin wf — 3m3H? cosh 2k(z 4 d) .
L sinh kd T2 sinh* kd
The loading per unit length of the four vertical legs, and of the two cross
braces normal to the wave direction are, respectively

n 2wt  (9.16)

To(z,t) = NgCMZ- pD2i(z,t) (9.17a)

(2, t) = Nchngzu(z,t), at z=—(d—f) (9.17b)

The respective total loads lumped at nodes 1 and 2 are computed by integrat-
ing these loadings over the appropriate structural members. As a conservative
measure, all of the wave loading on the four legs from the sea surface to node 2
is lumped at node 1 located at the deck level. Also, all of the wave loading on
the legs extending from node 2 to the sea floor is lumped at node 2. Note that
the two cross braces normal to the flow are located node 2 also. With these
assumptions, the nodal loads can be expressed as follows:

0
no=[ (9.18)

—(d—22)
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—(d—t2)
pa(t) = /_d Ge(z,t)dz + wg [~ (d — €3),t]dz (9.18b)

When % of equation (9.16) is substituted into equations (9.17), and those results
are integrated according to equations (9.18), the nodal loads become

p1(t) = by sin wt + bs sin 2wt (9.19a)
pg(t) = by sin wt + by sin 2wt (919]3)
in which the coefficients of the harmonic terms are
7 22 H
== N —— 2‘ = ——
@ = NeOugpDes a2 = iy
3m3H? T
a3 = ~————; ag = N.Cp ~pD?
3= "T2)sinh? kd ‘ Mgl

1
by = %alag(sinh kd —sinh kf); by = Faaz sinh kfs + wasay cosh kfs

1
b3 = —-aja3(sinh 2kd — sinh 2kls); by = —1—a1a3 sinh 2k{s + waga4 cosh 2kly

2k 2k
(9.20)

These coefficients, when evaluated using the system parameters of Table 9.1,
lead to the following explicit results for the nodal loads, in units of newtons:

p1(t) = —4.334 x 10 s5in 0.408¢ — 0.500 x 10°% sin 0.816¢ N (9.21a)

pa(t) = —6.534 x 10° sin 0.408t — 0.432 x 108 sin 0.816t N (9.21b)

With this loading, together with the normalized vectors x,,, the steady state
solutions to the governing equations of motion (9.2) can be computed using
equations (8.96)-(8.99) and the procedure outlined in Section 8.6. The two
scalar products in the integral solution (8.96) are computed using the vectors
of equations (9.13) and (9.21), or

xIp(r) = 445 1.52] x 10™* [ by sinw7 + bg sin 2w7 }

by sin w + by sin 2w
= —2922 sinwT — 288.4 sin2wr kg /2N (9.22a)

X p(r)=[124 —544] x107* [ by sinwT + bg sin 2wt ]

bo sin wT + by sin 2wt
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= 3017 sinwr + 173.2 sin 2wr kg™ '/?N (9.22b)
The undamped and damped frequencies are

w1 = 2.7060 rad/s; wqy = 2.7026 rad/s (9.23a)

we = 11.090 rad/s; wg; = 11.076 rad/s (9.23b)

With these results, y; = y1(t) and y2 = y2(t) were computed by numerical inte-
gration of equation (8.96) at each of the following times ¢t = 0.2, 0.4, 0.6, ... ,30.0
s. For each of these times, the structural displacements &; and &, were cal-
culated using the transformation of equation (8.99), or equivalently equation
(8.91). That is

£1(t) = z11y1 + T12y2 = 445 x 1074y, +1.24 x 107 4ye m (9.24a)

£5(t) = 2o1y1 + Tooye = 1.52 x 1074y, — 5.44 x 10~ %y, m (9.24b)
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TIME ¢, seconds

Figure 9.3 Responses for the fixed leg platform to a harmonic wave.

Shown in Figure 9.3 are numerical results for these two structural steady
state displacements over a time of 30 s, or for approximately two cycles of the
wave loading. The absolute values of the first peaks are:

€1 maye = 01950 m;  |£,], .. =0.0810 m (9.25)

and the respective subsequent peaks change very little from these values. Also,
after the first cycle the responses become more smooth, a result of the light
damping.

This same problem was also solved using linear wave theory instead of Stoke’s
second order wave theory. For linear wave theory, the wave loading is given by
equations (9.19) with b3 = by = 0, and with b; and by defined by equations
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(9.20) as before. Computations showed that the response curves were nearly
identical to those of Figure 9.3, and that the absolute values of the first peaks
were:

€1l =0.1937 m;  |€5],,. = 0.0805 m (9.26)

For this problem, then, linear wave theory is adequate for preliminary dynamic
design.

Response to Earthquake Excitation

The two-mass model of the offshore platform is shown in Figure 9.4a, now
subject to a horizontal ground displacement v, = v,4(t) that simulates one type
of earthquake excitation. As shown in Figure 9.4b, the coordinates £, and £,
now represent the displacements of m; and ms relative to the rigid base of the
structure, and it is these displacements that give rise to the elastic restoring
force and the damping force. In the absence of other external excitations, the
equations of motion are derived from the general equations (9.1) by replacing
the acceleration vector £ for each lumped mass by the new absolute acceleration

.

vector (& + 19,), in which the unit vector in this two-mass example is
1=1 17 (9.27)
With the indicated substitutions, equation (9.1) now becomes
ME£ + C& + K& = p(t) = M1, (9.28)

In this last result, the negative sign on the right was omitted since the sign of
£ is of no consequence in this problem. Further, this last result also applies to
stalk models in plane motion with horizontal, rigid base excitation in which the
number of degrees of freedom N > 2, provided that the unit vector 1 has the
same dimension as N. For stalk models that include soil-structural interactions,
see Clough and Penzien (1993), Chapter 27.

Tr7r7z7 111111 77777

%

FIXED AXIS

Figure 9.4 Earthquake excitation of the fixed leg platform.
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The steady state solution to equation (9.28) is given by £ = Xy, equation
(8.91). The solution components y, are given by equation (8.96), which for
earthquake excitation becomes

Lo, (r) _ .
Yn = xz;Ml/ 22 e Cnn T ginfwgn (t — )] dT (9.29)
0 Wdn
The peak values of the £ vector, or €, .., are sought for a given experimental
earthquake time history #,. This is done by first forming the product w,y,, and
then computing the maximum value of the above integral for each frequency
wn. That is, compute the pseudovelocity of the nth mode, defined by

+ . (T) _ ~ )
Sne = max / 28T oCawnt=T) sinfwan(t — 7)) dr (9.30)
0 \1-¢2

Form the pseudodisplacement components Sp¢/w,,, now defined as the diagonal
elements of the 2 x 2 matrix: diag(Sp¢/wy). In these terms and with equation
(8.91), the solution can be written as

&nax = Xdiag(Spe /wn)XTM1 (9.31)

As a numerical example, let the structure of Figure 9.4 have the character-
istics given in Table 9.1. The undamped frequencies w,, and the modal shape
matrix X are given by equations (9.6) and (9.14), respectively. Choose the El
Centro earthquake as the design condition since the pseudovelocity Sn¢ has been
computed for this case as a function of damping and structural or modal period
To = T, (see Figure 5.8). Compute Ty = T, for each frequency as

2 2 2T
o 3706~ 2%%s T2= g

T = = 0.567 s (9.32)

Let £; = £, = 0.05 and use Figure 5.8 to obtain the respective pseudovelocities
for these two periods:

S1¢ =25 in./sec = 0.635 m/s; Sg¢ = 30 in./sec = 0.762 m/s (9.33)

The peak responses are then computed from equation (9.31), or

E1max 1 [ 445 124 4y 1/2[ 0235 0
[szm =| 152 544 | X107 ke 0 0.0687 | ™*

145 152 ay [ 469 ). [ 0258
[1.24 -5.44}“0 ke gy | X 100ke= | gggg | @ (934

Thus, the displacement of the deck at mass m; is 0.285 m, and the displace-
ment at the 38 m height at mass mg is 0.133 m, both relative to the bottom of
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the legs. Using these results, the maximum horizontal shear loads at m; and
mg are deduced as

_ _[o0735 -115 [ 0258 ] ., [ 369 ;
finae = Kby = [ 115 3.59 } [ 0.133 } 107= [ 18.3 } x10°N
(9.35)

The sum of these two horizontal shear loads is 2.20 x 106 N, which is an upper
bound of the shear load shared by all four legs at the base of the structure.
Further, an upper bound on the base overturning moment due to these shear
loads, also shared by all four legs of lengths ¢; = ¢ = 38 m, is given by

Minax = 3.69 x 10°(¢; + £5) +18.3 x 10%0, =9.74 x 10" N - m (9.36)

"The responses computed in this numerical example are upper bound values
since they are based on Si¢ and So¢ derived from the maximum of the Duhamel
integral, irrespective of the time of occurrence. Thus, the maximum shear loads
were assumed to be in phase. Nevertheless, this type of calculation serves as
an economical, approximate check on results derived from the more involved
models where the modal displacements are matched in time.

9.2 A MONOPOD GRAVITY PLATFORM:
FREE VIBRATION AND STABILITY

Mathematical Model

A monopod gravity platform on a flexible soil foundation is modeled as shown
in Figure 9.5. The most important assumptions are that the structure is a rigid
body with two degrees of freedom system in which the respective coordinates
for horizontal base sliding and for rotation in the plane are denoted as £, = v
and £, = §. Typical numerical parameters describing the structure and the soil
foundation are listed in Table 9.2. For structural sliding and rocking, the soil’s
stiffness and damping behavior is modeled after equations (2.76)-(2.79). The
purposes of this section are to use this model to set up the equations of motion,
to compute the structure’s undamped frequencies, and to discuss briefly the
general criterion for structure’s dynamic stability.

Although neither the applied structural loads nor the damping are needed
to compute the structural rocking and sliding motion in free vibration, those
quantities are included for the sake of completeness in the following derivation
of the equations of sructural motion. The fluid loadings shown in Figure 9.5b
are: F' = F(t) which represents the net, time-dependent horizontal load due to
current, wind and waves acting at an equivalent height ho; and My. = M,.(2)
which is the net time-dependent moment about the base point 0 due to the time-
varying pressure inbalance across the top of the caisson. In this mathematical
model, it is assumed that the viscous damping forces of the soil foundation, rep-
resented by the constants ¢; for structural sliding and ¢g for structural rotation,
are much larger than the viscous damping effects of the surrounding water, so
that the latter damping is ignored.
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Figure 9.5 Two degree of freedom model of a monotower gravity platform on an
elastic foundation.

Table 9.2 System Parameters and Results for the Monotower

Soil modulus Gs; =10 MPa

Soil density; Poisson’s ratio  p, = 2000 kg/m3; v, = 0.33

Soil stiffness, sliding ki = 2.16 x 10° (1 — 0.0318wg) N/m
Soil stiffness, rocking ko = 3.63 x 10'?(1 — 0.137wp) N-m
Structural mass, virtual m = 6.15 x 10® kg

Structural mass, actual mo = 3.56 x 108 kg

Structural mass, buoyant my = 2.59 x 10® kg

Structural inertia, virtual Jo = 8.80 x 10! kg-m?

Structural inertia ratio Jo/Jo = 1.66

Center of actual mass hg = 30.7m

Center of buoyant mass hy =31.7m

Caisson radius ro =45 m

Computed frequencies w1 = 1.24 rad/s; wy =2.73 rad/s

Lagrange’s method as discussed in Chapter 8 is now used to derive the
equations of motion of this monotower. For this two degree of freedom model,
the two equations of motion in the form of equation (8.44) are written in terms
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of the structure’s independent coordinates £; = v and &, = 8, or

d oK 0K 08V
Hor Be e o (9.37)

doK OK oV

Sl e A 9.38

diop o0 "o % (9.38)
The kinetic energy K, the potential energy V, and the nonconservative virtual
work 6TV of the system’s nonconservative generalized forces g, and gy are, re-
spectively,

K= %m(ij + ha0)? + %Jcé?Q (9.39)

Lo 1, o
V= §k1”u + §k99 — moghg (1 — cos 8) + mpghp(1 — cos §) (9.40)
§W = gy6v + o680 = [—c10 + F|6v + [~co + hoF + Mpc]60 (9.41)

When the last three equations are used with equations (9.37), and then with
(9.38), the respective equations for plane motion become

mi +mhg 4 c19+ kyv = F (9.42)

mhgi + (Jg +mh%)8 + cod + (kg — moghe + mughs)d = hoF + M,, (9.43)

The above two equations can be written in standard form in the following way:
Multiply equation (9.42) by (—hg) and add this result to equation (9.43) to
give

JG8 + cgd — hgerd + (kg — moghg + mpghs)0 — hakrv = My + (ho — hg)F

(9.44)
Then substitute § from this result into equation (9.42). Thus
h .
mi + ﬁclz} - m_g600 - m—hG[kg — moghg + mpghy)0 + ‘—]gklv
Ja Ja Ja Ja

h h

={1- 22 (hg — he)| F - 28 0, (9.45)
Ja Jo

In the last two equations, which are now in standard form, the parallel axis
theorem was used, where

Jo = Ja + mh (9.46)
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Equations (9.44) and (9.45) are rewritten in matrix form as
0 Jg 0 —hg et co 0

n [ Rk —BE (kg — mogha + mbghs) ] [ v ]
—hgk: (ko — mogha + myghs) 4

B el

Mpc + (h() + hG)F
Frequencies and Mode Shapes

Suppose that the monotower is at rest in still water. Then, displaced by a
sudden wind gust that subsequently subsides, the tower undergoes free vibra-
tion. The tower’s motion will then be partly translational and partly rotational,
with an exchange of energy between these modes. This should be expected since
the equations of motion (9.47) are coupled. The two characteristic free vibra-
tion frequencies and their corresponding mode shapes are now computed by the
methods in Chapter 8, Section 8.4. Let C = p = 0 in equations (9.47) and form
the characteristic determinant

det(K — w?M) =0 (9.48)

With the numerical parameters of Table 9.2 substituted for K and M in the
governing equations (9.47), this determinant becomes

(3.59 — 0.114wq — 0.615w2) x 10°  (0.0772 4 0.0107wp) x 1012 _0
(—66.3 + 2.11wg) x 10° (3.60 — 0.497wq — 0.880w?) x 1012 | —
(9.49)

Assume that the soil foundation stiffnesses k; and ky are especially sensitive
to the structure’s fundamental frequency w1, which is the smallest positive root
that satisfies this determinant. It is logical then to let wg = w;. With this con-
dition imposed, a trial and success procedure is used to extract the frequencies
from equation (9.49). As a first trial, choose wg == 1.41 rad/s, the result ob-
tained for this same structure under pure rocking motion. See Ezample Problem
5.2. The characteristic determinant then reduces to

w? — 8.867w? +11.08 = 0 (9.50)

Using the quadratic formula, the smallest positive root of this polynomial is
calculated as w; = 1.23 rad/s. Next, choose wyg = 1.24 rad/s, for which the
polynomial from equation (9.49), when solved for the lowest two positive roots,
yields the convergent results to three significant figures, or

wi = 1.24 rad/s (0.197 Hz);  wq = 2.73 rad/s (0.434 Hz) (9.51)
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It follows that the K matrix from equation (9.47) is given by

(9.52)

K- | 344x10°N/m  -0.0641 x 10'* N
T | —0.0638 x 102 N 2.99 x 10*2 N-m

Because of roundoff errors and possible variations in the experimental values of
the soil foundation constants, the last matrix is not symmetric to three signifi-
cant figures.

Following equations (8.62)-(8.64), there is a corresponding modal vector £,
for each frequency w,,, computed from

(K-w?M)E, =0, n=1,2 (9.53)
in which the component form of the nonnormalized modal vector is
£, =1 &7 (9-54)
The last two equations, when combined and written in component form, are
kll - w2 m k12 1 0
n 2 = 9.55
ko1 koo — w%JG Son 0 ( )

The first of these two equations is solved for Ezn to give
~ 1 9
EQn = A (wnm - kll) (956)
12

With this equation, with the numerical values given in equations (9.51), (9.52)
and Table 9.2, and with £;; = ;5 = 1, the two modal vectors are evaluated as

&= &uT=101 00390]" (9.57a)

Ey=[612 Eg]"=[1 -—0.01787 (9.57b)

Fr77r7r7r7 T77RT77777
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Figure 9.6 Mode shape envelopes for the monopod gravity platform.
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The modal vectors of the last two equations are shown in Figure 9.6. For
mode 1 corresponding to the lowest frequency, both components of él are pos-
itive, which indicates a positive or right displacement for v (the £;; term) and
a positive or clockwise rotation for 8 (the £,, term), signs which are consistent
with the chosen coordinate directions. The broken line is also possible since
£1; could have been chosen as (—1) instead of (+1), with the result that both
v and 6 would then be negative. The motions of mode 1 are in phase since
both components of é’l have the same sign. The motions of mode 2 are out of
phase since the signs of the Eg components are always opposite. In free vibra-
tion, the actual motion is a combination of both mode shapes, which depend
on the structure’s initial displacement and velocity. Once in motion, the mode
shapes continually change as potential and kinetic energies are transferred in
the foundation restraints.

With the frequencies and mode shapes in hand, the deterministic responses
of this monotower to given time histories of loading, F(t) and Mp.(t), can be
calculated in a straightforward way using the normal mode solutions derived
in Chapter 8 and illustrated for the fixed leg platform at the beginning of this
chapter.

This particular problem gives some interesting insights into the frequency
behavior of multi-degree of freedom systems. For instance, it is observed that
the fundamental undamped frequency is depressed by about 12 percent, from
1.41 rad/s for its single degree of freedom counterpart of Ezample Problem 5.2,
to w1 = 1.24 rad/s for the two degree of freedom analysis. This is characteristic
of linear systems: as more flexibility is incorporated by allowing more degrees
of freedom, w; decreases. In either model, the effect of foundation damping
and viscous damping due to the surrounding water is to depress the undamped
frequency.

Nataraja and Kirk (1977) analyzed a similar structure. They calculated
a value of 1.02 rad/s for the fundamental frequency of a three-legged gravity
platform modeled to include leg flexibility and the same type of soil foundation
elasticity (ki and kg) as used here. Three factors in the Nataraja and Kirk
model account for their lower value of wy: their structural mass was somewhat
higher, their model included soil foundation damping, and their model had
added degrees of freedom because of leg flexibility.

Dynamic Stability

There is a vast literature on criteria and methods for determining the dy-
namic stability of coupled, linear systems such as the gravity platform. The
classical works of Liapunov {1907) and Ziegler (1956) are especially noteworthy.
For present purposes, however, the criteria are relatively simple. The dynamic
stability of a linear, undamped structure in free vibration about its static equi-
librium position can be tested by investigating the nature of the roots w? as
calculated from the characteristic determinant, equation (9.3). If every w? is
real and positive, then the characteristic frequencies given by w; = \/Z:? are real
and positive, and the system undergoes stable, bounded, harmonic oscillations.
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That is, the displacements £, behave as
£, ~ €, et o € sinwgt (9.58)

However, if any value of w? is negative or complex, the system will be dynam-
ically unstable. For instance, if w? = —a? where « is real and positive, then
w1 = tja. With wy = —ja, equation (9.58) becomes

£~ 5130& (9.59)

which is unbounded as time increases. If w% is complex, one of the roots produces
this same unboundedness. Computer codes that extract roots of a determinant,
such as subroutine Eigenvalues of Mathematica® (1999), are generally available
to the engineer, so it is a relatively straightforward task to check the dynamic
stability of a structure.

With respect to a gravity platform on an elastic soil foundation, dynamic
instability leading to toppling would occur for critical combinations of its mass,
its center of buoyancy, its center of gravity, and its foundation stiffness. For
instance, for sufficiently high values of platform mass and hg, it is visualized that
a moderately weak soil foundation could offer an insufficient restoring moment to
resist both the angular momentum of the structure and the overturning moment
due to its deadweight. Then the structure would topple.

