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ABSTRACT
Measures of corporate environmental justice performance can be a valuable tool in efforts 
to promote corporate social responsibility and to document systematic patterns of envi-
ronmental injustice. This paper develops such a measure based on the extent to which toxic 
air emissions from industrial facilities disproportionately impact racial and ethnic minori-
ties and those on low incomes. Applying the measure to 100 major corporate air polluters 
in the United States, we fi nd wide variation in the extent of disproportional exposures. In 
54 cases, minorities, who represent 31.8% of the US population, bear excess burden; in 15 
of these cases, the minority share exceeds half of the total human health impacts from the 
fi rm’s industrial air pollution. In 66 cases, poor people, who represent 12.8% of the US 
population, bear excess burden. Copyright © 2010 John Wiley & Sons, Ltd and ERP 
Environment.
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Introduction

THIS PAPER ANALYZES CORPORATE ENVIRONMENTAL JUSTICE (EJ) PERFORMANCE, MEASURED IN TERMS OF THE HUMAN 
health impacts of airborne emissions of toxic chemicals from industrial facilities. Prior studies of corporate 

environmental performance have focused primarily on total emissions of pollutants, remediation efforts, 

or aggregate environmental damage. Prior studies of EJ have examined the extent to which hazards dis-

proportionately impact specifi c groups, such as racial minorities. This paper is the fi rst effort to combine these by 

constructing a measure of corporate EJ performance.

Aslaksen and Synnestvedt (2003) discuss the prospects for deepening the links between economic performance, 

environmental performance, and broader social performance. The literature on broader social performance focuses 

on child labor, bonded labor, and other intolerable working conditions, but it does not, as a rule, include EJ.

The difference between studies of corporate environmental performance and of EJ is, in part, methodological: 

in corporate environmental performance the unit of analysis is the source of pollution, the fi rm or an individual 
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facility; in EJ the unit of analysis is the receptor, the community or households on the receiving end. The two 

strands of research also differ in their audiences and aims. The main audiences for research on corporate envi-

ronmental performance are socially responsible managers, investors, and consumers, with the main aim being to 

improve fi rm behavior. The main audience for EJ research is the impacted communities and responsible govern-

ment offi cials, the main aim being to protect communities from disproportionate hazards.

Research on corporate environmental performance has documented the benefi cial effect of mandated environ-

mental reporting, in particular, pollutant release and transfer registers, on both governance processes around 

industrial sites and the ultimate environmental performance of fi rms (Sullivan and Gouldson, 2007).

This paper presents a measure of corporate EJ performance, bridging the gap between research on corporate 

environmental performance and that on EJ. Our measure is based on data that link pollution exposures to pollu-

tion sources. The audiences for this work include both corporate social responsibility (CSR) advocates who want 

information about this important dimension of environmental performance and EJ advocates who want documen-

tation on systematic patterns in corporate behavior. The paper is organized as follows.

First, we describe the datasets and methodology for matching the exposure data and Census data. Our environ-

mental data come from a source-and-receptor model of air-toxics release and exposure from the US Environmental 

Protection Agency (EPA). We merge the EPA data with socioeconomic data from the US Bureau of the Census to 

analyze exposure disparities by race, ethnicity, and income. This facility-level information is aggregated to obtain 

fi rm-level measures using a dataset on corporate ownership of industrial facilities developed at the Political 

Economy Research Institute of the University of Massachusetts, Amherst.

Then we present the measure of corporate EJ performance, and report the results of applying it to 100 large 

corporations operating throughout the United States. The corporations are those listed in the latest edition of the 

Political Economy Research Institute’s Toxic 100 Air Polluters which uses the same data sources to rank fi rms on 

the basis of total human health hazards resulting from air toxics emissions at their facilities.