In conclusion, it is noted that if the criterion for dynamic stability is observed
(that all values of w? are real and positive), then the static criteria discussed
in Chapter 1, applied to gravity platforms, will also be satisfied. It is now well
recognized that a dynamic stability analysis includes the results obtained from
a static stability analysis; but the converse is not true.

9.3 STRUCTURAL RESPONSE STATISTICS
FOR WAVE LOADING

As discussed in Chapters 6 and 7, the wave data available to the analyst and
designer of offshore structures are most often in the form of a surface wave
height spectrum, Sy,(w). In Chapter 6 a method was presented for representing
this spectrum as harmonic waves forms. These forms, when converted to struc-
tural forces through suitable transfer functions G(w), are then used to calculate
the time history of structural response. An alternative approach was discussed
in Chapter 7 where the spectral density of the response and its variance were
calculated directly from S,(w) and G(w) for the single degree of freedom case.
This latter approach is now employed for the case of a linear structure with
N degrees of freedom. Summarized in the following ten steps are the critical
assumptions and the methodology leading to an analytical form for the spectral
density defined as S(§,,w) and the variance 02(£,), calculated for each indepen-
dent physical coordinate &,,. The load transfer functions in this case are defined
by the vector G(p,w).

1. Set up the mathematical model and derive the equations of motion for
the structure in the form of equation (9.1). Identify the coefficient matrices M
and K.
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2. Calculate each component pi(t) of the loading vector p(t). Select linear
wave theory. Use Morison’s equation and diffraction theory where appropriate
to determine the components of loading.

3. Calculate each component function G(pg,w) of the load transfer vector

G(p,w).

4. Calculate the undamped frequencies wy and the normalized mode shape
matrix X. The consecutive columns of X are modal vectors x1,Xs,... ,xxn. The
kth modal vector has components z1x, Zok,-.. , TNk-

5. Define the generalized loading vector in modal coordinates as g(t) = q.
Then calculate the corresponding transfer functions G(gk, w) for each component
Gr of @ where

Gk = xj, p(t) (9.60)
Thus the generalized load transfer function for the £th mode is
G(gr,w) = x; G(p,w) (9.61)

Note that G(p,w) was calculated in step 3.
6. With equations (8.95) and (9.60), the uncoupled equations of motion
become
Gk + 20y + Wiy = G (9.62)

Calculate Hy(w), the harmonic response function for the kth mode, by substi-
tuting the following quantities into the last equation:

Ge(t) = &% yy(t) = Hy(w)e? (9.63)

The results, including the modulus, are
Hi(w) = (Wi —w? + 2j¢pwrw) ™ (9.64)
| Hi(w)| = [(w} — w?)? + (2 pwrw)?] 71/ (9.65)

7. Assume that p(t) is a stationary ergodic process. It follows that G(t)
will be stationary and ergodic also since the components of p(t) and g(t) are
related by the linear transformation (9.60). Using the analysis in Chapter 7 for
the single degree of freedom system in the form of equation (9.62), it follows
that the spectral density of yy is

S(yk,w) = |Hi(w)[* S(Ge,w) (9.66)

Here S(gk,w) is the spectral density of the generalized force component g.

8. Assume linear wave theory. From FEzample Problem 7.2, deduce the
following analogous relationship between the spectral density of the kth load,
S(pk,w), the wave height spectrum S,(w), and the transfer function G(px,w):

S(pr,w) = |G(pr, w)|* Sp(w) (9.67)
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Since the system is linear, it follows that
S(gk, w) = |G(@e, )| Sy(w) (9.68)

which, with equation (9.61), becomes

_ 2
S(gg,w) = ]xZG(p,w)l Sp(w) (9.69)
With this last result, equation (9.66) is then

S(yk,w) = [He(w)|? - [xEG(p,w)|* - Sy(w) (9.70)

in which all components on the right side of this last equation are known.

9. Deduce the relationship between S(yi,w) of this last result and the spec-
tral density in terms of the physical coordinates, S(&,,w). To do this, use the
definition of the autocorrelation function given by equation (7.19). For the kth
coordinate £, this function is

R(&y,, 7) = E[§(£)E(t + 7) (9.71)

With this definition and the component form of the modal coordinate transfor-
mation given by

n=N
€x =Y Tknln (9.72)
n=1
It follows that
N N
R(&k’ T) =E Z Z xknmkmyn(t)ym(t + T) (973)
n=1m=1
In the sums of this last result, there are N autocorrelation functions of the form
R (7) = Elyn(®)yn(t + 1)}, n=m (9.74)
and N{N — 1)/2 cross-correlation functions
Ry (1) = E[yn(t)ym(t + 7)), n#m (9.75)

Assume now that modal coupling is negligible, meaning that each y,(¢) is a
statistically independent process. Thus, the cross-correlation functions of the
last equation vanish. It follows from equations (9.73) and (9.74) that

N
R(€,7) =) _ winBn(7) (9.76)
n=1
The following two results are based on the definition from equation (7.20):

S(Enw) =5 [ Rlgme s (9.7



242 APPLICATIONS OF MULTI-DEGREE OF FREEDOM ANALYSIS

S(Yn,w) = %/_ R, (r)e 97dr (9.78)

Substitute R(¢,, 7) of equation (9.76) in (9.77). Then interchange the order of
integration and summation, assuming a well-behaved argument. Use equation
(9.78) in this result to obtain

N
S(Sk’w) = Z.’L‘%nS(yn,W) (9'79)

Now substitute equation (9.65) into (9.70), change the index from k to n, and
substitute this rewritten form of S(y,,w) into equation (9.79). The result is

Y 22, xIGp,w)|?

S w) = Sp(w) - ) (W2 — w?)? + (2¢wnw)?

n=1

(9.80)

10. Calculate the variance for each physical coordinate £;. Using the defini-
tion given by equation (7.22) and S(£,,,w) of the last result, compute

a?(Ex) =2/OO Sy, w)dw (9.81)
0

With the wave height spectrum Sy (w) in the Pierson-Moskowitz or JON-
SWAP form, and the limits of integration in equation (9.81) replaced by 0.16
and 1.4 rad/s, the variance of each coordinate can be obtained by numerical inte-
gration. Assuming that p(¢) is Gaussian with zero mean, then the responses will
also be Gaussian with zero mean, since the system is linear. Thus, the rms value
of the kth physical coordinate is given by the square root of equation (9.81).
For practical purposes, the extreme limits of §;, are +£30(§,), £ = 1,2,... ,N.
For these extreme values, if the static stresses and deflections of the members
are within the allowable limits, then the structure is assumed safe, without con-
sidering other loadings and fatigue failure. For design purposes, it is generally
acceptable to superimpose the effects of the static or steady drag loadings due
to winds and currents.

9.4 A FIXED LEG PLATFORM: STATISTICAL RESPONSES

The statistical responses derived in the last section are now computed for the
two degree of freedom jacket template platform modeled in Figures 9.1 and 9.2.
The numerical parameters of this platform are summarized in Table 9.1. The
results of the first three steps of this calculation were obtained in Section 9.1
and are summarized as follows in terms of these numerical parameters:

1. The mathematical model is defined by the following two equations of
motion. The form of damping is defined later.

469 x 105 0 £ en e [ &
0 303x10° || & | T e em || 4,
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7.35x107  —1.15 x 108 &1 [ m
+[ ~1.15x 10%  3.59 x 108 } [ & |7 | (9.82)

2. Assume that linear wave is sufficiently accurate for this analysis. The wave
loading vector is thus given by equations (9.19) and (9.20) with b3 = by = 0, or

2 . .
| w'H sinh 61k — sinh 38k .
[ P2 ] = "“Zsinh 61k [ sinh 38k + Bk cosh 38k | 5™ ¢ (9.83)

Here, the numerical values of the constants a and 3 are

Ne

a=NCy=pD? =97980kg/m; B=w
8 N

2
D,
— ] =91 .84
( De) 69 m (9.84)
From each load component, the corresponding component of the transfer func-
tion is deduced from the definition that the real part of G(p,w) is equal to

p(t)/H, or

G(p,w) | _ . w? sinh 61k — sinh 38k | s
Glp2,w) |~ ?*ksinh61k | sinh38% + Bkcosh 38k

3. The two undamped frequencies and the normalized modal matrix, given
by the respective equations (9.6) and (9.14), are

(9.85)

w1 =2.706 rad/s; wy =11.09 rad/s (9.86)

X — 11 12 _ 4.45 1.24
- 21 oo B 1.52 —5.44

] x 107* kg~1/? (9.87)

With the results of these three steps, the statistical responses are then cal-
culated directly from steps 9 and 10, or equations (9.80) and (9.81) of Section
9.3. These calculations do require a wave height spectrum, which is now chosen
as the Pierson-Moskowitz spectrum of equation (7.59), with a corresponding
significant wave height of H; = 15 m. That is, for g = 9.81 m/s?,

Sp(w) = %6_0'0138/“’4 m? - s/rad (9.88)

Using the normalized modal vectors of X, equation (9.87), the components
of the transformed transfer function in equation (9.80) are computed as follows:

xTG(p,w) = [445 1.52] x 10-4[ g&ig ]

= [4.45G(py,w) + 1.52G(p2,w)] x 10™* kg!/%s72 (9.89)

xFG(p,w) =[1.24 —5.44] x 10_4[ gg;:jg }



244 APPLICATIONS OF MULTI-DEGREE OF FREEDOM ANALYSIS

= [1.24G (p1,w) — 5.44G(p2,w)] x 107 kg!/2s~2

The squares of the moduli of these last two results are, respectively,

xTG(p,w)|” = (4.45P +1.52Q)?

*=

|x3 G(p,w) (1.24P — 5.44Q)?

in which the quantities P and () are defined by

aw? x 104
= ————— (si 1k - si k
P T Sinh 61k (sinh 6 sinh 38k)

aw? x 1074

Q= Zsmneik

(sinh 38k + Bk cosh 38k)

(9.90)

(9.91)

(9.92)

(9.93)

(9.94)

Note that o and § are constants given by equations (9.84). Also, the wave
number k is related to the wave frequency w by dispersion equation (3.16),

which in this example is

w? = 9.81k tanh 61k

(9.95)

With equations (9.86)-(9.88) and (9.91)-(9.94), the spectral densities of the
horizonal deflections based on equation (9.80) then have the following forms:

(4.45 x 10~4)2(4.45P + 1.52Q)?
(2.706% — w?)? + 0.01(2.706)2w?

S(&1,w) = Sy(w)

(1.24 x 10~4)(1.24P — 5.44Q)?
(11.092 — w?)? 4 0.01(11.09)2w?

+Sy (w)

(1.52 x 1074)(4.45P + 1.52Q)?
(2.7062 — w?)? + 0.01(2.706)%w?

5(&2,w) = Sy(w)

(~5.44 x 10~4)(1.24P — 5.44Q)?

+50(@) 11,002 = o292 + 0.01(11.09)%2

(9.96)

(9.97)
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Figure 9.7 Response spectra for the displacement coordinates of the fixed leg
platform.

Numerical results for these response spectra, computed using Mathematica®
(1999), and PSI-Plot (1999), are shown in Figure 9.7. As one would expect, the
higher spectrum is associated with &; or the deck level at 76 m. These peaks
for §(¢;,w) and S(£,,w) are 111.2 x 10~ m?-s/rad and 13.6 x 10~* m?.s/rad,
respectively, where both peaks occur at w = 0.372 rad/s. The variance of each
response was computed from these results using equation (9.81), where the limits

of integration (0, 0o0) were replaced by (0.16,1.4) rad/s. Those results and their
rms values are as follows:

02(&,) =69.62 x 107* m?; o(¢&;) =0.0834 m (9.98)

0%(&,) =8.564 x 107* m?;  o(€,) = 0.0293 m (9.99)

Assuming a Gaussian process, there is only a 0.026 percent chance that each
response exceeds the +30 limits, or that £; exceeds 0.250 m and that £, exceeds
0.0878 m. Note that these latter two displacements of 0.250 m and 0.0878 m
are close to the respective values of £; = 0.1937 m and &, = 0.0805 m derived
in Section 9.1 as the peak responses to a single incident harmonic wave with a
significant wave height of 15 m.
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PROBLEMS

9.1 For a water depth of d = 300 m, plot the value of wave number & as
a function of wave frequency w where 0.1 < w < 2 rad/s. Use the relationship
w? = gk tanh kd. For what range of frequency is k given by w? /g to within 5
percent?

9.2 Calculate the damping matrix C for the fixed leg platform of Section
9.1. Assume ¢, = {, = 0.07. Indicate the units of C.

9.3  Derive in detail the result of equation (9.28), the mathematical model
for an NV degree of freedom stalk structure subjected to a horizontal base exci-
tation. Why is the negative sign on the right of equation (9.28) ignored in the
response solution of equation (9.30)?

9.4 For the gravity platform modeled in Section 9.2, calculate X and show
the units for each component vector x;.

9.5 Suppose that the gravity monotower of Section 9.2 is subjected to the
horizontal El Centro earthquake. Calculate the maximum values of v and 8,
the peak absolute value of horizontal displacement for the deck, the peak shear
force at the base, and the peak overturning moment. Assume that the modal
damping for each mode is 0.05.

9.6 Show that if one of the frequencies w; of the characteristic determinant
of an undamped linear system is a complex number, then the system’s behavior
is divergent.

9.7 For an N degree of freedom linear structure, write a computer program
to calculate the coordinate displacement spectra, the corresponding variances,
and the rms values. Use the results of equations (9.80) and (9.81) where the
following quantities are specified as input: S,(w), X, G(p,w), {, and wg, k =
1,2,...,N. As a numerical example, check the results for S(&.,w) and o({})
obtained for the linear structure in Section 9.4, for £ =1, 2.
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Continuous Systems

James F. Wilson

The dynamic models of offshore structures discussed so far have involved only
a finite number of independent coordinates and ordinary differential equations
of motion. In the single degree of freedom systems, one coordinate was chosen
to describe the dominant structural vibration mode in the plane. In the multi-
degree of freedom systems, examples included the rigid gravity platform with
coordinates to describe sliding and rocking motion and jacket template platforms
with coordinates to describe the motion of discrete masses lumped at node
points.

For line components such as rather long beams, pipelines, and cables, alter-
native continuous system models may provide more precise and sometimes more
economical descriptions of component motion. Since a partial differential equa-
tion is used to characterize the motion of a continuous line component, solutions
are generally more involved mathematically than for a corresponding lumped
system. However, if the continuous models are chosen judiciously, closed form
expressions can be derived for the characteristic frequencies and mode shapes of
line components, which then lead to upper and lower bounds on their dynamic
responses.

Two classes of continuous line components are analyzed in this chapter. The
first component is designated as a beam for which bending stiffness and longi-
tudinal tension are incorporated in the model. Examples include: pipelines
for dredging manganese nodules from the sea floor as depicted in Figure 1.10a;
pipelines for ocean thermal energy conversion as shown in Figure 1.10b; gath-
ering lines and risers; and the long structural bracing members of the various
offshore platforms. The second structural component considered here is the ca-
ble which resists tension but whose bending stiffness is negligible. Examples
include the steel and synthetic fiber ropes and steel chains used to stay buoys,
floating platforms, compliant towers, and ships.

Excitation of line components comes about in several ways. For instance,
a flexible cylinder in a steady current may undergo adverse transverse motion
and can be destroyed by the periodic shedding of vortices. This can occur if
one of the lower natural frequencies of the cylinder is coincident with that of
the vortices. There is also direct transverse excitation due to waves, and there

248
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is end excitation of line components attached to ships and towers that move
with the waves. Two types of end motion for a mooring line, transverse and
longitudinal (or parametric) excitation, are depicted in Figure 10.1.

Water Line

Mooring Line

, D
|
e
Transverse Excitation
%

Lx D)
> p—— . e

Parametric Excitation

Figure 10.1 Types of end excitation for a mooring line.

The purpose of this chapter is to describe the dynamic behavior of these
continuous line components in a plane. As in the analysis of the discrete, finite
degree of freedom systems, this analysis involves setting up appropriate mathe-
matical models, solving for free vibration frequencies, determining mode shapes,
and then solving for forced motion. Both deterministic and statistical response
models are discussed. The chapter concludes with a practical example— nu-
merical response calculations for an ocean thermal energy conversion (OTEC)
pipeline attached to barge subjected to random wave excitation.
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10.1 MODELING BEAMS AND CABLES

Governing Equations

The beam or cable model is shown in Figure 10.2. This line component has
a virtual mass per unit length of m, a length ¢, and a fixed longitudinal axis
Z intersecting the end points. The transverse dynamic displacement from its
equilibrium position at v = 0 is v = v(z, t) which is assumed to be small enough
so that its slope 8 = dv/dz is always much less than one. A further assumption,
which is also consistent with classical beam theory, is that transverse planes
at equilibrium, or v = 0, remain planes during motion, when v # 0. The
infinitesimal element of length dx shows the bending moment M, the transverse
shear load V, and the tension load P, all of which are subject to small changes
across the element. The transverse excitation force per unit length is § = §(z, ),
and the linear damping force per unit length is ¢0, which correspond to the
average element loads gdz and cvdz, respectively, acting at the element’s center.
For a small slope, first-order changes in 8, M, V, and P are appropriate. That
is

v 0% oM

5;—&—%—2—(11:; M+dM~ M+ ——dzx

04 df ~ 5

ov oP

V+dV >~V + —dz; P+dP~P+ —dx (10.1)
Oz ox

gxn

* \Element,
shown below

G
f+do

;:)&gg}:_a—P+dP
v+dv

fe— & —

Figure 10.2 Dynamic model of a line element.

Now apply Newton’s second law to the element in the direction of v:

_, v
Z FE, direction = ™M deEQ_
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62
ot2

After combining equations (10.1) and (10.2), expanding, and then dropping the
higher order terms involving (dz)?, the result is

—PO+ (P+dP)0+df)+V — (V+dV) + gdz — cg—dx =mdz— (10.2)

av 9 Ov Ov &%v

oz + e (P—a——> q-Cg =My (10.3)
Next sum moments about point 0, the lower left corner of the element,
and equate this sum to zero. With this approximation, rotational inertia, or
rotatory inertia as it is sometimes called, is neglected. For the relatively low
frequencies encountered in beams and cables of ocean structures (below 100 Hz),
the rotational energy is much less than that due to transverse motion, which

Jjustifies this assumption. It follows that

ZM()ZO

— (M +dM) - gdz (d2 ) tevde (d2 ) b (V4dV)dz =0 (10.4)

Here, the terms involving g,¢, and dV are multiplied by (dz)?, and are thus
neglected as higher-order terms. Equation (10.4) thus yields the shear load as

oM

For elastic members, elementary beam theory gives

0%v
M=FI_— 10.6
Ox? (106)
where ET is the bending stiffness. Differentiating equations (10.5) and (10.6),
and then combining the results, leads to

oV 82M 9? H%v
% 97 ot (E155> (10.7)

When the last result is combined with equation (10.3), the final result is ob-

tained, or
02 0%v d ov\ v _ 0%
7o (B 5) ~ 35 (Ps) 25+ =aen) (09

This is a general form of the linear Bernoulli-Euler dynamic beam-cable equation
where El, P, and m are arbitrary functions of z and the excitation load g(z, t)
is arbitrary in both z and t.
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For submerged beams or cables, a more realistic form of damping than the
linear approximation &(dv/dt) in equation (10.8) is velocity squared damping,
defined by

v
bt

ov

5 (10.9)

Here ¢’ is an experimental constant which generally depends on the frequency
of oscillation of the structural component. In velocity squared damping, the
absolute value sign is necessary to ensure that the damping force always opposes
the direction of beam motion. Since equation (10.9) renders the Bernoulli-Euler
equation nonlinear and intractable for closed form solutions, for simplicity the
linear form is assumed for this chapter. However, equation (10.9) has been
successfully included in computer codes that solve for the nonlinear responses
of submerged beams (Wilson et al., 1982).