Next we present within-class rankings for fi rms in two industrial sectors that rank high in toxic air emissions: 

oil refi ning; and plastics and synthetic materials. Community-based EJ activists generally have focused on impacts 

from specifi c facilities, such as the Solutia (former Monsanto) plant in Anniston, Alabama, but whether the expo-

sure patterns at individual facilities can be generalized to overall corporate behavior is seldom evident.1 Academic 

EJ researchers generally have focused on the aggregate pollution loads imposed on people of color and low-income 

communities, but whatever the overall extent of disproportionate impacts, there is no reason to assume that dis-

parities are constant across fi rms (Ash and Fetter, 2004; Pastor et al., 2006; Mohai and Saha, 2007). We show 

that the extent to which fi rms in the same industrial sector impose disparate pollution burdens on different groups 

can and does vary substantially.

We then examine the relationship between corporate EJ performance and total human health risk for the Toxic 

100 to assess whether a measure of EJ performance adds value to a more conventional measure of corporate 

environmental performance. Finally, we conclude by discussing potential uses of these data in research on the 

determinants and effects of corporate EJ performance and in efforts to improve corporate performance.

Data and Methods

The underlying data for the corporate EJ measure come from three sources: the EPA’s Risk-Screening Environ-

mental Indicators (RSEI); the 2000 US Census of Population and Housing; and the Political Economy Research 

Institute’s corporation-facility identifi cation dataset. This section describes these data sources and how we combine 

them in order to construct a measure of corporate EJ performance.

RSEI

First, we describe two sets of data emerging from the EPA’s RSEI: the aggregated version which is contained in 

the EPA’s RSEI public-release data; and the disaggregated RSEI Geographic Microdata (RSEI-GM) which currently 

1 On the Anniston case, see US Senate Committee on Appropriations (2002) and Bryan (2003).
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are not available to the public at large. Our measure relies on the latter, but it is useful fi rst to describe the public-

release data. Full documentation of the RSEI model is available from Offi ce of Pollution Prevention and Toxics 

(2004).

RSEI Public-Release Data
Estimates of exposure to airborne toxics emitted by industrial facilities across the United States are generated by 

the RSEI project of EPA. The RSEI project starts with information on annual releases of more than 600 chemicals 

from more than 20,000 facilities, reported in the Toxics Release Inventory (TRI) (US EPA, 2009b), the US pol-

lutant release and transfer register.2 RSEI then incorporates data on the relative toxicity of these chemicals, their 

fate and transport (taking into account chemical breakdown rates, stack heights, exit-gas velocities, prevailing wind 

currents, etc.) and the resulting exposures. For each air release (that is, each facility-chemical pair), RSEI estimates 

exposures in each km2 of a 101 km x 101 km grid centered on the facility. The EPA publicly releases facility-level 

measures of the resulting human health hazards, aggregated over the 10,201 1-km2 cells within the grid and across 

chemicals. These ‘RSEI scores’ are used by federal and state environmental offi cials to prioritize enforcement 

actions.

The TRI was created at the direction of the Congress under the Emergency Planning and Community Right-to-

Know Act passed in 1986 after the Bhopal chemical plant disaster. The Act requires industrial facilities to submit 

annual data to EPA on deliberate and accidental releases of roughly 600 toxic chemicals into air, surface water, 

and the ground. TRI data are available on an annual basis starting in 1987. In 2005, more than 20,000 TRI-

reporting facilities released a total of 1.5 billion pounds of toxic chemicals into the air, and additional toxics were 

released from offsite incinerators. The TRI is widely used in both corporate environmental performance and EJ 

literature: the corporate performance studies typically use TRI data on the total mass (pounds) of emissions, while 

EJ studies typically analyze the geographical distribution of TRI-reporting facilities in relation to the demographics 

of the communities in which they are located.

The TRI data are the jewel in the crown of the environmental ‘right-to-know’ movement in the United States. 

Valuable as they are, the TRI data have important limitations. Some of these stem from the nature of the data: the 

releases are annual totals, estimated, self-reported, and limited to listed chemicals from qualifying facilities and 

processes. One of the most signifi cant limitations is that the TRI simply reports pounds of chemical releases, often 

generating press stories that identify local ‘top polluters’ on this basis. Such reporting does not account for varia-

tions in the toxicity of different chemicals, some of which, pound-for-pound, are as much as ten million times 

more toxic than others. Nor does it take into account the fate and transport of these chemicals in the environment, 

or the number of people impacted. Finally, because the TRI reports facility-by-facility data, the cumulative impact 

on communities that are affected by multiple facilities is not evident.3

The RSEI project was launched by the EPA in the mid-1990s to address several of these limitations. The EPA 

Offi ce of Pollution Prevention and Toxics processes the TRI data on the quantity of each chemical released by each 

facility to create the RSEI. To assess the human health risks posed by each release, the EPA combines this with 

information on: (1) toxicity, or how dangerous the chemical is in terms of chronic human health effects; (2) fate 

and transport, or how the chemical spreads from the point of release to the surrounding area; and (3) population 

exposure, or how many people live in the affected areas and are exposed to inhalation of different concentrations 

of the chemical.

Each air release begins at a stack, leaking valve, open canister, or other source within the facility, or at the stack 

of an offsite incineration facility to which it ships wastes. The Industrial Source Complex-Long Term (ISCLT3) 

2 Sullivan and Gouldson (2007) provide more detail on the content and impact of the TRI, including both the strengths of the TRI, such as the 
inclusion of both stack and fugitive air releases and many chemicals and chemical groups, and the caveats of pollutant release and transfer 
registers, such as reliance on engineering estimates rather than measured releases, short sampling periods, and the absence of connection 
between release data and regulation (permits, violations, enforcements, and remedies).
3 The TRI data capture the largest point-source air pollution emissions in the United States, but they do not capture emissions from mobile 
sources, such as trucks, automobiles, ships, and aircraft. The TRI also excludes facilities that are not required to report by virtue of small size 
or belonging to non-listed industrial sectors. Potentially signifi cant air polluters not covered for these reasons include gas stations, dry clean-
ers, and auto-body shops.
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model, a Gaussian-plume fate-and-transport model, is used to map how the chemical spreads from the point of 

release in the surrounding geography.4 EPA combines data on temperature and local wind patterns with facility-

specifi c information on smokestack height and the exit velocity of released gases, together with chemical-specifi c 

information on molecular weight and rates of deposition and decay, to estimate the ambient concentrations of 

each release in each grid cell.

By multiplying the mass (pounds) of each chemical by a toxicity weight, EPA compares the toxicological signifi -

cance of releases of different chemicals. The EPA’s toxicity-weighting system is based on peer-reviewed databases 

from several sources: the EPA’s Integrated Risk Information System (IRIS); the EPA’s Offi ce of Pesticide Programs 

Reference Dose Tracking Reports; the US Department of Health and Human Services Agency for Toxic Substances 

and Disease Registry; the California Environmental Protection Agency Offi ce of Environmental Health Hazard 

and Assessment; and the EPA’s Health Effects Assessment Tables. For some chemicals listed in the TRI, no con-

sensus has been reached on the appropriate toxicity weight; these chemicals are currently excluded from the fully-

modeled RSEI score. In recent years, the excluded chemicals have represented about 1% of the total mass of 

reported toxic air releases nationwide.

Although all TRI chemicals are toxic, their hazards to humans vary widely. For carcinogens, the EPA’s toxicity-

weighting system uses inhalation-based dose-response estimates of the excess lifetime cancer risk per unit of 

concentration. The toxicity-weighted concentration is proportional to an individual’s excess risk of cancer from 

that concentration. For non-carcinogens, the toxicity-weighting system uses the ‘Reference Concentration’, which 

is the highest level of exposure concentration with no adverse health impact, and expresses toxicity-weighted expo-

sures as multiples of this (e.g., ‘six times the highest safe concentration’).