Very specific initial and boundary conditions must be specified for solutions
to equation (10.8) to be unique. For a cable (EI = 0) and for a beam (EI > 0),
the following two initial conditions are always required:

v

ot

In addition, solutions to cable problems require that the end displacements
v(0,t) and v(¢, t) be specified, and solutions to beam problems require four
boundary conditions, two at x = 0 and two at z = ¢. These conditions will be
described presently.

Two special cases of equation (10.8) that are of practical importance in
offshore structural systems are modeled as follows:

1. For an undamped, flexible cable (ET = 0) subjected to a tension load P
which is independent of z, equation (10.8) becomes

v(z,0) and (z,0), for 0<z<¢ (10.10)

o,
oz? m8t2

Here m can vary with the longitudinal dimension, but it is constant for most
applications.

2. For an undamped beam of constant stiffness EI, a constant 7, and a
tension P which is independent of z, equation (10.8) becomes

—P = G(z,1) (10.11)

v v 8%
Bl g~ FPom t g =it (10.12)

The procedures for calculating the free, undamped frequencies and mode shapes
for cables and beams described by these last two models are now illustrated.
Cable Frequencies and Mode Shapes

Consider the free, undamped vibrations of a flexible cable of constant m
and constant tension P = Py. The corresponding equation of motion is deduced
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from equation (10.11) as

v _ 9%

Let X = X(x) be the general expression for the mode shape, and assume
harmonic motion with w denoting the frequency parameter, or

v = Xelt (10.14)
Combine the last two equations to give
X"+ 4°X =0 (10.15)

where (') denotes the operator d/dz. The frequency parameter is given by

w =4/ % (10.16)

where 7 has yet to be calculated. With each end of the cable fixed, then
v(0,t) =0 or X(0)=0; v(l,t)=0 or X(£)=0 (10.17)

where the end conditions on X are determined from the end conditions on v
through equation (10.14).

The general solution of equation (10.15) in terms of two arbitrary constants
Dy and Dy is

X(x) = Dj sin vz + D3 cos vz (10.18)

When each condition of equation (10.17) is applied to equation (10.18), the two
results are

Disin0O+ DycosQO=0 (10.19)

Dysinyl + Dy cosyl =0 (10.20)

It follows from equation (10.19) that Ds = 0. With this, the last equation
implies either the trivial result that D, = 0 or that no motion exists. The
alternative is that sin+¢ = 0, which leads to

7:%3, n=1,2,... (10.21)

With this result and equation (10.16), it follows that the cable frequencies are
given by

wn:% %, n=12,... (10.22)
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where the subscript n on the frequency parameter is a reminder that there are
multiple frequencies. For each characteristic value + there is a frequency w,, and
a corresponding mode shape X = X, given by equations (10.18) and (10.22),
where D; = C,, and D5 = (. That is

Xn:CnsinEZ—x, n=12... (10.23)
in which the coefficients C,, are arbitrary. The first two mode shapes are shown
in Figure 10.3. It is observed that the fundamental frequency w; corresponds
to the half sine wave, and the next highest frequency wy corresponds to a full
sine wave.

X% X5(%)

\__/\/
fe ¢ N be 2 e 12

Mode One Mode Two

Figure 10.3 The first two mode shapes for both a fixed end cable and a simply
supported beam.

This mathematical model predicts that ever increasing frequencies are pos-
sible as n becomes larger and larger. In reality, damping and cross-coupling
effects omitted in the mathematical model reduce these higher frequencies and
accompanying mode shapes to insignificance. Thus it is the practice of many
engineers to take n = 20 as a physically realistic upper limit for the purposes of
analysis and design of offshore cables and other continuous components as well.

Beam Frequencies and Mode Shapes

The free undamped vibrations of a uniform beam with a negligible axial
tension are described by equation (10.12) for Py = 4§ =0, or

v &%v
EI = + Mo = 0 (10.24)
The characteristic frequencies and mode shapes depend on the support or bound-
ary conditions. For purposes of illustration, the beam’s supports are chosen to
be at z = 0 and x = ¢ only. Further, each end is subjected to any one of the
following three sets of conditions in which v, designates the deflection at the
end x =0or at = £:

1. Simple support, or zero displacement and zero moment at a pin or roller:

0%,

ve=0;  EIo

=0 (10.25)
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2. Clamped support, or zero displacement and zero slope at the end:

v
e =0; € =0 10.26
Ve =0 B ( )
3. No support, or zero moment and zero transverse shear at the end:
o%v v
° = ° = 10.27
ET 522 0; El 523 0 (10.27)

Let X = X(z) denote the mode shape and w the frequency parameter. For
harmonic beam vibrations of the form given by equation (10.14) applied to
equation (10.24), the characteristic beam equation becomes

X" —a?X =0 (10.28)
where the frequency parameter is

w=a? £l (10.29)

m

and where o has yet to be calculated. The boundary conditions associated
with equation (10.28) are recast using equation (10.14). Letting X (e) designate
either X (0) or X (£), equations (10.25)-(10.27) become, respectively:

X(e) = X"(e) =0, simple support (10.30)
X(e) =X'(e) =0, clamped end (10.31)
X"(e) = X"(e) =0, free end (10.32)

The general solution to equation (10.28) is given by
X(z) = Dy sinaz + Dy cos ax + Dssinh ax + Dy cosh ax (10.33)

where Dy, Dy, D3, and D, are constants. This solution, together with the appro-
priate end conditions lead to the calculation of «, the free vibration frequencies,
and the mode shapes. This procedure is now illustrated.

Ezample Problem 10.1. Compute the range of undamped, free vibration
frequencies for a submerged, uniform cross brace of a jacket template platform,
as shown in Figure 10.4a. Because each end of this brace is welded to a leg, the
ends are not simple supports, but because of leg and joint flexibility, these ends
are not fully clamped either. Since the true end fixity is somewhere between
these extremes, the actual frequencies will lie between those calculated for each
extreme end fixity.
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Cross Brace: EJ m, ¢

o Oz

Leg 7€ 9 Leg
v
(®) Aﬁ .
< ¢ L
1%

© ¥ s

Figure 10.4  (a) Top view of the cross brace; (b) simple support model; (c) clamped
end mode].

A lower bound on the frequencies corresponds to the brace model with the
least constraints, or with the simple supports as shown in Figure 10.4b. The
associated boundary conditions are those of equation (10.30), each applied at
each end, or

X(0) = X"(0) = X(¢) = X"(£) =0 (10.34)

The consecutive application of these last four conditions to equation (10.33)
yields the following four equations:

Dy+Dy=0 (10.35a)

~Dy+ Dy =0 (10.35b)

Dy sinal + Dy cos ol + D3 sinh o + Dy cosh al = 0 (10.35¢)
—D;sinaf — Dy cosal + Dysinhaf + Dycoshal =0 (10.35d)

When equations (10.35a) and (10.35b) are added, it follows that Dy = 0, from
which Dy = 0. The last two equations thus reduce to

Dysinal + Dsysinhaf =0; —D;sinal + Dasinhaf =0 (10.36)
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If at least one of the remaining constants D; or D3 is to be nonzero, it follows
that

sinaf  sinhaf
—sinaf sinhof |~ 0 (10.37)

This determinant is expanded to give the following transcendental equation:
(sin af)(sinh ) = 0 (10.38)

Since sinhaf # 0 for o/ > 0, then it is necessary that sinaf = 0 to satisfy
equation (10.38), or

a=—, n=12... (10.39)
With this last result, the beam frequencies from equation (10.29) become

n?r2 |EI

PTEL =12, 10.40)
1z m

Wy =
in which w,, replaces w.
Since sin af = 0 and thus D3 = 0 from equations (10.36), the only remaining
nonzero constant is D;. For each w, there is a corresponding mode shape
X = X, at an arbitrary amplitude D, = C,, given by equation (10.33) or

X, =C, sini’lf—x, n=1,2,... (10.41)

In this case the mode shapes are identical to those for the fixed end cable, shown
in Figure 10.3. However, the frequencies of this beam vary as n? rather than as
n for the cable.

Calculate next the upper bound frequencies, or those corresponding to the
brace with clamped ends, Figure 10.4c. The appropriate boundary conditions
are those of equation (10.31), each applied at each end, or

X(0) = X'(0) = X(€) = X'(¢) =0 (10.42)

The consecutive application of these four conditions to the general solution,
equation (10.33), leads to the following four equations:

Do+ Ds=0 (10.43&)
D1+ D3 =0 (10.43b)
Dy sinal + Dy cos af + D3 sinh af + Dy coshal = 0 (10.43¢)

Dy cos ol — Dy sinaf + Dz cosh ol + Dysinh ol =0 (10.43d)
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From these last results, the determinant of the coefficients of D1, Dy, D3, and
Dy is formed, expanded, and set equal to zero. The simple result is

(cos af)(coshal) =1 (10.44)

It is easily verified that ay = 4.730 is the first nonzero root of equation (10.44)
and that this is just 0.37 percent lower than the approximate value given for
n =1 given by

anl = (n+0.5)7 (10.45)

For n = 2,3,..., equation (10.45) yields successive roots of equation (10.44)
which are even more accurate than this. Thus the upper bound frequencies for
this problem are given by equation (10.29) with (10.45), or

o2 [EI
2y m’
The corresponding mode shapes for this fixed end beam are found by con-
secutively eliminating the arbitrary constants Dy, D3 and D4 from equations

(10.43) and writing the result in terms of D; only. For the nth mode, let D,
= C),, and the result is

wn = (n + 0.5) n=12,... (10.46)

Xn(z) = Cplsin oz — sinh apz + B3,,(cos ax — cosh ay 7)) (10.47)
where o, is given by equation (10.45) and

/Bn:

The first two of these mode shapes are shown in Figure 10.5. Unlike the mode
shapes for the cable and the simply supported beam, these shapes have zero
slope at each end.

sin o, — sinh o, ¢
cosh apf — cos a,f

(10.48)

X, X, (x)

0 —x OJC<>——>)C
o ¢ —— =2 =tz

Mode One Mode Two

Figure 10.5 The first two mode shapes for a beam clamped at both ends.

In conclusion, the frequencies w, for the cross bracing which is uniform,
undamped, without end tension, and of virtual mass per unit length of 71, are
bounded by equations (10.40) and (10.46), or

n27r2\/—ﬁ 27 |EL
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This result shows that for n = 1, the fundamental frequency for the most
constrained case is 2.25 times higher than that for the least constrained case.
This factor decreases rapidly as n increases, where the factor is approximately
1.2 for n = 5 and 1.1 for n = 10.

10.2 CABLE RESPONSES

Transverse motion or motion perpendicular to the longitudinal axis of a sub-
merged cable is caused by three main types of excitation: vortex shedding in
a constant current stream leading to cable galloping; transverse end excitation
due to the motion of the platform, tower, ship, or buoy to which the cable is
attached; and longitudinal or parametric end excitation, also imparted by the
cable-supported structure. Experiments on cable responses to coupled vortex
and parametric excitation were reported by Trogdon et al. (1976), but such
analytical studies are sparse. The subjects of this section are transverse and
parametric end excitation, as depicted in Figure 10.1.

V<—7777Tro-777777 v 0

Figure 10.6 Transverse end excitation of a submerged cable: (a) attached to a ship;
(b) attached to a buoy.

Transverse End Excitation

Consider a single cable of length ¢ and with a uniform virtual mass per unit
length m. One end of the cable is fixed at £ = 0 and the other end is subjected
to transverse harmonic excitation. This excitation can occur with regular seas
for the mooring line shown in Figure 10.1, for the nearly vertical anchor line
shown in Figure 10.6a, and for the buoy chain shown in Figure 10.6b. In any
case, the average line tension is Py, and the end conditions are chosen as

v(0,2) =0 (10.50)

v(£,t) = vg cos &t (10.51)

where vy is the amplitude of motion and @ is the excitation frequency, both of
which depend on the sea surface wave height spectrum and the type of ship or
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buoy involved. A way to calculate @ for a moored barge is discussed in Section
10.4. Neglect all damping and all transverse loading except at x = . The model
for transverse cable motion is assumed as equation (10.13), for which a steady
state solution is chosen in the same form as for the end excitation imposed at
z=24¥, or

v(z,t) = X coswt (10.52)

where X = X(z). Combine equation (10.52) with (10.13) from which

X"+7X =0 (10.53)
72 = 1;}—@2 (10.54)
0

The general solution to equation (10.53) is given by
X = Dy sinyz + Dy cosyzx (10.55)

Applying the fixed boundary condition of equation (10.50) to (10.52), then
X(0) = 0. This same condition applied to equation (10.53) gives Dy = 0.
Combining equation (10.52) with (10.55), and that result with the other end
condition, equation (10.51) leads to

v(€,t) = Dy sin £ cos @t = vg cos Wt (10.56a)
Yo

pusnsy 1 - b

1™ sin e (10.56b)

From equation (10.54) and the expression for the natural frequencies w,, given
by equation (10.22), it follows that

wt = nwi (10.57)

\/P()/’I’?l Wn

With equations (10.55)-(10.57), the solution to equation (10.52) becomes

3 =

Vg . [nmao _
v(z,t) = prey (nm:)/wn)sm ( 7 ) coswt (10.58)
This solution shows that the transverse cable displacement at any point 0 < z <
£ becomes unbounded if the excitation frequency @ coincides with w,,, since then
the term sin nm = 0 in the denominator of equation (10.58). Had light damping
been included in the mathematical model from the very beginning, the peak
response for @ = w,, would have been bounded, but still amplified compared to
the imposed end displacement amplitude vg. As discussed in Problem 10.4 at
the end of this chapter, this resonance phenomenon can be observed in a simple
laboratory experiment.
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Parametric Excitation

Longitudinal or parametric excitation of a relatively taut cable is depicted
in Figure 10.1b. This type of excitation may also occur in the vertical lines or
chains shown in Figures 10.6 when the ship or buoy undergoes heave motion in
regular waves. In such cases the average cable tension is Py, the amplitude of
the harmonically fluctuating force is P; < P, and the excitation frequency is
@. Parametric excitation is thus defined as

P =Py+ Picoswt (10.59)

The mathematical model for cable motion is chosen as equation (10.11) in which

the bending stiffness, damping, and all transverse loadings are neglected. With
equation (10.59), the equation for transverse motion is thus

8% v

—(Po+ Picoswt)—s + m—5 =0 10.60

(Po+ Preosit) s + g (10.60)

To study the effects of only parametric excitation on transverse motion, all
transverse motion is suppressed at each end of the cable, or

v(0,t) = v(f,t) = 0 (10.61)

The following solution to equation (10.60) is assumed, a solution that already
satisfies the two boundary conditions just stated.

v(z,t) = Z_‘; Yn(t)sin -’172—:” (10.62)
Here y(t) denotes the generalized coordinates, n = 1,2, ... . Combining equation
(10.62) with (10.60), it follows that
- . nm\2 _ Py, . nrw
nzz:l [(Po + Pj cos&t) (7) Yn(t) + mW] sin —— = 0 (10.63)

Since the sine term of the last equation is not zero for all values of z, then its
coefficient must vanish, or

Py, (t 2
th( ) + (%?) (Po+ Prcoswt) y,(t) =0 (10.64)

This last equation can be transformed to a standard form using the following
four parameters:

m

2
5 _ bl

= 10.6
n PO (:}2 ( 5)

-‘

Il

€
q(‘k

o]

3

I
EI, £
N3N

nw | Fy
— = =1,2,... 10.6
T\ =L (10.66)
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The result is the famous Mathieu equation, which is

dQ?Jn(T)
dr?

+ (@ + Brcos ) yn(r) =0 (10.67)
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Figure 10.7 Dynamic system behavior: (a) stable or bounded response; (b) unstable
or unbounded response.
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Figure 10.8 Haines-Strett stability plot (after Lubkin and Stokes, 1943).

It is observed from equation (10.62) that the behavior of solutions y,(7)
to this equation produce the same behavior for the transverse displacement re-
sponse v(x,t). Thus, if y,(7) is stable, then the response is bounded in time
as shown in Figure 10.7a. If the solutions y,(7) are unstable, then v(z,t) is
unstable and exhibits the divergent response as shown in Figure 10.7b. Lubkin
and Stokes (1943) made extensive analytical studies of equation (10.67) to de-
termine which combinations of system parameters a,, and 8, yield stable and
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unstable solutions y, (7). Those results are shown in Figure 10.8, which is some-
times called the Heines-Strett diagram. If the parameter set (@y, 3,,) lies in the
cross hatched regions, y,,(7) is stable, but if this parameter set is elsewhere, the
responses are unstable. Further studies have shown that the addition of light
damping increases the parameter range for stability where the cross hatched
regions are extended to the broken lines of Figure 10.8.

Ezxample Problem 10.2. Shown in Figure 10.9 is a landing ship-tank (LST),
spread - moored in the Gulf of Mexico. For this ship, O’Brien and Muga (1964)
took simultaneous measures of the spectra for the surface wave height and the
tension forces in the restraining lines. The measured wave height spectra are
shown in Figure 10.10, and the measured longitudinal force response spectra for
port bow chain No. 2 are shown in Figure 10.11. The problem is to explain
the reason for the double peaks in these bow chain force response spectra. Are
those peaks due to transverse or parametric excitation, or do they arise from
some other reason?

PLAN
VIEW

SIDE ANCHOR
VIEW j—,‘%\/ N
T T

T

Figure 10.9 A spread mooring configuration for an LST in the Gulf of Mexico.

The data for the overall mooring restraint system and the ship’s surge and
sway frequencies were given in Frample Problems 2.10 and 5.5. Pertinent data
on bow chain No. 2 are as follows. The actual unit mass of this chain is increased
by 3 percent to give its virtual unit mass.

= (1.03)mo = 1.03(35 1b/ft)(32.2 ft/sec?)~! = 1.12 1b-sec? /ft?
¢ =465 ft, length;  Pp=30,0001b; P, =0.5P,

The first step is to calculate the natural frequencies of the bow chain. From
equation (10.22) and the preceding data, it follows that

/Po /30,000 B
— 465 112 =1.11n rad/sec, n=1,2,--

For resonance due to transverse excitation, one would expect peak bow chain
responses near wp or near 1.11, 2.22, ... rad/sec. Since Figure 10.11 shows no
significant peaks at these frequencies, it is concluded that there is no significant
bow chain resonance response.
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Figure 10.10 Water wave amplitude spectra for a spread-moored LST (after
O’Brien and Muga, 1964).
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Force amplitude spectra for port bow chain No. 2 of an LST (after
O’Brien and Muga, 1964).

To investigate possible bow chain resonance due to parametric excitation,
choose a driving frequency @ = 0.65 rad/sec, or the frequency at the highest
concentration of energy for the wave. With the data and equations (10.65), the
characteristic parameters are

By = (P Po)an, = 0.5(2.92n2) = 1.46n2

&y, = w2 /&% = (1.11n)2/(0.65)% = 2.92n2

(maximum)



BEAM RESPONSES 265

For n = 1, then (&1;8;) = (2.92;1.46). This coordinate set lies in the cross
hatched region of Figure 10.8, and thus the transverse chain displacements (and
tension forces) are bounded. This same conclusion is reached for (&y; 3,,) based
onn = 2,3, .... However, if @ = 1.1 rad/sec, which is at the high end of the
driving frequency for this mooring chain, then a;, ~ n? and Bn ~ 0.5n2. For
n = 1, then (@;8;) = (1;0.5), for which Figure 10.8 shows unstable motion
in the absence of damping, but stable motion in the presence of small, realistic
damping. For n = 2,3, ..., the motion is stable even without damping.

The conclusion of the preceeding calculations is that the peak responses in
Figure 10.11 are not due to either transverse or parametric resonance of this
particular bow chain. How, then, can these two major response peaks recorded
in the month of March be reconciled with the single peak of wave excitation in
Figure 10.10? The answer can be found by studying the motion of the whole
ship.

Referring again to Example Problems 2.10 and 5.5, the ship motion v = v(%)
in either surge or sway can be modeled by

mi + 10 + kv + kgv® = pgsinat (10.68)

where the coefficients on the left side are given by equation (2.72) or (2.73),
where pg is the wave force in line with v, and where @ ~ 0.65 rad/sec. The
results of Chapter 5 showed that peak responses of such a nonlinear system
under harmonic excitation occur not only at the excitation frequency @ = 0.65
rad/sec but also for @/3, which is near wp. Since wy = 0.144 rad/sec for sway
(Ezample Problem 5.5), then the peak at w ~ 0.2 rad/sec can be explained as
a subharmonic ship response of order one-third. The existence of the one-third
subharmonic for equation (10.68) is shown in Section 5.5, where the amplitude
parameter is shown in Figure 5.11. Thus, the lower frequency (or longer period)
ship response reflected in mooring chain No. 2 arises from the group behavior of
all the mooring lines and comes about because of the nonlinear restoring force
constant k3 of equation (10.68), during sway motion of the ship. Whether drift
currents at a frequency of about 0.22 rad/sec existed during these sea tests and
also contributed to the lower resonance peak of Figure 10.11 is not known.

10.3 BEAM RESPONSES

As for cables, submerged beams and pipelines are subjected to three main types
of excitation: transverse loading due to vortex shedding, transverse end motion,
and parametric excitation. Considered first in this section are deterministic
responses of uniform beams with common types of end supports and with an
arbitrary transverse load per unit length § = g(z,%). Following this is a stability
study of a simply supported beam subjected to parametric excitation. This
section concludes with a calculation of the statistical responses of beams to sta-
tionary, ergodic excitation. Modal analysis is employed throughout and closed
form solutions are sought.
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Transverse Excitation

The undamped motion of a uniform Bernoulli-Euler beam with negligible
longitudinal tension (P = 0) is given by equation (10.12), or
v 0% _
Of practical interest is a beam or pipeline of length ¢ supported at the ends

only, according to one of the six sets of boundary or end conditions defined in
Table 10.1.

Table 10.1 Types of End Conditions for a Beam

c-C Both ends clamped

C -85S  Clamped and simply supported
5SS —S5S Both ends simply supported
C-F Clamped and free

S§S§ —F  Simply supported and free
F—-F Both ends free

It is not difficult to visualize that the first and third end conditions of Table 10.1
represent the limits of constraints for the cross beams of offshore structures. The
second end condition is discussed in Problem 10.2 at the end of this chapter. The
fourth and fifth conditions can represent cases of support for pipeline segments
during deployment, and the last condition can model an unconstrained, floating
pipeline such as proposed to transport water along the Pacific coast of the United
States.

The free vibration mode shapes X,, = X,,(z) and their corresponding fre-
quencies w, are employed in the following modal analysis of forced beam vi-
brations. The quantities X,, and w, are calculated for one of the six sets of
boundary conditions listed above by using the solution to equation (10.28),
which is given by equation (10.33), together with the appropriate transformed
boundary conditions chosen from equations (10.30)-(10.32). The modal analysis
also requires the following two conditions of orthogonality for X,,:

£
/ XnXndz =0, form#n (10.70)
0

¢
/ XmXndx#0, form=n (10.71)
0

The proof of orthogonality for X,, corresponding to each of the six boundary
conditions of Table 10.1 is shown as follows. Consider two solutions of equation
(10.28) as X = X,, and X = X,,, with corresponding values of a = a,,, and
& = ,. For free vibrations

X" —at X, =0 (10.72)
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X" ot X, =0 (10.73)

where the frequency parameters are

2 .
al = w]::'?;z, i=m,n (10.74)

Multiply equations (10.72) and (10.73) by X,, and X,,, respectively, subtract

the two resulting equations, and integrate the results over the interval (0, ).
Thus

4 14
(0t — at) / X, X, do = / (X X! — X, X"V dz (10.75)
0 0

Integrate the right side of the last equation by parts four times. The first
integration, for instance, gives the result
Y ¢
[ G = XXyt = D = XX+ [ (KX - XX
(10.76)

Integrate the integral on the right side of equation (10.76) by parts. Repeat this
procedure twice more to give

¢ ¢
(af —at) / X Xndr =2Q + / (X X — X X! dix: (10.77)
0 0
where
Q = [Xn Xy = XnXp — X0 Xy — X, X7 1520 (10.78)

With equations (10.72) and (10.73), the integral on the right hand side of equa-
tion (10.77) becomes

£ y)
/ (XX — Xpn XYz = (o, — o) / X Xn dx (10.79)
0 0

Combining equation (10.79) with (10.77), the result is

£
(a2 —at) / XmXndr =Q (10.80)
0

If m = n, then a, = o, and @ given by the last equation is identically zero
regardless of the value of the integral. However, if m # n, the system frequency
parameters «a,, and ¢, are distinct and different, so that if ) = 0 the integral
of equation (10.80) must vanish. This is indeed the case for the six sets of end
conditions of Table 10.1. Written in terms of X (= X,, or X,,), these conditions
are, respectively,
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C—C  X(0)=X'(0)=X()=X'(6)=0
C—85 X(0)=X'(0)=X(6)=X"(¢)=0
SS—SS  X(0)=X"(0) = X(£) = X"(£) =0
C—F  X(0)=X'(0)=X"(£) = X"(f) =0

SS—F  X(0)=X"(0)=X"()=X"(£) =0
F—F  X"(0)=X"(0)=X"(¢)=X"(t) =0 (10.81)

It is observed from equation (10.78) that each of these six conditions leads to
@ = 0. Thus from equation (10.80) the validity of the orthogonality of normal
modes as stated by equations (10.70) and (10.71) is now apparent.

Return now to the forced vibration problem defined by equation (10.69).
Assume a particular solution to that equation as a product of the normal modes
Xn{(x) and a generalized coordinate y,,(¢) which is to be determined. That is,
let

vz, t) = Z X (z) yn(t) (10.82)
n=1
When this last equation is substituted into equation (10.69), the result is
> LX) ya(t) + mXpjin(t)] = q(x, 1) (10.83)
n=1

Multiplying each term in this last equation by X,, and then integrating the
result over (0, ¢) gives

oo o0
EI/ > X X7 yn(2) dm+m/ ZX X () dx-/ X gz, t)d
0 n=1
(10.84)

Assume that the series of the last result is uniformly convergent over the in-
terval (0,¢), which allows for the order of integration and summation to be
interchanged. This leads to

0o 00 £
3 / (EI X X!y (t)d2 + 2 X X ijn (8)]dz = / X Gz, t)dz  (10.85)
0
The following identity is obtained by multiplying equation (10.73) by X,, and

integrating the result over the interval (0,¢). With equation (10.74), the result
18

14 £
EI / X X! dx =2 m / Xm X, dzx (10.86)
0 0
Combining the last two equations gives
o] 2 1 £
S 2@+ 0] [ XnXnde =+ [ Xngzts (080)
0 0

n=1
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With the orthogonality conditions of equations (10.70) and (10.71), each term in
the sum of equation (10.87) vanishes except for m = n, in which case equation
(10.87) reduces to

in(t) + w2 yn(t) = pn(t) (10.88)
in which
1 12
n = 5 n q 3 10.
palt) = e [ Xedlat)da (10.89)
£
Co = / Xndz (10.90)
0

Assume that the beam is initially at rest, or that v(z,0) = dv(z,t)/5t = 0.
Using equation (10.82), the initial rest position implies that y,(0) = §,(0) = 0.
The solution to equation (10.88) is in the form of the Duhamel integral for ¢ = 0,
or

t
yn(t) = — / pu(7) sinwn(t — 7)dr (10.91)
Wp 0
This is verified by comparing equation (5.58) to equation (10.88) and then by
comparing their respective solutions given by equations (5.76) and (10.91).

These results are summarized. The transverse response v(z, t) for arbitrary
transverse unit loading g(x,t) of an undamped Bernoulli-Euler beam, subjected
to one of the six constraints of Table 10.1, is given by equation (10.82). Here
Xyn and w, are calculated as outlined in Section 10.1, and y,(¢) is calculated
from equations (10.89)-(10.91).

Parametric Excitation

Consider the dynamic behavior of a vertical dredge pipe attached at the top
to a barge as shown in Figure 10.12a. The barge undergoes harmonic heave
motion in regular waves. This pipeline is modeled as the beam of Figure 10.12b
where the ends are simply supported to avoid adverse bending stresses at these
points of fixity. The average longitudinal load on the pipeline is assumed in the
form

P =PFy+ Picosit (10.92)

where Py is approximated as the sum of the ballast weight (in water) applied
at the lower end (x = 0) and one-half of the pipeline’s weight (in water). Note
that in reality the hinge at & = ¢ carries all of the pipeline’s weight, whereas the
hinge at = 0 carries none of the pipeline’s weight. The approximation given
for Py becomes more accurate for increasingly high ratios of ballast weight to
pipeline weight.
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Figure 10.12 (a) Barge-dredge pipe system; (b) model of the dredge pipe.

Implied also in this mathematical model is that the fundamental longitu-
dinal pipeline frequency wy is always significantly higher than the barge heave
frequency @. Thus if wy > @, the longitudinal load at the top hinge is essentially
the same as at the bottom hinge at any instant of time. For an elastic pipeline
without clamped ends, its longitudinal frequency is given by

T | E
:—1/— 10.
Wy 7 pp (093)

where p, and E are the mass density and Young’s modulus for the pipeline of
length ¢ (Timoshenko and Goodier, 1951). Applying equation (10.93) to a steel
pipeline 3000 ft in length, we find w, = 17.7 rad/sec, which is more than ten
times the highest excitation frequency expected to be imparted by the barge
through wave action. (Motion of a typical barge in waves is discussed in Section
10.4.) Although w, > @ holds true for this steel pipeline, the inequality may fail
for pipelines manufactured of polymeric materials such as polyethylene. This
is because the ratios E/p, for polymeric materials are generally much smaller
than for steel.
With this mathematical model, the governing equation of motion is then
equation (10.12) with the parametric excitation load of equation (10.92), or
4 2 2

EI % —(Po+ P cos@t)gx—g + m%{;ﬂ =0 (10.94)
The four homogeneous boundary conditions corresponding to simple end sup-
ports are

2 2

v(0,¢) = % —o(,t) = a_f# —0 (10.95)
It is easily verified that all four of these latter conditions satisfy the following
form chosen as a solution to equation (10.94):

v(z,t) = Z yn(t) sin ? (10.96)
n=1
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Using the same procedure as for parametric excitation of a cable, results anal-
ogous to equations (10.63) and (10.64) are obtained when equation (10.96) is
combined with (10.94). The following parameters are then applied to the re-
sulting second order ordinary differential equation:

T=wt (10.97)
_ w? Py /nm\2 — Py /nm\2
=G tre (7)1 B (F) (1099)
n?r? [EI
wnze—z _T_;’ n=1,2,--- (10.99)

It is noted that the last result was derived in Ezample Problem 10.1, equation
(10.40), which expresses the free transverse vibration frequencies of a simple
beam. The result is again the Mathieu equation (10.67), but with differently
defined coefficients, or

d2yn(7)
dr?

+ (@n + BncosT) yn (1) =0 (10.100)

Thus, for a given set of system parameters (&,; 3,,) specified by equation (10.98),
the stability of y,(¢) and therefore the stability of the pipeline is determined
from the Haines-Strett plot of Figure 10.8.

Ezample Problem 10.3. Investigate the dynamic stability of a steel pipeline
under parametric excitation by a barge with a heave frequency @. The pipeline
is modeled in Figure 10.12b. Assume that P; < Py/2 and that n has an upper
limit of five.

Consider first the condition for which the parameters of equations (10.98)
become

P, 2 . a
angf%(%Q; B,< (10.101)

o]
From Figure 10.8 it is observed that pipeline instability occurs near &, = 0.25
and 1.0. With equations (10.101), the barge heave frequencies at which such
instabilities occur are deduced as

_ am [ B \Y?
o~ — | =— ;o an~025 or 1.0 (10.102)
{ \ may,
in which & > wy,. If, however, & ~ w, and 0 < P; < Py/2, then
_ Py /nm\2 - P Dy
&n Hﬂﬁ(ﬂ 1+ Do B, =5 Do< (10.103)

In this case, the coordinate pairs always lie below the dashed lines on the Haines-
Strett plot. Without damping, instability would occur near &, = 2.2, 4.0, 6.2,
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and so on. However, since natural damping always exists, this pipeline is stable
for @ ~ w,, under parametric excitation.

Statistical Wave Excitation

Most of the background analysis needed to calculate the statistical dynamic
responses of beams to stationary, ergodic wave excitation has already been de-
veloped. Outlined now are the basic assumptions, methodology, and results
of this statistical analysis. In this section, the reader is encouraged to carry
through the details of the mathematical manipulations. Further expositions on
this topic are given by Clough and Penzien (1993) and Gould and Abu-Sitta
(1980).

The mathematical model chosen for analysis is the uniform Bernoulli-Euler
beam without longitudinal loading (P = 0) but with light, linear viscous damp-
ing. From equation (10.8) this model is

2
EI g—} + 5% + m%?; = §(z,1) (10.104)
where the loading per unit length ¢ = §(z, t) is stationary, ergodic and Gaussian,
defined by the spectral density S;(w).

Equation (10.104) is reduced to a familiar form by expanding both the dis-
placement solution v = v(z,t) and the loading ¢§ = @(z,t) in terms of the
undamped normal modes X,, = X,,(x) and the generalized modal coordinates
¥n = Yn(t) and §, = G,(¢). That is, let

v(z,t) =D Xnyn (10.105)
n=1

a(xz,t) = X, dn (10.106)
n=1

The procedure now is analogous to that used previously to calculate beam re-
sponses with deterministic loading where equation (10.88) was derived starting
with equation (10.82) and the undamped beam model given by equation (10.69).
That is, substitute equations (10.105) and (10.106) into equation (10.104); mul-
tiply each term by X,, = X,n(x); from equation (10.73) let X/ = atX,; in-
tegrate each term of the resulting equation over the interval (0, ¢); interchange
the order of integration and summation under the assumption that the series
are uniformly convergent; and apply the orthogonality condition of (10.70) and
(10.71) to the result, which is valid for any of the six sets of beam support con-
ditions of (10.81). Thus all terms in the series vanish except for m = n, which
leads to

M, + Cin + Eloipyn = Gn(t) (10.107)
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Define

£ =92, wn (10.108)
m

With the last equation and the natural frequencies w,, given by equation (10.74),
equation (10.107) becomes

1
Un + 2C,wnYn + w%yn = %(jn(t) (10109)

It is observed that equation (10.109) is in the form of equation (9.62) for
a finite degree of freedom system. Assume now that the nth modal response
yn(t) is statistically independent of the mth modal response y,,(t), the same
assumption that previously led to the spectral density of the response given by
equation (9.70). By analogy the response spectral density S,(w) for the beam
is given by superimposing modal responses according to equation (10.105) and
equating its cross-spectral density terms to zero. That is,

5u(w) = 3 =g [Hn)]” Sin() (10.110)
n=1 n

Here H,(w) is the harmonic response function for the nth mode, derived from
equation (10.109) by letting

do jwt
=~ H ()l 10.111
Yn = T (w)e ( )
Gn = Goe’t (10.112)
where §g is an arbitrary constant. The results are

2 -1
Ho(w) = [1 - 5—2 + zgn—“’—j} (10.113)

n Wn

|Hp(w)[? = [(1 - %;)2 — (24"%)1 B (10.114)

The last ingredient needed in equation (10.110) is Sz, (w), the spectral den-
sity of the generalized force. To derive this term, first observe that the beam
loading g(z,t) is related to the surface wave height () by

q(z,t) = |G(w){n(t) (10.115)

where the transfer function G(w) is calculated for the chosen wave theory and
flow regime as discussed in Chapter 4. Rewrite equation (10.115) by replacing
g = q(zx,t) with its expanded form given by equation (10.106). Now multiply the
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resulting equation by X,,, = X,,(z), and integrate each term over the interval
(0,¢). Applying the orthogonality conditions (10.70) and (10.71), the result is

£
Gn(t) = — / X, gz, t)dz (10.116)
Co Jo

Y
Co —_—/ X2dx (10.117)
0
With equation (10.115), this generalized load becomes

7 —@ ‘ w)| dx
gn(t) = Co /0 X, |G(w)|d (10.118)

Note that for a horizontal beam normal to simple, incident plane waves, G(w)
does not depend on the beam’s longitudinal coordinate x. However, for a vertical
beam such as a pile subjected to these same waves, then G(w) does depend on
the beam’s longitudinal coordinate z, and two adjustments in nomenclature for
the wave theory appearing in Chapter 3 are in order. The first adjustment is to
replace the depth coordinate z in the wave theory by z = —z. Thus, the origin
of the beam coordinate is at the still water line and is positive downward. The
second adjustment is to let z = 0 in the wave theory, which puts the origin of
the wave at the location of the vertical beam.

Assume now that each g, (¢) is a statistically independent process. Then us-
ing the right side of equation (10.118), write in full the autocorrelation function
of g, designated as Rg, (7). Then obtain the spectral density Sg,(w) by taking
the Fourier transform of R, (7). This leads to

2

£
S5 (“’):cig { /0 X, |G(w)| dz| S, (w) (10.119)

Now combine equations (10.114) and (10.119) with equation (10.110) to obtain
the time average of the response spectrum, or

v X2 [ fy Xn \G(w)ldﬂ2
Z _ 2 22 ?]
n=1 (w2 Cy) [( - DWE) N (2C":—n) }

where Cy is given by equation (10.117) and modal damping has the form of
equation (10.108). The time average for the variance of this displacement is
given by

Sy(w) = Sp(w) (10.120)

e 2/ Sy (w)dw (10.121)
0

and the rms value of the displacement is the square root of o2 since v(z,t) was
assumed to have a zero mean. A space average response for this variance for z
in the interval (0, ¢) is defined as
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1 ¢
3:—/ o2 dz (10.122)
t Jo

The results of this section are summarized. Begin by identifying the beam’s
properties El,m, £, and its constraint condition of (10.81). Compute the natu-
ral frequencies and corresponding mode shapes for free vibration as outlined in
Section 10.1. For a selected wave theory and flow regime, calculate G(w) as dis-
cussed in Chapter 4. Then select the wave height spectrum S, (w) and assume
the modal damping factors ¢,, subject to the constraint of equation (8.88). Eval-
uate numerically the statistical responses given by equations (10.120)-(10.122).
Generally, the upper limit for n can be taken as 20, and the limits of integration
(0, 00) of equation (10.121) are (0.05, 1.5) rad/sec for the commonly used wave
height spectrum.

10.4 DEPLOYMENT OF AN OTEC PIPELINE

A vertical pipe of about 1000 m in length and 10 to 20 m in diameter is required
in typical ocean thermal energy conversion (OTEC) units. Such a cold-water
pipe (CWP) is used to raise the cooler water from the ocean depths to the
warmer surface water where the resulting fluid temperature difference of 10 to 20
deg C is sufficient to produce net power through heat exchange. Motion analyses
of several CWP systems under the excitation of ocean currents, waves, and the
deployment barge to which the upper end is attached have been compared and
summarized by Barr and Johnson (1979), Hove and Grote (1980), and Scotti and
Galef (1980). Other relevant articles are by McGuiness et al. (1979), Griffin and
Mortaloni (1980), Green et al. (1980), and Whitney and Chung (1981). In the
1990s, there was ongoing research in OTEC systems by the national laboratories
in India.

The following analysis, based on the work of Wilson et al. (1982), addresses
the problem of dynamic stability for a uniform, continuous, vertical CWP which
allows for an arbitrary elastic rotational restraint at the barge end. The barge
heave and sway motions are included as the end excitation parameters, and
Morison’s equation is employed to account for the wave drag and inertial forces
along the pipe length. The wave environment is simulated by discretizing the
Pierson-Moskowitz wave spectrum. Using the Crank-Nicolson implicit finite
difference method to solve the equations of CWP motion, the dynamic deflection
and moment distributions are calculated along a typical CWP as it is lengthened
by adding vertical segments at the barge end.
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Figure 10.13 Mathematical model of the OTEC pipeline-barge system.

Mathematical Model

The mathematical model of the OTEC pipeline attached to a barge is shown
in Figure 10.13. To the extent that classical beam theory is valid, the transverse
displacement v = v(z,t) for the pipeline can be approximated by solutions of
the Bernoulli-Euler form given by equation (10.8). That is

v 0 Oov 0%

EI 5z

where damping is neglected. Both EI, the bending stiffness, and 7, the virtual
mass per unit length of the pipe including its contents, are constant. However,
P = P(z,t), the longitudinal tension, and ¢ = §(z,t), the transverse wave
loading per unit length, depend on both z and time . Motion is restricted to
the plane in which G is a maximum, which is in the direction of the waves.

Consider the boundary conditions. The transverse motion at the top is
assumed to be that of the barge in sway, or

v(0,2) = S(t) (10.124)

An elastic rotational restraint characterized by the constant K is provided at
the barge end. Such a restraint should facilitate the attachment of vertical pipe
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segments during deployment. This end condition is

8%v(0, t) 81}(0 t)
El oz? Oz

The transverse motion at the bottom is minimized by the addition of a ballast
mass My which is pinned at x = L. Thus
0%v(L,t) OBv(L,t) 0%v(L,t)
El—>"— =0 El—— = —My—F-"= 10.126
822 o3 52 ( )

which express, respectively, the condition of zero end moment and the compat-
ibility of the transverse shear force at the pin with the motion of the ballast
mass.

At location z the average tension load on the cross section depends on two
dead weight terms and on the barge heave motion, H(¢). That is,

(10.125)

P(JI, t) = Mg+ (L - m)mlg + (L — .’L‘)TﬁH(t) -+ M()H(t) (10127)

where Mg is the ballast weight in water, ;g is the weight per unit length of
the pipe and its contents in water, and H(t) is the barge heave acceleration. It is
asumed that H(t) is approximately the same at the top and bottom of the CWP
since the natural period of longitudinal pipe oscillations (7)) is significantly
smaller than the shortest excitation period (7%). For a steel pipe 1000 m long,
T1 = 0.3 s is smaller by about an order of magnitude than the shortest realistic
excitation period of T, = 3 s.

Pipe Excitations by Barge and Waves

Assume that the motions of the barge from which the pipeline is deployed
are completely determined by the ocean waves. That is, the barge motion is not
affected by the pipe motion, which is a reasonable assumption since the barge
mass and the wave forces on it are both much larger than the pipe mass and
the pipe’s wave forces. Choose the modified Pierson-Moskowitz spectral density
function for the sea surface elevation 7(t), or

Sp(w) = AwSe B/« (10.128)

where A and B are constants and the wave frequency has the range w; < w <
wp. Partition the spectrum into N components for which the nth component
is Sy(wn). As discussed by Borgman (1969), the sea surface wave amplitude at
each central frequency w,, = nAw is given by

n(wn) = [28,(wn)Aw]Y2, n=1,2,... N (10.129)

where the bandwidth Aw is sufficiently small.
The heave motion of the barge is thus

N
H(t) =Y R(wn) - n(wn) cos (wnt + ¢,,) (10.130)

n=1
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where (¢, Pa,... ,dp) is a set of random phase variables distributed uniformly
over the interval (0,27). Approximate the empirical weighting function as

R(wn) =1, for 0 < w, <wy
R(wnp) =1~ w—nﬂ, for wp <wp <wpy
WN —™ Wh
R(wy) =0, for wy, >wy (10.131)

Here wy, is related to the barge length By by the empirical result given by Kim
et al. (1971): wp, = c/Bé/2, where c¢ is a constant. With H(t) obtained from
equation (10.130), the description of P(z,t) is complete.

The characterization of barge sway motion is somewhat more subtle than
that for heave motion. In the usual type of pipe-laying barges considered here,
second order sway motions or slow drift oscillations dominate the first order
sway motions. Thus it is appropriate to ignore the first order sway motions, or
the motions having the same frequencies as the incident waves, with amplitudes
proportional to the first power of the wave amplitudes. In this analysis the
amplitudes of sway oscillations are assumed to be directly proportional to the
incident wave amplitudes. As is usual for slow drift motion, the associated
periods are based on the envelopes of these wave amplitude time histories. With
these assumptions, the sway motion of the barge sway is given by

N
S(t) = nlwp) - sin (e1wpt + ¢,) + > ean(wn) - sin (erwnt + 4,)  (10.132)
p+1

Here the dominant amplitude 7(wp) at w = w, is that of the highest energy
incident waves, and e; and es are constants. For practical barge dimensions and
mooring lines of wire or chain, a dominant sway period of 170 s is estimated.
This corresponds to a dominant frequency of 0.093w, rad/s, where e; = 0.093
and w;, = 0.4 rad/s. A realistic value for the fractional reduction of the higher
frequency waves, as these translate into barge sway, is es = 0.05.

The direct pipe excitation by waves is based on a modified form of Morison’s
equation (4.1), or

g = 0.257CppD?i — 0.257C 4pD?%*5 + 0.5CppD(u — 0) |u — 9| (10.133)

Here the coefficients Cas, Cp and C4 represent inertia, drag, and added mass;
p is the mass density of water; D is the pipe diameter; and u is the horizontal
water particle velocity. Vortex shedding is neglected. By the superposition of
N simple, deepwater waves, @& from Table 3.1 with z = 0 becomes

N
= S w2 ) - SREREED)
U= ;wn N(wn) sinh k.d sin(wnt + ¢,) (10.134)
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where 472 /T? = w2, A = n(w,), cosh k,(z +d) ~ exp kn(z + d), d is the water
depth, g is the acceleration due to gravity, and k, = w2 /g.

The foregoing formulation of Morison’s equation was derived from laboratory
tests of groups of circular cylinders in oscillatory flow. These tests showed that
whenever the ratio of cylinder diameter D to water wave length A exceeded 0.2,
the Kuelegan-Carpenter number is small, and the drag-related viscous term
becomes unimportant. In such cases, Morison’s equation {10.133) is no longer
correct since the flow field is modified by the presence of the cylinder. In such
cases, a diffraction analysis based on potential flow theory is used.

In the present case of the OTEC pipe, this ratio D/\ approaches 0.2 for
the shorter wavelengths in the wave excitation spectrum. Therefore, although
a diffraction analysis is not required, it is clear that the inertia term dominates
the excitation history. Separate calculations not included here indicate that the
drag-related term accounts for only about 10 percent of the maximum induced
loads. This observation was not particularly surprising since it is in agreement
with the results of other investigators, notably Hogben (1976) and Hogben and
Standing (1975). Therefore an attractive and obvious alternative, which is the
one employed here, is to neglect the drag term in equation (10.133) and at the
same time increase the remaining inertia term by 10 percent. The effect of this
approximation on pipe stability is negligible.

The excitations needed for solutions v(z,¢) of equation (10.123) are defined
by equations (10.127)-(10.134). The solutions lead to the bending moment re-
sponses given by

Mz t) = E12Y (10.135)
z,t) = 522 .

From these moments, the critical bending stresses are calculated using elemen-
tary theory.

For convenience, all 25 system parameters for this OTEC pipeline system
are summarized in Table 10.2, together with typical numerical values used for
exploratory solutions. In a given ocean location, the values of d, g and p remain
essentially constant. The remaining 22 parameters fall in the following four
categories:

Six wave height spectrum parameters: (A4, B, N, w1, wn,wp)
Five barge sway motion parameters: (By, ¢, e1, €2, ws)
Nine pipe, restraint, and ballast parameters: (D, E, EI, K, L, My, M1, m, 1)

Two wave-pipe interaction parameters: (Cys, Cp)
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Table 10.2 Typical Parameters for an OTEC System

Symbol Meaning Numerical Value

A Wave spectrum amplitude 0.780 m? - (s/rad)®

B Wave spectrum constant 0.0311 (rad/s)*

By Barge length 122 m

c Barge frequency parameter 5.55 m!/ 2.rad/s

Ca Added mass coefficient 1.0

Cwm Inertia coeflicient 2.0

d Water depth 1067 m

D Outside pipe diameter 9.144 m

e Sway frequency scale factor 0.093

e Sway amplitude scale factor 0.05

E Young’s modulus for pipe 2.07x10"! N/m?

EI bending stiffness for pipe 3.94x10'! N-m?

g Acceleration due to gravity 9.81 m/s?

K Rotational spring constant 1.13x10% N-m/rad

L Pipeline length 61 m to 1037 m

My Ballast mass 4.54x10* kg;
2.27x10° kg

M, Ballast mass in water 0.6M,

m Pipe mass/unit length, incl. contents 6.43x10% kg/m

M1 Pipe mass/unit length in water 1.25x103 kg/m

N Number of waves in spectrum 15

p Mass density of water 962 kg/m?

w1 Spectrum frequency, lower bound 0.1 rad/s

wp Sway weighting frequency 0.503 rad/s

wN Spectrum frequency, upper bound 1.5 rad/s

Wp Frequency at peak of S, (w) 0.4 rad/s

Numerical Results

Using the numerical values of the 25 system parameters listed in Table 10.2,
computer solutions were obtained to equation (10.123), subjected to the bound-
ary conditions of equations (10.124)-(10.126), and the local pipe tension given
by equation (10.127). A numerically stable implicit finite difference method
was employed, using the Crank-Nicolson approximation (Carnahan et al.,1964).
Fifty spatial steps in the interval 0 < z < L and 300 time steps were used in
solving the difference equations. The central difference form was used except
for the shear-moment equation (10.126), which was expressed in terms of for-
ward and backward differences. In all calculations, zero initial conditions were
assumed: the pipe was vertical and at rest at time ¢ = 0. The explicit difference
equations and a series of test runs performed to validate the computer program
for this problem were described in detail by Pandey (1980).

A total excitation time of 600 s was used for each of the 17 pipe lengths,
ranging from 61 to 1073 m. This simulation time was sufficient to encompass
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143 heave cycles at the dominant heave frequency of wy = 1.5 rad/s, and to
encompass about 3.6 dominant sway cycles of frequency ejw, = 0.0372 rad/s.
Since trial simulation times longer than 600 s produced no further increases in
peak responses, the 600 s simulation was considered in the present calculations
to give a steady state upper bound on the responses, where the deployment rate
was about 1.7 m/s.

Table 10.3  Peak Pipeline Responses During Deployment for a 600 s Sim-
ulation Time, for K = 1.13 x 10 N-m/rad (Asterisks Represent Unbounded
Responses)

Deflection v(L,t.), m  Moment M.(z,t),10° N-m

Pipeline My = My = Mgy = My =

Length I, m 45400 kg 227000 kg 45400 kg 227000 kg
61 9.63 7.94 —51 800 —51 800
122 244 12.5 13000 13000
183 * 55.3 * —-15900
244 6.27 5.84 3390 —3400
305 —6.28 —4.87 —2290 —2290
366 9.85 7.71 -1730 —-1730
427 —5.00 —4.14 -1420 —-1420
488 13.2 13.6 2730 2690
549 * ~82.4 * 1190
610 * * * *
671 216 108 40200 20 300.
793 —108 —45.7 40 300 15200
854 —139 —98.0 89100 60100
915 * * * *
975 * * * *

The time histories of transverse pipe deflection and moment were calculated
at 50 points along each chosen length L. The peak values of those responses, for
two values of ballast mass, are listed in Table 10.3. The peak deflection v(L, ¢t.)
is bounded and occurred at the ballast end (z = L) and at a critical time ¢ = t,.
However, the peak or critical moment M,(z,t) usually occurred close to but not
exactly at the barge end (z = 0). It is noted that, for this 9.144 m diameter steel
pipe where the stiffness ET is based on a 6.35-mm wall thickness, the bending
moment at which yielding would begin (for most structural steels) would be
about 1500 x 10° N-m. These severe pipe moments are probably due mainly to
the transverse pipe wave forces, which are strongest near the surface and drop
off exponentially with water depth. Thus for an average deployment rate for
this pipe of about 1.7 m/s, care must be taken to reduce the bending moment
near the barge, perhaps by attaching cable stays to the pipe or by restraining
barge motion.
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Figure 10.14 Effect of ballast on critical pipeline displacements: (a) L = 244 m; (b)
L = 549 m.

Shown with asterisks in Table 10.3 are the pipeline lengths at which the
responses are unbounded. Note that the larger ballast mass (227 000 kg instead
of 45400 kg) increased the system stability for lengths of 183 m and 545 m, but
this additional ballast did not alleviate unbounded responses at lengths greater
than 610 m.

Shown in Figures 10.14a and 10.14b are typical stable pipe profiles corre-
sponding to the peak transverse displacement v(L,t.) occurring during the 600
s simulations. Figure 10.14a shows that an increase of a factor of five in ballast
mass does little either to straighten the pipe to relieve its peak moment occur-
ring near x = 75 m, or to reduce its peak deflection at £ = L. These two profiles
correspond to critical times ¢, of 146 s and 264 s for the light and heavy ballast,
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respectively. In Figure 10.14b, where L = 549 m, the profile for the lighter
ballast is not shown since those responses are unbounded, as shown in Table
10.3. The heavier ballast did stabilize the system, however, where ¢, = 580 s. In
these studies, an unbounded response was defined whenever the ratio v(L,.)/L
exceeded unity.

Shown in Table 10.4 are the effects of K, the rotational stiffness restraint at
the barge end, on the dynamic pipe response and stability. These results show
that, for a ballast mass of My = 45400 kg, an increase in K by a factor of 100
increased the range of pipe length for which the system remained dynamically
stable. For instance, the system was stable at L = 183 m for the higher rota-
tional restraint but not for the lower rotational restraint. Also, the higher K
reduced the peak deflection in the range up to L = 183 m, but beyond this
length the stable deflections often exceeded those corresponding to the lower K
value.

Table 10.4  Effects of Torsional Restraint on Peak Pipe Responses for a Ballast
of My = 45 000 kg and a Simulation Time of 600 s

Torsion Constant, Torsion Constant,
1.13 x 10® N-m/rad ~ 1.13 x 10'° N-m/rad
Pipeline Deflection Moment Deflection Moment
Length L, v(L,te), M(z,t), v(L,te), Mc(z,t),
m m 10° N-m m 10° N-m
61 9.63 —51800 744  —53490
122 24.4 13000 —6.01 14100
183 * * 6.14 6290
244 6.27 3390 —11.40 4400
305 —6.28 —2290 17.79 3180
366 9.85 —1730 —26.89 —2470
427 —5.00 —1420 ~10.80 —1960
488 13.2 2730 * *
549 * * —13.12 ~3 140
610 * * —8.28 1700
671 216 40200 —20.86 5530
732 * * —71.29 15800
793 —-108 40300 —329  —94880
854 —139 89100 4.54 —2910
915 * * * *
976 * * —249 118800

It is concluded that this analysis can be used to determine the feasibility of
deploying any vertical cold-water pipe from a typical barge in a given sea state.
These exploratory studies showed that deployment is a delicate task since there
may exist a range of pipe lengths longer than 500 m, for instance, where un-
bounded deflections and moments occur. Such pipe instabilities may be avoided
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in some cases by imposing a relatively fast deployment rate. However, these ex-
ploratory studies indicate that subsequent anchoring to the sea floor of the end
ballast and of selected points along the pipeline using cable stays is needed
to maintain dynamic stability if a barge wave excitation, based on a Pierson-
Moskowitz wave spectrum, continues even for just ten minutes. However, if
the barge rotational restraint is chosen carefully and possibly changed during
deployment, stable pipelines can be achieved for longer times.

PROBLEMS
l— EL ¢, p——2F1 L, m
X X
TTrT 1 rIrTYTT Y v 0TTTTTTTIIT >V
(@) (b)

Figure 10.15 Three uniform, submerged structures: (a) a fixed-free pile; (b) a
fixed-hinged pile; (c) a pipeline with torsional restraint.

10.1 The submerged, uniform, cylindrical pile shown in Figure 10.15a has
full fixity at the sea floor and is unrestrained at the top. Neglecting axial
loading due to self-weight, set up the determinant from which the undamped
bending frequencies can be calculated. From the transcendental equation de-
rived from this determinant, calculate the lowest three values of a,,¢, where the
corresponding frequencies are given by

_ (an)? |EI

Wp = —
™ £2 m

10.2 Calculate the lowest three undamped frequencies for a submerged pile
pinned to a deck structure, as shown in Figure 10.15b. Express the results in
the same form as in Problem 10.1.

10.3 The uniform, submerged pipeline shown in Figure 10.15c is hinged
to a barge and is restrained from rotating about that hinge by a linear spring
support of constant k. The restraining moment at z = 0 is

ov(0,1)
M(0,t) =k —2—+
(0.%) Ox
The lower end is unrestrained. Account for self-weight by assuming a mean
value for the pipe tension, or P ~ W/2 = constant where W is the pipe’s
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weight in water. Set up the determinant from which the transverse bending
frequencies can be calculated and from this derive the transcendental equation.
Discuss briefly how one could obtain a computer-aided solution for the con-
secutive roots of this equation. How are these roots related to the frequencies

Wn?
T
Weight, Weight,
¢

mg =F, mg =R
~——String: m, { t=ec—— String: m, £
V=v,0s ¢ {
"1% yP=}(’) + Bcosw!
(a) (b)

Figure 10.16 Experimental setup: (a) Problem 10.4; (b) Problem 10.5.

10.4 Set up an experimental laboratory model such as shown in Figure
10.16a to complement the analysis of resonance frequencies and mode shapes
for transverse excitation of a cable. Measure: the length ¢; the mass per unit
length of the string m; and the applied weight that gives the string tension,
Fy. Apply the transverse excitation of amplitude vy and frequency @, each
of which can be adjusted independently by means of a magnetic shaker power
supply and frequency generator. Record consecutive frequencies @ which give
rise to observable mode shapes one through eight. Compare these results with
the corresponding theoretical frequencies predicted by equation (10.22). Discuss
briefly the reasons for any discrepancies between the measured and predicted
values of w,,.

10.5 In a laboratory experiment using a magnetic shaker, impose para-
metric excitation to the cable or string as shown in Figure 10.16b. Keep the
magnitude of the oscillating load, Py, much less than the constant weight load
Py. As can be observed in Figure 10.8, at small 3,,, transverse instability is
predicted near certain imposed frequencies &, where

k2
an:z—, £E=1,2,3,...
2wy 9% W 2wy, wn
W = k - ny Ty 3 72""

Experimentally verify these predicted results as follows. Calculate w,, for the
laboratory setup and record them in Table 10.5. Then calculate @ = 2w, /k and
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compare these with the corresponding experimental values of @ where transverse
unstable motion is observed for the stated (n,k) combinations. Discuss briefly
reasons for any discrepancies.

Table 10.5 Data Sheet for Problem 10.5
Theory Measured

n wy, (rad/sec) wp, (Hz) k w(Hz) @ (Hz)
1 wy = (n/l)\/Po/mn = 1
1 2
1 3
1 4
2 Wwo = 1
2 2
2 3
2 4
3 w3 = 1
3 2
3 3
3 4

10.6 Based on the findings of Trogdon et al. (1976), design a series of water
tunnel experiments in which a submerged, tensioned cable undergoes combined
vortex and parametric excitation. Consider how the new hypothesized constant
K, related to the amplitude of the vortex-shedding force and the coupling effect
of longitudinal excitation, can be deduced from a set of experimental measure-
ments.

10.7 A stranded steel mooring cable has a density of 0.2 Ib/in.3, a diameter
of 2.0 in., and a length of 500 ft. If the cable tension has a mean value of 100,000
Ib, what current velocities (perpendicular to the cable’s longitudinal axis) will
give rise to vortex shedding? The kinematic viscosity and density of the seawater
at 45°F are 1.8 x 1075 ft2/sec and 0.0372 1b/in.%, respectively. Take 7, the
virtual mass per unit length of cable, as the sum of its actual mass per unit
length and the mass of the seawater that it displaces per unit length.

10.8 A uniform cross beam of an offshore structure, modeled as the simple
beam of Figure 10.4b, is subjected to the harmonic wave loading § = §o sin &t.
(a) Calculate the steady state displacement v(z,t) based on Bernoulli-Euler
beam theory and the normal mode method . (b) Compute the series expression
for the dynamic bending moment at midspan and also the dynamic shear load
at the points of fixity. Neglect P, the longitudinal loading.

10.9  Solve Problem 10.8, but replace the simple end supports with clamped
ends as shown in Figure 10.4c. Neglect P.
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10.10  Consider a uniform cable under constant tension, fixed at each end,
and subjected to an arbitrary transverse load per unit length of g(z,t). Use
the normal mode method to predict the transverse cable displacement v(z,t),
assumed in the form of equation (10.82). Follow the same procedure used to
obtain the beam responses to the same loading, which leads to the results given
by equations (10.88) through (10.91). Show that X, (z), n = 1,2,... for the
cable are orthogonal functions.

10.11  Refer to a text such as Clough and Penzien (1993) or Timoshenko
and Goodier (1951) to derive the equation of longitudinal vibrations for a uni-
form, elastic pipeline. Let u = u(z,t) be the longitudinal displacement of a
material point at position z on its longitudinal axis. For a pipeline without
end constraints, deduce that Ou/8z = 0 on each end. Then, following the same
method used in Section 10.1 to derive the free transverse vibration frequencies
for a fixed end cable, to calculate the free longitudinal vibration frequencies for
the unconstrained pipeline. Check that your analytical result for wy agrees with
equation (10.93).

10.12  Based on the equation of longitudinal vibrations for the pipeline
derived in Problem 10.11, calculate the free vibration frequencies for a uniform
pipeline clamped at each end. Compare your value of w; to wy of equation
(10.93), and discuss briefly the reasons for the difference in the two results.

10.13  The horizontal cross brace modeled in Figure 10.4c is located at z =
h in water of depth d. The beam is subjected to transverse wave excitation that
is modeled by linear wave theory. For S, (w), assume that the Pierson-Moskowitz
wave spectrum applies, where the significant wave height is 10 m. Choose the
transfer function G(w) given by equation (4.30). See Ezample Problem 10.1 for
the explicit forms of frequencies and mode shapes. Write a computer program
to calculate the midspan values of the displacement response spectrum, the
variance of v and the rms value of v. Specify carefully all input data. Test the
program by choosing a realistic numerical example. If S,(w) is Gaussian, how
are these results interpreted in terms of expected peak displacements?

10.14  For the horizontal beam of Figure 10.4b, derive an expression for
the spectral density of the bending moment in terms of the spectral density of
its displacement given by equation (10.120). Where along its length would the
peak rms value of the bending moment occur?
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Behavior of Piles Supporting
Offshore Structures

Lymon C. Reese

As discussed in detail in other chapters, the behavior of structures under dy-
namic loading depends on the geometry and mass of the particular unit, the
nature of embedment into soil, and the relevant characteristics of the soil itself.
Each of these features is discussed herein.

Offshore structures maintain their stability under loading due to the mass
of the structure, a gravity foundation, or due to embedded piles. The piles, of
course, can be considered as an extended portion of the structure, or the piles
can be analyzed separately. In the latter case, a free body is selected at the pile
heads or at the top of a pile cap and methods of analysis achieve compatibility
between the piles and the superstructure. In the case of a gravity foundation,
the mass of the structure is sufficient that environmental loads do not cause a
lift off or excessive soil deformation. Whatever the concept of foundation design,
the engineer must make a study of the soil supporting the structure. The nature
of the response of soil under loading is discussed and methods of obtaining the
needed properties of the soil at offshore locations are presented briefly.

With regard to the loading of a pile, four types can occur: short-term static,
cyclic, dynamic, and sustained. Static loading can be assumed in many designs
with an appropriate factor of safety. However, cyclic loading must be addressed
in detail for lateral loading. Dynamic loading is discussed briefly in the last
section. Sustained loading usually needs addressing only if the supporting soil
is a soft, saturated clay. Methods of analyzing piles under axial and lateral load-
ing are presented because pile-supported structures dominate those at offshore
locations. The analytical methods relate specifically to short-term and cyclic
loadings. An example problem involving a single pile and an actual soil profile
from the Gulf of Mexico is solved by two analytical methods and the results are
compared.

289
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11.1 CHARACTERISTICS OF SOIL AND RESPONSE
TO EXTERNAL LOADING

An investigation of soil characteristics is a necessary initial step preceding de-
sign. Prior to taking boring equipment to the site, the engineer will investigate
the engineering geology, will gain as much information as possible from previous
borings, and will develop a preliminary plan about the number of borings, their
depth, and investigative techniques. The provision of a marine vessel necessary
to sustain the soil-boring equipment is costly so engineers give attention to all
details that can facilitate and limit the time of the soil investigation. Seismology
is sometimes used to augment the soil sampling and testing.

For the Gulf of Mexico, Fisk (1956) presented an important overview that
has been valuable in giving engineers a general understanding of the near surface
geology. An example of a feature requiring careful attention is the existence of
stream beds that were later filled with soft sediments, leading to the possibility
that supporting piles could vary significantly in length across the platform.

McClelland (1956) published the results of a series of soil investigations in
the Gulf of Mexico that also gave valuable general information. While such
results are insufficient for design, useful information is given on the detailed
planning for an efficient deployment of the marine equipment.

While indirect methods of characterizing soils are being used, such as the
instrumented cone, many engineers prefer to have tube samples for examination
and testing. The common procedure is to lower to the sea floor a motion-
compensated drill string with an interior diameter to allow sampling tubes to
be lowered on a wire line. A weight is dropped with a wire line to acquire
samples of cohesive soil and to get the number of blows to drive the sampler a
given distance into granular soil. Hvorslev (1949) made a comprehensive study
of soil sampling and noted that the most favorable way to sample clays is with
a steady, continuous push of the tube. Emrich (1971) made a study of the
reduction in strength of clays caused by driving the sampler and found the loss
to be significant.

Special tools, operated hydraulically, can be latched to the bottom of the
drill string for performing special tests, such as vane shear, cone penetration,
or pressuremeter. Nevertheless, the sampling by dropping a weight remains
popular because of the speed of the work. When a sample is retrieved, the drill
string is advanced by rotary drilling to the next depth.

The engineer may make a visual classification and perform some tests in the
field, such as using a miniature vane on samples of clay, in order to determine
the required depth of the boring so piles can be designed to sustain the expected
loads. Tests in the laboratory, including grain-size distribution and Atterberg
limits, allow the soil to be classified accurately. Water content and unit weight
is obtained for all samples. For cohesive soils, a determination of the shear
strength and sensitivity is necessary, along with some information on stiffness,
if possible. Consolidation characteristics are normally a secondary considera-
tion. For cohesionless soils, undisturbed samples are usually unavailable and an
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estimation of the relative density and friction angle is usually made from the
blow counts found in the field.

11.2 DESIGN OF SINGLE PILES UNDER AXIAL LOADING

Single piles are found in onshore structures and occasionally in an offshore struc-
ture. But most offshore structures are founded on groups of piles. If the piles are
four or five diameters apart, pile-soil-piles interaction is negligible and the piles
can be designed as if they were isolated. If the spacing is closer, an efficiency
factor is employed to reduce the capacity of piles in the group. The mechanics
of the transfer of load from the pile to the soil for the single pile can be modified
to include a reduction coefficient.

A rational model for the pile-soil system is shown in Figure 11.1 (Reese and
Van Impe, 2001). The pile is shown as a spring to reflect that all piles, regardless
of material, will deform under load. This spring has a constant stiffness with
depth but its stiffness can vary with length without causing analytical difficulty.

Or

Normal Force

Friction Block /£ ‘ —
b W,

Figure 11.1 Mechanical model of axially loaded deep foundation.

The soil is represented by a series of mechanisms attached to the spring,
varying in character with depth, to show that the transfer of load from the pile
to the soil depends on the relative movement between pile and soil. The springs
(load transfer functions) for resistance along the sides of the pile are definitely
nonlinear with relative deflection the unit load transfer is given as f, versus the
relative movement w, , where the z indicates depth below the ground surface.
The load-transfer function for the base of the pile is given by a curve where w;
represents the downward movement of the pile and q represents the unit end
bearing. The model can be used for computing the capacity of a pile due to
uplift where ¢ is assumed to be zero.
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Figure 11.2 Tllustration of procedure for development of curves showing
load-transfer versus pile movement.

The technique for obtaining load-transfer curves is shown in Figure 11.2,
which is representative of experimental results from an instrumented pile under
axial loading Q7. Figure 11.2a shows the load Qr versus settlement wy for
the top of the pile. Figure 11.2b shows the distribution of load Q at depth =z,
where each curve represents a different value of Q7. Here, the points are the
measurements obtained from transducers placed in the pile. A section of the
load distribution curve for the nth loading, say to the depth 2y, is shown in
Figure 11.2c. Starting from the top of the pile, numerical integration of the
area under the curve, when divided by the appropriate value of AE, will yield
the elastic shortening of the pile to the point 2;. The elastic shortening can
be subtracted from the observed settlement wr for the nth load to obtain the
relative movement between the pile and the soil at the point z,. The value of
AQ,/Az is found by differentiating the curve at point z;. Failure is assumed to
occur at the pile-soil interface, even though some experiments reveal a layer of
clay at the surface of piles that have been recovered. Therefore, the value of f,
is found by dividing AQ,/Az by the circumference of the pile C . Performing
similar computations for other points along the pile will yield a family of curves
such as shown in Figure 11.2d.
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For a particular applied load, values of settlement w; at the base of the pile
can be found by procedures given above. The corresponding values of unit end
bearing load g can be found by dividing the load at the base of the pile by the
area of the base. The full g/ws curve can be obtained by analyzing all of the
loadings, provided the pile settles sufficiently. If a number of such experiments
in a variety of soils for a variety of piles are performed, correlations can be
developed between soil properties and the load-transfer curves.

Referring to Figure 11.2a, the load test should be performed to cause plung-
ing, where additional deflection results in no increase in load. The result will be
the development of the load-transfer curves to ultimate values, as shown by the
curves for the depths 21, 29, and 23. The ultimate values of f,;; can be correlated
with the shear strength of the soil in order to develop equations for computing
the ultimate load in skin friction @;. If the end bearing has reached an ultimate
value, the ultimate value of ¢ can be correlated with the shear strength at the
base of the pile and yields the ultimate load in end bearing (J,. The capacity
of the pile under axial load Q is Q, + Qp.

The procedure for computing the capacity and settlement of a pile in clay,
found offshore at many locations, is illustrated in the paragraphs below. Let

L
Qs = / furC dz (11.1)
0
and
1
Qb = QQuNcAb (112)

where L is the penetration of the pile; fu: = gua./2 ; gu is the unconfined
compressive strength of the clay and assumed to be equal to twice the undrained
shear strength c¢,; N, is the bearing-capacity factor which is taken as 9.0 for
all except very short piles; and A, is the area of the base of the pile. The
value of o, can be interpolated from the following list: o, = 1.0 at g, = 0
tons/ft2; 0.9 at 0.75; 0.8 at 1.12; 0.7 at 1.45; 0.6 at 1.82; 0.5 at 2.36, and 0.43 at
3.0. To simplify calculations, these numbers represent average values, selected
from a curve with a wide range (see page 288 of Peck et al., 1974; Tomlinson,
1980). For the behavior of piles in clay under axial loading, the selection of
the value of o, varies among authors, and even the method of computing the
axial capacity varies among investigators (American Petroleum Institute, 1993).
The lack of agreement among investigators for piles driven into clay, and even
more disparity for piles driven into sand, is due to the scarcity of high quality
experimental data. The models for ultimate capacity and for settlement will
remain useful even as more data become available.

The pile selected for analysis is an open steel pipe with a diameter b of 36
in. and assumed to have been driven to a penetration of 140 ft into clay at an
offshore location with the following properties: 0 to 50 ft, g, = 1.0 tons/ft?; 50
to 100 ft, g, = 1.8 tons/ft2; 100 to 175 ft, ¢, = 2.5 tons/ft%. Interpolation of
values of a, from the list in the previous paragraph yielded the following values
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for the three strata, starting with the top: 0.83, 0.61, and 0.48. With these
numerical values, equation (11.1) becomes

Qs = 3 [(50)(1/2)(0.83) + (50)(1.8/2)(0.61) + (40)(2.5/2)(0.48)] = 680 tons

The reasonable assumption is made that the pile plugged at some point during
driving and thus the end bearing can be computed as if the pile were solid. The
following result is found by substituting values into equation (11.2).

Qb = (2.5/2)(9.0)7(1.5)% = 80 tons

Thus, the total load the pile can sustain was computed to be 760 tons or 1520
kips. The safe load would be found by using an appropriate factor of safety.

The load-settlement curve for the pile can be computed by implementing
load-transfer curves. With regard to the load transfer in skin friction for piles
in clay, Coyle and Reese (1966) examined experimental data and proposed the
results shown in Table 11.1.

Table 11.1 Pile Load-Settlement Data

f/ Fut Pile Movement, in.
0 0
0.18 0.01
0.38 0.02
0.79 0.04
0.97 0.06
1.00 0.08
0.97 0.12
0.93 0.16
0.93 0.20
0.93 >0.2

With regard to the load transfer in end bearing for piles in clay, the work
of Skempton (1951) is used, where the end bearing of a plate loaded in clay is
shown to correlate with the laboratory stress-strain curve. He noted that the
settlement w; at one-half the ultimate unit end bearing of the base is equal to

Wuylt

2

In the absence of a laboratory stress-strain curve for the soil, the following
values of €59 can be taken as a function of the unconfined compressive strength
(consistency) of the clay: soft (<0.5 tons/ft?) 0.0.2; medium (0.5 to 1.0 tons/ft?)
0.01; and stiff (>1.0 tons/ft?) 0.005. For the example problem, the value of g,
at the base of the pile was 2.5 tsf, so the value of €59 was selected as 0.005, with
wyit/2 equal to 0.36 in. Numerous stress-strain curves for soil have been plotted
on log-log paper and found to be a straight line, many with a slope of about

= 2b€50 (11.3)
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0.5 up to the failure stress. Therefore, the other points on the load settlement
curve for the base can be computed by the following equation:

Qb = s/wp (11.4)

Based on Qp = 40 tons for wp, = 0.36 in., the coefficient ¢ was computed as 66.7
tons/v/in.. With this coefficient, sets (Qp tons , wy in.) can be computed from
this equation.

The data are at hand for computing the axial load-settlement curve for the
pile. An examination of the values of load-transfer in side resistance shows that
the curves indicate movement-softening. Depending on the characteristics of
the soil at the site, the engineer might assume that movement-softening does
not occur and modify the curves somewhat. Comparison of the curves for side
resistance end bearing reveals that the side resistance is generated with much
smaller pile movements than the end bearing. Therefore, to illustrate the com-
putation procedure, a movement of the base of the pile is selected as 0.05 in.,
giving a load in end bearing of 15 tons or 30 kips using equation (11.4).

With regard to the computed load transfer in side resistance, the accurate
approach is to select small increments of length, perhaps as small as one or two
feet. However, the procedure can be shown by taking increments along the pile
equal to the three strata of soil; therefore, the first increment is from the tip of
the pile at 1680 in. to the top of the lower stratum at 1200 in.

For the first trial, the assumption is made that the movement at the mid-
height of the stratum is the same as at the base: 0.05 in. Using the data on
load transfer in side resistance and in movement to achieve the value of relative
load transfer (ignoring movement softening), the value of unit load transfer was
7.33 1b/in.?2. The load transfer in side resistance between 1680 in. and 1200
in. was computed to be 398 kips. Thus, the load at the bottom of the 480 in.
section was 30 kips and the top was 428 kips. The elastic shortening from the
tip to the midheight of the section, at 1440 in., using elementary mechanics was
computed to be 0.0091 in., yielding a midheight movement of the lower section
of 0.0591 in. rather than 0.05 in. Employing the new midheight movement, the
load transfer in the lower section was computed to be 435 kips, compared to the
398 kips for the first trial. Another iteration was done and the midheight move-
ment of the lower section was found to be 0.0614 in., which yielded a revised
load transfer for the lower section of 440 kips, compared to the 435 kips for the
previous iteration. Convergence was assumed, which gave a load at 1200 in. of
461 kips and a computed movement of 0.0863 in.

Employing the above procedure, computations were done for the top two
strata of soil, and loads and deformations were accumulated, with the com-
puted top load of 1369 kips and a top movement of 0.4423 in. The procedure
could be continued for other values of tip movement in order to obtain the
full curve for load versus settlement for the top of the pile. Shown in Figure
11.3 is a computer-generated top load versus settlement curve. As can be seen,
the ultimate load is 1520 kips. This plot is very instructive. Assuming that
the load-transfer curves are acceptable, the engineer can see readily the settle-
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ment necessary to develop any portion of the load transfer, which is valuable
information in selecting the safe load on the pile.

Top Load O, kips

G M0 8 1200 1600

Values from hand computations:
O, =1369 kips
w= 04423 in.

3

Settlement w, in.

=)

Figure 11.3 Computed curve of axial load versus settlement for a pile with a length
of 140 ft driven into clay soils.

Plotted in Figure 11.3 is a point computed by hand. As may be seen, the
crude partitioning of the pile that was employed yielded a relatively good agree-
ment with the computer solution for the assumed top settlement of 0.05 in.
Agreement may not have been so favorable for other selections of top movement
used for obtaining the complete load settlement curve, distributions of load, and
movement along the length of the pile.

11.3 DESIGN OF SINGLE PILES UNDER LATERAL LOADING

A problem that was recognized by the early designers of offshore structures
was the computation of deflection and bending stresses in the foundation piles.
The problem was vexing because the static equations were insufficient to solve
it. Whereas axially loaded piles can be designed by simple static methods, the
design of laterally loaded piles must address the interaction of the soil and the
structure.



SINGLE PILES UNDER LATERAL LOADING 297

A research program was undertaken, supported principally by the petroleum
industry, and the method described in this chapter was developed. Although
additional research is needed, particularly in improving the prediction of soil
response, the method presents an acceptable approach to a complex problem and
is currently in use in the design of foundations for offshore platforms (American
Petroleum Institute, 1993; Det Norske Veritas, 1977).

Pile Model and Method of Solution

The model for the problem of the pile under lateral loading is shown in
Figure 11.4 where the response of the soil is described in terms of p-y curves
which relate the soil resistance to the pile deflection at various depths below the
ground surface. A set of typical p-y curves is shown in the figure. In general,
these curves are nonlinear and depend on several parameters, including depth,
shearing strength of the soil, and number of load cycles.

14 /l\ y
e

1
#—.

(a) ®)

f
.

L.
|

N T e e T F

Figure 11.4 Model for pile under lateral loading showing typical p-y curves.

The solution of a soil-structure interaction problem requires the satisfaction
of the conditions of equilibrium and of compatibility. The governing differential
equation, derived by Hetenyi (1946), is

4
EI— +P, fg —p=0 (11.5)

where EI is the flexural rigidity of the pile, y is the pile deflection at position
z along its length, P, is the axial load, and p is the soil reaction force per unit

length.
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Equation (11.5) can be solved using a digital computer (Reese and Van Impe,
2001, p. 29); however, nondimensional methods can sometimes be employed to
yield an acceptable solution for cases where EI is constant and there is no
axial load. Both methods of solution give all the necessary design information
including the moment, deflection, and shear at desired lengths along the pile.
The methods described herein have received wide acceptance and are used in
many design offices around the world.

Response of Soil

For convenience in solving equation (11.5), a secant modulus of soil reaction,
E,,, can be used, which is defined by

p

Epy =, (11.6)

The value of p from the last equation can be substituted into equation (11.5)
and a solution obtained for the values of y with respect to points along the pile.
Because E,, is a nonlinear function, equation (11.5) can be solved by iteration
using procedures developed for piles in a variety of soils and rock (Reese and
Van Impe, 2001, p. 49). The recommendations are based principally on the
results of full-scale experiments which are augmented with theory to the extent
possible. Reese and Van Impe (2001, p. 259) showed the comparison of results
from experiments with results from analysis for a sizable number of cases. The
validity of the analytical method has been well established within a reasonable
degree of accuracy.

Consider solutions for lateral loading for pile, embedded in a soft clay be-
low the water surface, a condition encountered frequently at offshore locations.
Matlock (1970) presented procedures for developing p-y curves for soft clays be-
low the water surface for two loading conditions: short-term static and cyclic.
Those procedures, somewhat simplified, are now summarized.

p/p, (@) P/P, (b)
1.0 1.00j For z=z (depth where flow-
/ around failure governs)
( 0.75+ |
_ i3
o05df P/B=05 (/%) 0.50}- :
| | v |
' | || !
i i U 10.72 z7z,
o Li ' bl A
01 8 W 01 3 5 v,

Figure 11.5 Characteristic shapes of the p-y curves for soft clay below water
surface: (a) static loading; (b) cyclic loading (Matlock, 1970).
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Short-Term Static Loading

The following step-by-step procedure for short-term static loading is based
on the curve shown in Figure 11.5a.

1. Obtain the best possible estimate of the variation of shear strength and
effective unit weight with depth. Also obtain the value of e5q, the stain corre-
sponding to one-half the maximum principal stress difference. If no values are
available, use a typical value given in Table 11.2 (Skempton, 1951).

Table 11.2 Typical Values of e5q

Consistency of Clay 5

Soft 0.020
Medium 0.010
Stiff 0.005

2. Compute the ultimate soil resistance per unit length of shaft, p,, using
the smaller of the values given by the following two equations:

/

Dy = (3 + :yc—z + 9b§2> cb (11.7)

Pu = 9cb (11.8)

where 7 is the average effective (submerged) unit weight from ground surface
to the p-y curve, z is the depth from ground surface to the p-y curve, c is the
undrained shear strength of the undisturbed clay soil at depth z, and b is the
pile width. Compute at each depth where a p-y curve is desired, based on the
shear strength at that depth.

3. Compute the deflection, ysp, at one-half the ultimate soil resistance. Use
the following equation:

yso = 2.5e50b (11.9)

4. Compute points describing the p-y curve from equation (11.10), or
y \ /3
L -0 (—) (11.10)
2 Y50
The value of p remains constant beyond y = 8ysq.
Cyclic Loading

The following step-by-step procedure for cyclic loading is based on the curve
shown in Figure 11.5b.
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1. Construct the p-y curve in the same manner as for short-term static
loading, for values of p less than 0.72p .

2. Equate equations (11.7) and (11.8) and compute the depth z = z, where
the transition occurs. If the unit weight and shear strength are constant in the
upper zone, then

6cb

= v'b+0.5¢

(11.11)

3. If the depth to the p-y curves is greater than or equal to z,, then the
value of p is equal to 0.72p for all values of y greater than 3yso.

4. If the depth to the p-y curve is less than or equal to z,., then the value of p
decreases from 0.72p,, at y = 3yso to the value given by the following expression
at y = 15ys0.

p=0.72py (2/2) (11.12)

The value of p remains constant beyond y =15ys0.

Examining the parameters used in the equations for the analysis of lateral
loading of piles reveals that the engineer can describe the pile with good accu-
racy, but describing the response of the soil depends on the quality of the p-y
curves. Therefore, field experiments may be dictated in some instances.

Scour

At most of the places where offshore structures are installed, there is a
probability that a certain amount of scour or erosion of the surface soil will occur.
Much can be said about the use of available technology to predict the amount
of scour that will occur at a given site; however, the number of parameters
involved in making a prediction and the variability of those parameters are such
that scour predictions are usually inexact. Some characteristics of scour are
summarized as follows:

1. Scour is usually more severe close to the piles, but the mudline may be
lowered over the entire area occupied by an offshore, pile-supported structure.

2. Scour is usually minor at sites where the surface soils are clays; however,
some designers assume that the mudline may be lowered 3 to 5 ft (1 to 1.5 m)
at such sites.

3. If the surface soil consists of fine sands, the erosion of the mudline can be
severe. Some means of preventing such scour is usually adopted and installed
at the time when the platform is being erected.

4. Predictions of the amount of scour are usually made on the basis of
observations at other structures in the vicinity. If no data are available, a

program for making periodic observations of the amount of scour is usually
established.
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Solutions Using Nondimensional Parameters

An iterative procedure using nondimensional coefficients is recommended for
solving equation (11.5) for cases where there is no axial load and where the pile
stiffness is constant (see Reese and Van Impe, 2001, p.35). A brief description of
the solution procedure is given below for three sets of boundary conditions at the
top of the pile: (1) pile head free to rotate, (2) pile head fixed against rotation,
and (3) pile head restrained against rotation. These boundary conditions, along
with the sign convention used in the following solutions, are shown in Figure
11.6. In these solutions, the reaction modulus for the soil is referenced to the
ground or mudline surface by the symbol z; however, the symbol z is used here
because the origin for the nondimensional solutions is the same for the ground
surface and the top of the pile.

TN+ M

—

—

(@) Ty +Y

—>+p

s ~

e

—

-
+x v

+V /\+M +V Ml
()

Case I: Pile head Case II: Pile head Case III: Pile head
free to rotate fixed against restricted against
rotation rotation

Figure 11.6  (a) Sign conventions; (b) boundary conditions.

Case I: Pile Head Free to Rotate

1. Construct p-y curves at various depths by procedures recommended ear-
lier in this chapter. The chosen spacing between p-y curves should be closer
near the ground surface than it is near the bottom of the pile.

2. Assume a numerical value for T, the relative stiffness factor, defined by

0.2
T = (2) (11.13)
kpy
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where ET is the flexural rigidity of the pile and k,y is a constant relating the
secant modulus of soil reaction to depth (Ep, = kpyz).

3. Compute the depth coeflicient Z,,,x as follows:

Lmax
Drpax = —— 11.14
4. Compute the deflection y at each depth along the pile where a p-y curve
is available. Use the following equation:

P13 M;T?
Y EI Y EI
Here A, = deflection coefficient, found in Figure 11.7a; P, = shear at the top
of pile; T' = relative stiffness factor; B, = deflection coefficient, found in Figure
11.7b; and M; = moment at the top of the pile. The particular curves to be

employed in getting the A, and B, coefficients depend on the value of Z,.,
computed in Step 3.

y=A + B

(11.15)

(2)

5 —— (®

~
NS
=

_ N W

Deflection Coefficient, 4,

Deflection Coefficient, B,

0
-1y ‘ ) -1y .
Zrlnaxz 2 2 Zmax= 'I . )
0 1t 2 3 4 5 0O 1 2 3 4 5
Depth Coefficient, Z = x/T Depth Coefficient, Z =x/T

Figure 11.7 Case I: Pile deflection produced by: (a) lateral load at the mudline; (b)
moment at the mudline.

5. Select from a p-y curve the value of soil resistance p that corresponds to
the pile deflection value y at the depth of the p-y curves. Repeat this procedure
for every p-y curve that is available.

6. Compute a secant modulus of soil reaction E,, using equation (11.6).
Plot the FE,, values versus depth.

7. From the E,, versus depth plot of Step 6, compute the constant, k,,
which relates E,, to depth (k,, = E,,z), giving more weight to the FE,, values
near the ground surface.
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8. Compute a value of the relative stiffness factor T from the value of k,,
found in Step 7. Compare this value of T to the values of T assumed in Step 2.
Repeat Steps 2 through 8 using the new value of T' each time until the assumed
value of T equals the calculated value of T'.

9. When the iterative procedure has been completed, the values of deflection
along the pile are known from Step 4 of the final iteration. Values of soil reaction
are computed from the basic expression: p = Epyy. Values of slope, moment,
and shear along the pile can be found by using the following equations:

P,T? M,T

S:ASW+BSE— (1116)
M = A P,T + By M, (11.17)
V:AUPt—i-Bv—A;E (11.18)

The appropriate coeflicients to be used in these equations can be obtained from
Figures 11.8 through 11.10.

(a) )
0
-0.5
& i)
=10 al
S sl A 5
S -1.5¢ 2
e [
o 2.0 S 2.0 -
a 2.5+ E g 2.5 "'/
% ) Zmax =’2— % - .-"<
-3.0F //"'J T -3.0 :’; Znax=2
S ] el -35 :
0 1 2 3 4 5 0 1 2 3 4 5
Depth Coefficient, Z = x/T Depth Coefficient, Z = x/T

Figure 11.8 Case I: Slope of pile caused by: (a) lateral load at mudline; (b) moment
at mudline.

Case II: Pile Head Fixed Against Rotation

When a pile is fixed firmly to a very stiff superstructure, the pile head can
be considered to be fixed against rotation. The further assumption is made that
any rotation of the superstructure is negligible.
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Figure 11.9 Case I: Pile bending moment produced by: (a) lateral load at the
mudline; (b) moment applied at the mudline.
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Figure 11.10  Case I: Deflection of pile fixed against rotation at mudline.

1. Perform Steps 1-3 of the solution procedure for free head piles, Case I.

2. Compute the deflection y at each depth along the pile where a p-y curve
is available by using the following equation:

P,T3

Yyr = Fy-f]'_ (11.19)

The deflection coefficients F, can be found by entering Figure 11.11 with values
of Z, using the appropriate curve according to the value Zpax.

3. Proceed in steps similar to those for the free head case.
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Deflection Coefficient, F,

0 1 2 3 4 5
Depth Coefficient, Z = x/T

Figure 11.11 Case II: Deflection of pile fixed against rotation at the mudline.
4. Compute M;, the moment at the top of the pile, from the following
equation:

The value of Fas; can be found by entering Table 11.3 with the appropriate
value of Zmax-

Table 11.3 Moment Coefficients at Top of Pile for the Fixed Head Case

Zma.x FMt
2 —1.06
3 —0.97
4 —0.93
5 and above —0.93

5. Compute values of slope, moment, shear, and soil reaction along the pile
by following the procedure for the free head pile.

Case III: Pile Head Partially Restrained Against Rotation

This case can be used to obtain a solution when the rotational restraint is
known for the pile on entering the superstructure. Such a case is illustrated by
the example that follows.

1. Perform Steps 1-3 of the solution procedure for free head piles, Case L.
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2. Obtain kg, the value of the spring stiffness of the pile-superstructure
system. This spring stiffness is defined as

M,

k‘g:Tg't—

(11.21)
where M, is the moment at the top of the pile and S; denotes the slope there.
(Note that S; sometimes denotes soil sensitivity, but in context, there should
be no confusion of symbols.)

3. Compute S;, the slope at the top of pile, as follows:

2
RIZ | p MT (11.22)

o= As—pr EI

Here A,; is the slope coefficient A, found in Figure 11.8a; and B, is the slope
coefficient B, found in Figure 11.8b.

4. Solve equations (11.21) and (11.22) for M,, the moment at the top of the
pile.
5. Perform Steps 4-9 of the solution procedure for free head piles, Case I.

This completes the solution of the laterally loaded pile problem for three sets
of boundary conditions. The solution gives values of deflection, slope, moment,
shear, and soil reaction as a function of depth. The example problem in the
next section illustrates the use of this method.

The nondimensional method as presented above has the following limita-
tions: the influence of an axial load was not considered; the pile must have a
constant value of EI; and perhaps of most importance, the soil must be of one
type and preferably have a shear strength that increases linearly with depth
from zero at the mudline. In spite of these limitations, the nondimensional
method can give good answers to a considerable share of cases of lateral loading
of piles. Furthermore, this hand solution can reveal explicitly the influence of
various parameters.

Computer-Aided Solutions

Computer codes have been written to eliminate the limitations in the nondi-
mensional method by solving equation (11.5) using finite-difference techniques.
If a pile is divided into n increments of length h, then n + 1 equations of the
following form can be written:

EI
"hz(ym——2 - 4ym——l + 6ym - 4ym+1 + ym+2)
Py
+‘h-2(ym—1 = 2Ym + Ymt1) — Epyym =0 (11.23)

Two imaginary points must be introduced at the top of the pile and two at the
bottom, leading to n -+ 5 unknown deflections. Two boundary equations at the
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bottom of the pile and two at the top can be added to the n + 1 standard
equations. Solutions of these n + 5 simultaneous equations yield the deflections
along the length of the pile, from which slope, bending moment, shear, and soil
reaction may be readily computed. Equation (11.23) is written for a constant
EI; however, the equation can be rewritten to account for a change in pile
stiffness. This expanded equation presents little additional difficulty in writing
the computer program.

A number of methods can be used to solve the simultaneous, finite difference
equations. A method of Gaussian elimination discussed by Reese and Van Impe
(2001) was found to be efficient. The mesh size h and the number of significant
figures in the computation procedure must be controlled in order to achieve
acceptable accuracy. Reese and Van Impe (2001) present several case studies.

The definite advantages of a computer-aided solution are summarized:

1. Changes in flexural stiffness of the pile can be introduced at any depth.

2. The pile length can be changed as desired.

3. The p-y data can be introduced in several ways.

4. The £, value can be changed from point to point as dictated by the soil
response.

5. An axial load can be specified and accounted for in obtaining the shape
of the deflected pile.

11.4 AN EXAMPLE: LATERAL PILE LOADING

. -~ Wave
Resultant wind _ e

and wave force

Mudline
NN

T

ki)
> TR

Vb

Figure 11.12 A plane truss or bent from an offshore platform.

An example problem is now solved using the nondimensional coefficients, and
this solution is compared with results from a finite-difference solution. Many
features of the example are consistent with current practice, except that no
attempt has been made to establish exact compatibility between the structure
and pile.
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Problem Description

The problem is illustrated in Figure 11.12, which shows a plane truss or bent
from an offshore platform. A template or jacket, which consists of a welded pipe
framework, is first set on the ocean floor. In this particular case the legs of the
jacket are assumed to penetrate into the soft surface soil. The penetration is 140
in.; mud sills are set below the bottom bracing to keep the jacket from sinking
further.

After the jacket is set, the piles are stabbed into the jacket legs and driven
to a predetermined penetration. The annular space between the pile and the
jacket is then grouted. (Some designers prefer not to use a jacket-leg extension
and not to grout the annular space in order to reduce the bending moment at
the bottom panel points. In this case, the wall thickness of the pile must be
greater than in the case being considered.)

(@ Annular space ®

/ grouted

a7

h=2401n.
— Mudline P
Pile plus 33in. )
jacket leg: dia. 14(i in. |
o P
12,1 17 in? xI >

in. di Pile: I, = in?
30 in. dlg.\ | _—Pile: I, =375 1n6 .
E =30x10"psi

(steel)

o

Figure 11.13  (a) Section of jacket showing pile and superstructure at mudline; (b)
interaction between pile and jacket leg with assumed equation for rotational restraint.

Shown in Figure 11.13 are a pile and a portion of the superstructure. Two
boundary conditions are indicated: the lateral load P; and the rotational re-
straint kg. As indicated in the figure, the restraint against rotation at the pile
head is provided by the superstructure and can be computed using equation
(11.21), or

M, _35EI, _ (3.5)(30 x 108)(14,117) _ 0.
S, < R = 510 = 6.18 x 10” in.-lb/rad

ke =

(Note that A in the above computations is the panel length and not the increment
length as defined earlier.) A constant pile stiffness EI must be employed in the
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Figure 11.14  Soil profile with properties for the example problem.
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nondimensional solutions, and the stiffness of the upper portion of the pile is
selected. Experience has shown that the behavior of the upper portion of a pile
under lateral loading has a significant effect on the result of a solution.

Solutions Using Nondimensional Parameters

The p-y curves are nonlinear, which leads to a nonlinear solution with respect
to the lateral load F;; therefore, a series of solutions should be generated for
a range of values of P,. An approach that is useful is to increase the P, by
multiplying the service load by the factor of safety and to check the behavior
of the pile under the increased load. However, it is wise to employ loads below
and above the design load because nature of the p-y curves is such that in some
cases a slight increase in lateral load can cause a large increase in deflection and
bending moment.

The soil conditions employed in this analysis are shown in Figure 11.14.
The soil conditions are representative of those in the eastern Gulf of Mexico
and offshore from the Louisiana coast. The water depth is 91 ft. The undrained
shear strength and the water content vary with depth in a manner like that of
a normally consolidated clay. The soil profile was simplified somewhat, and the
following values of undrained shear strength and submerged unit weight were
selected for the analysis:

c=0atz=0; c¢=12151b/in.?2 at z = 2400 in.
v =0.0201b/in3at 2 =0; + =0.036 lb/in.? at = = 2400 in.

In the absence of stress-strain curves, the value of €5y was assumed to be 0.02.

In view of the soil conditions, the method used to compute the p-y curves
was for soft clay below the water surface, as detailed earlier. It is assumed
that the loading is cyclic because the maximum lateral load on an offshore
platform occurs during a storm. The p-y curves were computed for the following
depths in inches: 0, 50, 100, 200, 300, 400, 500, 700, and 900. In generating
nondimensional solutions, the curves are spaced more closely near the mudline.
As can be seen later, two or three additional curves between the mudline and a
depth of 300 in. would have been helpful.

The first step in computing the p-y curves is to compute the ultimate soil
resistance p,, using the smaller of the values from equations (11.7) and (11.8).
These values are shown in Table 11.4, along with values of 2z, = z, computed
from equation (11.11).

Shown in Figure 11.15 are computer-generated p-y curves computed for var-
ious depths up to 900 in., all based on a pile diameter of 33 in. The rotational
restraint at the pile head is assumed to be constant for all of the lateral loads.

The soil profile of Figure 11.14 shows relatively soft clay to a considerable
depth. No computations are shown here for the pile penetration that is required
to sustain the expected axial loading; however, it is likely that the piles would
tip in the sand deposit. As noted earlier, when a pile under lateral loading
reaches a length where it can be termed as long pile, any additional length has



AN EXAMPLE: LATERAL PILE LOADING 311

no effect on its behavior. For the following solutions, a pile length of 1500 in.
was selected.

Table 11.4 Computed Values of p,, and z, = z,

Submerged Undrained Ultimate

Depth Unit Weight Shear Strength Soil Resistance

z,in. 4/, 1b/in2 ¢, Ib/in.2 Dy, 1b/in. 2y, in.
0 0.0200 0 0 -

50 0.0203 0.253 64.87 62.90
100 0.0207 0.506 143.70 107.03
200 0.0213 1.013 300.86 165.85
300 0.0220 1.519 451.14 202.47
400 0.0227 2.025 601.43 227.61
500 0.0233 2.531 751.71 246.33
700 0.0277 3.544 1052.57 271.23
900 0.0260 4.556 1353.13 287.66

12
.104 X =900 in. depth
8
S
=, 81 700 in. .
8
Q 6- .
Q 500 in.
: S
.é 400 in. e
w4 300 in. .
8 5 200 in. — 5
47 100 in. .
o 0-0-0-C 50 in: —
O v T 1 I T

0 2 4 6 & 10 12 14
Deflection, y in.

Figure 11.15 p-y curves for the example problem.
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COMPUTATION SHEET

Let P, =60,000 1b Try T = 200 in.
Zmax =1,500/200 = 7.5 > 5 Use long pile coefficients

From equation (11.21): Sy = M,;/6.18 x 10°
From equation (11.22): S; = (—1.623)(60,000)(200)?/(4.23 x 10'1)

—(1.75)(200) M;/(4.23 x 10'1)
Solve the above two equations simultaneously for M;.
68.447M; = —3.8952 x 10° — 350M; M; = —9.31 x 106 in.-1b
From equation (11.15):  S; = A,(60,000)(200)2/4.23 x 10!
+B,(—9.31) x 105(200)2/(4.23 x 10')
y =1,1354, — 0.880B,

Table 11.5 Computed Results for the First Trial

z Zz Ay Ya By Ys y p Epy
in. in. in. in. in. Ib/in. 1b/in.2
0 0 2435 2763 1.623 -1.428 1.335 0 0

50 0.25 2032 2306 1210 -1.065 1.241 295 24
100 050 1644 1.866 0.873 -0.768 1.098 62.5 57
200 1.00 0962 1.092 0364 -0.320 0.772 1162 151
300 1.50 0463 0526 0.070 -0.062 0464 1467 316
400 2.00 0142 0.161 0.007 -0.006 0.155 1345 868
500 2.50 -0.025 -0.028 0.100 0.088 0.060 73.6 1227
700 3.50 -0.060 -0.068 0.066 0.053 -0.015 258 1720
900 4.50 -0.020 -0.022 0 0 0022 486 2209
kpy = 320/395 = 0.81 Ib/in3 T = (4.23 x 1011/0.81)°2 = 221 in.

The Computation Sheet and Table 11.5 show the first trial for a lateral load
P, =60,000 1b. A relative stiffness factor T of 200 in. was selected. A value
of the pile-head moment M; was computed and the nondimensional expressions
were used to compute a lateral deflection y at the depth of each of the p-y curves.
The p-y curves of Figure 11.15 were entered with the computed deflection to
obtain a value of p, with which the values of soil modulus E,, were computed.

The values of soil modulus are plotted in Figure 11.16, and the best straight
line passing through zero is fitted through the plotted points. Somewhat more
weight is given to the points near the mudline in fitting the line. The slope of
the line is the value of k,,, the variation of the soil modulus with depth. The
computed values of k,, and T are shown at the bottom of Table 11.5. Note that
the first trial value of 7' = 200 in. yielded a computed value of T' = 221 in.
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Second and third trials were made following this same computation proce-
dure, and the resulting values of E,, are plotted in Figure 11.16. A second
trial value of T" of 250 in. yielded a computed value of 244 in. A plot of the
tried values of T" against the computed values that were obtained is shown in
Figure 11.17. As shown in this figure, 7" will converge to a value of about 239 in.
When the third trial was made with a tried value of T of 239 in., convergence
was indeed found to be this value.

Epy , Ib/in?
0 100 200 300 400 500
1 T T T T

ON

50 c‘\ + First trial
4 * Second trial
%t‘ : o Third trial

100 |- .o\t\
\
\ K First trial
\ Second trial
150\ /;Third trial
-\
200F  ob 4
\\\ \
1
250 - W
W \
300 |- Ve o +
WV
X \
350 L W

Figure 11.16  Trial plots of E,, values.

Depth x, in.

Using the same procedures demonstrated for P; = 60 kips, values of T were
found for values of P, of 20, 100, and 140 kips. With these values of T, the
nondimensional curves and equations (11.15)-(11.18), together with p = E,,y,
the deflection, slope, moment, shear, and soil resistance (y, S, M, V, and p) can
be computed for all depths.

Computer-Aided Solutions

As a means of evaluating the usefulness of the nondimensional method, even
for the case where the soil properties were ideally suited to E,, = kpyy, com-
puter solutions were obtained for the nonlinear differential equation using finite
difference techniques. The following changes were made: an axial load of 500
kips was assumed, the pile stiffness and diameter were allowed to be reduced
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below a depth of 140 in., and the p-y curves were computed from the soil prop-
erties that existed at each depth. Computations were made for values of P; in
increments of 20 kips up to a value of 160 kips.

260 T T T T
//
+
240F / “
- +
3 220 ~ Final: 7 =239 in.1
=}
g
)
& 200 -
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160 I 1 1 1
160 180 200 220 240 260
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Figure 11.17 Interpolation for the value of T.
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Figure 11.18 Bending moment versus depth for two methods of solution.
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The bending moment along the length of a pile is of major concern for
an offshore structure and pile deflection in most cases is less important. Figure
11.18 shows these computed values of bending moments with the two procedures
for a lateral load of 60 kips. There is reasonable agreement in the results of
the two methods, with the computer results showing somewhat more bending
moment, perhaps because the use of the axial load of 500 kips. The position of
the jacket leg extension is indicated, which allows the moment at the top of the
30 in. section to be found. The maximum values of combined stress in the 30
in. section and the 33 in. section were computed, assuming that the jacket leg
extension was fully grouted so that the axial load at the mudline was taken by
both the 33 in. and the 30 in. sections; and it was found that the most critical
stress occurred at the top to the pile or where the pile joined the jacket.

160 T T T
,,’ /‘
120 " o
,r/ // M,
& L/
~ /’ //
Sl Y S .
o ’ .
3 ’ % —eo— Computer
3 VY a ompute
40 ¥ - = X - ~Nondimensional -
f/
0 1 ! I { !
0 4 8 12 16 20
Deflection, Y, in,
[ 1 1 l | 1)
0 1 2 3 4 5

Moment, 107 M, in.-Ib

Figure 11.19 Deflection and bending moment at the pile head based on two
computation methods.

The computed values of pile deflection and maximum bending moment for
the top of the pile for the two methods of computation are shown in Figure
11.19. The computed values agree reasonably well, although the results from
the computer are somewhat greater. If mild steel with a yield strength of 36 ksi
is used in the design, the computed lateral load to cause a plastic hinge at the
top of the pile can be found. The axial stress f, can be computed as follows for
the areas of 51.05 in.? and 69.92 in.2 of the respective sections of 33 x 1/2 in.
and the 30 x 3/4 in. Thus

fa = (500)/(51.05 + 69.92) = 4.13 ksi
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The allowable bending stress would then be 31.83 ksi. The section modulus of
the section (14,117/16.5) yields a bending moment at failure of 27,233 in.-kip.
By entering Figure 11.19 with the bending moment, a lateral load of about 105
kips is found. The computed pile-head deflection at that load was about 6.7
in. A portion of the lateral load could be taken by dynamic loading and some
load factor, according to the design criteria, to find the loading under service
conditions.

Conclusions

In addition to the comments made in the presentation about the importance
of obtaining the best possible prediction of p-y curves, the following points can
be made:

1. The nondimensional solution can yield solutions that agree fairly well
with the computer solution if the soil profile shows favorable values of shear
strength with depth (sands and normally consolidated clays).

2. The nondimensional solution can (a) serve as a check to computer so-
lutions and (b) reveal clearly the nature of the lateral-load problem and the
importance of various parameters.

3. The plot of bending moment with respect to depth shown in Figure 11.18
clearly demonstrates the importance of analyzing the piles and superstructure
as a unit to ensure the best estimate of rotational restraint at the top of the
pile. ‘

4. The engineer can achieve the most efficient design of the piles by taking
into account the length of the extension of the jacket, the details of grouting
between pile and jacket, the wall thickness of the pile with respect to depth,
and careful estimation of loadings on a platform as a function of time.

11.5 RESPONSE OF PILES TO DYNAMIC LOADING

Earthquakes

Several steps are taken in order to design the foundation for a pile-supported
structure in a seismic region. The location of the fault with respect to the
structure must be found and the expected magnitude of the event must be
selected. Then, the characteristics of the soils and rocks at the site must be
considered in order to perform microzonation. With such data at hand, the time-
dependent, free-field motion of the supporting soils and rocks at the building site
can be computed or estimated. The engineer can then decide if there is a chance
of liquefaction of any loose granular soil below the water table. If liquefaction
appears to be likely for the selected earthquake, steps must be taken to improve
the supporting soil or to design a structure that remains stable, even though
some of the supporting soil liquefies.

If the free-field motion of the soils at the site are known as a function of
depth, a fully rational solution can be undertaken which will require extensive
and complicated computations. The validity of the results of such computations
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will be difficult to ascertain because of the lack of experimental data on the
detailed performance of a variety of structures in a variety of seismic events.

A procedure sometimes used for the design of the pile foundation is to select
a horizontal acceleration, which is some function of the acceleration of gravity.
The acceleration can be used to obtain a pseudo-horizontal load, which is some
function of the mass of the superstructure. A judgment about the safety of the
foundation can be made on the basis of the pseudo-horizontal load.

The American Petroleum Institute (1993) requires that structures be de-
signed to be safe in seismic zones. The evaluation of the area where the struc-
ture is to be placed with respect to seismic activity is required. Designs may
be made using procedures from dynamic analysis such as response-spectrum
analysis or time-history analysis.

Zeevaert (1983) studied data from records of seismographs during two signif-
icant earthquakes. The instruments were located at sites in the Valley of Mexico
where deep beds of soft soils are present. In addition to the valuable records on
accelerations, Zeevaert had extensive information on structures that were not
damaged during the earthquakes or damaged to various degrees of severity. He
studied the records of acceleration in detail and developed pseudo-acceleration
spectra as a function of various amounts of damping. The characteristics of
the soil were studied experimentally and analytically. Zeevaert developed a pre-
diction of ground motion as a function of depth and extended the work into
predicting the bending moment in a pile at a specific location during the earth-
quake selected for design. A photograph was included to show the rupture of
a reinforced-concrete pile due to high bending moments. With regard to piles
broken by an earthquake, Professor Ishahara at a breakfast in Tokyo years ago
told the writer that he had not seen broken piles except due to liquefaction
(Ishahara, 1977).

Time-Dependent Loading Above the Mudline

A completely different approach to the design of the piles is needed for the
case where a forcing function is applied to the superstructure. The loading
may come from machinery on the platform deck, from waves, and possibly from
ship impact. The problem can be solved in either the time domain or in the
frequency domain. The responses of a single pile or group of piles to dynamic
loading in the frequency domain have been analyzed by a number of engineers.
For example, Ensoft, Inc. (1999) has prepared a computer code that yields
the dynamic stiffness of a pile-supported foundation, which is defined as the
ratio between the applied force and the resulting displacement under the steady
state vibration at a given frequency. Specifically, the stiffness can be related to
lateral-load versus deflection, axial-load versus deflection, and moment versus
rotation, and the configurations of the piles. The close spacing of piles is taken
into account by pile-soil-pile interaction.

The Ensoft code is based principally on papers by Kausel (1974), Blaney,
et al. (1975), Poulos (1971), and Roesset and Kausel (1975). The principal
analytical techniques employed are the consistent boundary matrix method and
the finite element method. This code requires the entry of the geometry and
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material characteristics of the piles and geometry and material characteristics
of the layers of soil. For the soil, the shear-wave velocity, Poisson’s ratio, mass
density, and damping ratio are required. In addition, for pile groups the mass
of the pile cap, a damping ratio, and a lateral stiffness can be input. With this
code, the engineer can obtain a family of nonlinear curves showing pile stiffness
as a function of frequency. For a single pile or a pile group, the curves will show
the horizontal stiffness the vertical stiffness. For the pile group, the curves will
also present the rocking stiffness in the z and y directions. With such sets of
curves at hand, the engineer can proceed to analyze the dynamic response of
the superstructure.

PROBLEMS

11.1 Compute a point on the curve of axial load versus settlement for the
example in the text using a base settlement of 0.02 in. (instead of 0.05 in.).
Compare the result with the computer solution in Figure 11.3.

11.2  Refer to the American Petroleum Institute’s (1993) Recommended
Practice and compute the allowable load that can be sustained by the axially
loaded pile in the example.

11.3 Given a normally consolidated clay with an undrained shear strength
that increased from zero at the mudline to a value of 1250 psf at a depth of
100 ft, an average submerged unit weight of 45 pcf, and an e59 of 0.02, make
necessary computations and plot the p-y curves for both static and cyclic loading
for depths of O ft, 6 ft, and 12 ft for a pile with a diameter of 24 in. and a wall
thickness of 1.0 in. The pile is assumed to be at an offshore location; select an
appropriate value of the submerged unit weight in your computations.

11.4  Assume a fixed-head, open, steel-pipe pile with a diameter of 30 in.
and a wall thickness of 0.75 in. and assume further that the pile behaves as a
long pile. Compute the magnitude of the lateral load at the mudline to yield
a maximum bending moment of 20 ksi if E,, = kpyz , where kp, = 12 Ib/in.3.
Assume no axial load and a constant EI with depth. How long should the pile
be? Use the nondimensional method.

11.5 Repeat Problem 11.4 with the assumption that the head of the pile
is free to rotate.

11.6  For Problems 11.4 and 11.5, find the rotational restraint such that
the maximum negative moment at the pile head and the maximum positive
moment are equal. Use the lateral load found in Problem 11.5.

11.7 Use data from Problem 11.3 and assume a lateral load is applied at
10 ft above the mudline. Solve for the energy from a docking boat that can be
sustained by the pile if the maximum allowable pile bending stress is 30 ksi. Use
the nondimensional method of analysis and assume the number of repetitions
is small so that the p-y curves for static loading are appropriate. (Hints: The
lateral load to cause the maximum allowable bending stress is about 40 kips.
Because several computations are required, the work may be divided among
several students.)
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CONVERSION TABLE

Customary U.S. (English) Units to SI (Metric) Units

Quantity

Acceleration
Area

Area Moment of Inertia

Density
Energy

Force

Length

Mass

Mass Moment of Inertia

Moment
Momentum, linear

Pressure

Spring Constant, linear
Spring Constant, angular
Velocity

Volume

Conversion

in./sec? — m/s?
ft /sec? — m/s?

in2 — m?

ft2 —s m?

in4* — m?

Ib(avoir.)/in.3 — kg/m?
Ib(avoir.)/ft3 (pcf)~— kg/m3

ft-lb —J
Btu — J

b — N
kip (1000 1b) —s N
ton (2000 Ib) — N

in. —m

ft — m

mi — m
nautical mi — m

Ib-sec?/ft (slug) — kg
b (avoir.) — kg

Ib-ft-sec? (slug-ft?) — kg-m?

in.-lb — N-m
ft-lb — N-m

Ib-sec —» kg:m/s
1b/in.2 (psi) — Pa
lb/ft? (psf) — Pa
tons/ft? (tsf) — Pa
Ib/ft —> N/m
ft-1Ib/rad — N-m/rad

ft/sec — m/s
mi/bhr — m/s
nautical mi/hr (knot) —— m/s

3 3

in.
ft3 — m

—m
3
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Multiplier
2.54 x 102
3.048 x 10~

6.4516 x 10~4
9.2903 x 102

4.1623 x 1077

2.7680 x 10*
1.6018 x 10

1.3558
1.0551 x 103

4.4482
4.4482 x 103
8.8964 x 108

2.54 x 1072
3.048 x 107!
1.6093 x 103
1.852 x 103

1.4594 x 10
4.5359 x 1071

1.3558

1.1298 x 10~!
1.3558

4.4482

6.8948 x 103
4.7880 x 10
9.5760 x 10*

2.1016 x 103
1.3558

3.048 x 1071
4.4704 x 107}
5.1444 x 101

1.6387 x 105
2.8317 x 102
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Added mass coefficient, 21
Anchor, 10

Archimedes’ principle, 28
Autocorrelation, 172, 175, 187

Barge motion, 278
Beam dynamics:
frequencies, mode shapes, 254-258
responses, 265
Bernoulli-Euler equation, 251, 276
Buckling, 110
Buoys:
cylindrical, 131-138
spherical, 102, 138
Buoyancy, 28-32

Cables:
arrays, 46
dynamics, 253, 259, 260
sag, 45
stiffness, 44, 49, 50, 134
Catenary, see Cables
Clay, 299
Compliant tower, 3
Conservative system, 209
Convolution integral, 119, 174
Coordinates:
generalized, 196, 208
normal, 215
Covariance propagation, 185-187
Current, 34, 35
Cylinders:
flexible, 27, 28, 40, 85
rigid, 22

Damped motion, 28, 86
Damping:
linear viscous, 134
Rayleigh, 204, 217
velocity squared, 251

323

Damping matrix, 203

Damping ratio, 116

Diffraction coefficient, 88, 89
Dirac delta, 118

Drag coeflicient, 23, 93
Duhamel integral, 120, 174
Dynamic magnification, 40, 117

Earthquakes, 36, 120-123, 231
Energy:
kinetic, 106-108, 208, 211
potential, 106, 208, 211
Ensemble average, 171
Ergodic process, 171
Euler’s buckling, 110
Expectation operator, 166, 186

Fast Fourier transform (FFT), 173

Fatigue, 15

Fetch, 154

Fluid momentum, 26

Fourier series, 145

Fourier transform, 174

Free vibrations:
linear, 101, 214, 236, 253, 254
nonlinear, 110

Froude-Krylov forces, 89, 90

Gaussian process, 167-169
Gravity platform, 3, 20, 30-32, 55,
102, 233-236, 243-246

Hamilton’s principle, 209
Harmonic response function, 116, 174

Ice loading, 38

Impulse response function, 118, 174
Inertia coefficient, 21, 93

ITTC, 155

Jacket template platform, 3, 5, 197,
206, 243-246



324

Jackup rig, 3, 4, 42

Keulegan-Carpenter number, 25
Kinetic energy, see Energy
Kocsis method, 52

Lagrange equations, 208
Lift coefficient, 23
Linear momentum, 25
Line components, 248

Magnification factor, 40, 117
Mass matrix, 199
Mathieu equation, 262
Mean value, 166
Modal damping, 217, 218
Modal vectors, 214
Mode shape, 106
Moment of inertia, 19
Moorings:

buoy, 10, 11

platform, 9

ship, 9, 18, 51, 113, 263-265
Morison’s equation, 25, 84

Newton’s second law, 18, 204
Node point, 196
Nonlinear motion:
free oscillations, 112-115
forced oscillations, 123
Nyquist frequency, 144

Orthogonality, 215
OTEC pipeline, 13, 275

Parallel axis theorem, 19

Parametric excitation, 249, 261, 269

Parseval’s theorem, 145
Perturbation theory, 112, 113
Pile loading:
axial, 291
lateral, 296, 307
Pipeline, 11, 13, 275
Platforms:
compliant, 3
fixed leg, see Jacket template
gravity, see Gravity platform
production, 4
semisubmersible, 3, 8

INDEX

tension leg, 3, 7
Probability density, 167
Probability distribution, 167
Potential energy, see Energy
D-Y curves, 299

Rayleigh damping, 204, 217, 218
Rayleigh distribution, 169, 190
Rayleigh’s method, 105
Resonance, 117, 118

Reynolds number, 23

Riser, 12

Root-mean-square (rms), 167, 246

Scour, 300
Semisubmersible platform, 3
Shielding, 34
Simple system, 209
Slamming (wave), 39
Soil resistance:
damping, 53
response, 298, 316
stiffness, 53
Solidification, 34
Spatial averages, 275
Spectral density, 172
Stability:
dynamic, 238, 239, 262
static, 32
Standard deviation, 167
State variable, 184
Stationary process, 166, 169-171
Steady state response, 120, 187,
188, 219
Stiffness matrix, 201
Strouhal number, 24
Subharmonics, 129, 264, 265
Symmetric array, 201

Tension leg platform, 3, 7
Time average, 171
Transfer function, 94-96
Transverse excitation, 266

Ursell number, 71

Variance, 177, 187, 246
Virtual mass, 40, 200
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Vortex shedding, 24 Pierson-Moskowitz, 154, 179
Wave spectra synthesis, 159
Wave statistics:
amplitude, 145
elevation, 153, 162
significant height, 147-150, 156
significant period, 147
Wave theories:

Wave analysis (methods), 61, 62
Wave attributes:

ampitude, 63

celerity, 62, 63

frequency, 63

group velocity, 68

harmonic, 64 Airy, 65

number, 63 cnoidal, 69

period, 63 fetch-limited, 156

phase displacement, 64 finite amplitude, 68

progressive harmonic, 64 linear, 65

sinusoidal, 64 long-crested, 62
Wave loading: numerical, 73

drag, 23 Stokes, 68, 71, 76, 77

diffraction, 88, 89 solitary, 72

inertia, 21 trochoidal, 69

slamming, 39 White noise, 180, 182, 185
Wave spectra, empirical: Wind, 33, 34

JONSWAP, 156
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