Equivalence between the non-carcinogenic and carcinogenic scales has been set by the EPA Science Advisory 

Board at a Reference Concentration being equivalent to a carcinogenic risk of 250 excess cancer cases per million 

persons. At the extreme ends of the resulting toxicity scale for the chemicals on the TRI list, one pound of friable 

asbestos is equivalent, in terms of inhalation toxicity, to 27 million pounds of chlorodifl uoromethane (HCFC-22). 

The RSEI toxicity model is additive across chemicals, without cross-chemical interactions, and the implicit dose-

response function is linear, without threshold or other nonlinear effects.

The RSEI project overlays the grid of toxicity-weighted air pollution concentrations upon a population grid drawn 

from block-level data from the US Census. The calculation of aggregate human health risk is based on population 

exposure to given toxicity-weighted concentrations. In addition to the number of people in each 1-km2 grid cell, 

the RSEI’s population weights take into account the age and sex composition of the population, because exposure 

varies by the volume of air inhaled per unit of body weight. This variation is captured in a distinct inhalation 

exposure factor (IEF) by age and sex groupings.5 The RSEI score thus represents the aggregate human health risk 

borne by the population, based on the number of people and the extent of exposure.

The RSEI score for a given release (facility-chemical) affecting a given grid cell is:

 RSEI Score Population IEF Toxicity Concentrationfcg asg as c f= × × × ccg

sa
∑∑  (1)

where Populationasg is the population of sex s in age category a in cell g; IEFas is the inhalation factor for persons 

of sex s in age category a; Toxicityc is the toxicity weight for chemical c; and Concentrationfcg is the estimated con-

centration at cell g for chemical c released by facility f.

4 Geographic buffers based on plume modeling provide a more accurate picture of exposure to industrial air releases than do simple circular 
or distance-weighted buffers (Chakraborty and Armstrong, 1997; Saha and Mohai, 2005).
5 The population-exposure values refl ect the cubic meters of air inhaled by a person (roughly 20 cubic meters per 70 kg of body mass) per day. 
Inhalation exposure factors are used to convert toxicity-weighted air concentrations into human exposures, according to the following formula: 
0.341 x (count of males, aged 0 to 17) + 0.209 x (males, 18 to 44) + 0.194 x (males, 45 to 64) + 0.174 x (males, 65 and Up) + 0.310 x (females, 
aged 0 to 17) + 0.186 x (females, 18 to 44) + 0.165 x (females, 45 to 64) + 0.153 x (females, 65 and Up). The factors are intended to refl ect 
biological differences in inhalation uptake by age and sex, although some analysts have criticized them for false precision (Morello-Frosch, 
Pers. Comm. 2007). The inhalation exposure factors could, in principle, alter environmental justice results because age and sex composition 
vary by racial and ethnic group. Groups that are disproportionately young register higher exposure; groups that are disproportionately female 
register lower exposure. In practice, age-sex structures are suffi ciently similar that results do not differ appreciably. Furthermore, the effects 
of age composition and sex composition apply in opposite directions for both African Americans and for poor persons; both groups are dis-
proportionately young and female (US Bureau of the Census, 2008). Person-weighted, as opposed to IEF-weighted, results are available from 
the authors on request.
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The release-cell score, measuring the impact of a given release on a given cell, represents the total human health 

risk in that location. In the case of carcinogens, this score is directly proportional to the number of excess statisti-

cal cancer cases. The EPA’s main objective in creating the RSEI was to assist federal and state agencies in setting 

priorities for environmental protection. To this end, the release-cell scores are aggregated (across chemicals and 

cells) on a facility-by-facility basis:

 RSEI Score RSEI Scoref fcg

gc

= ∑∑  (2)

The RSEI methodology described above has been subjected to extensive internal and external reviews, including 

a peer review by external risk-assessment experts, three peer reviews by the EPA’s Science Advisory Board, peer 

reviews by the States, and submission for public comment.6

The facility-wise RSEI scores are made available to government agencies and the public in the RSEI public-

release data, available for free from EPA. The public-release data include information on the contribution of each 

chemical to the facility’s RSEI score, but they do not include disaggregated information on the geographic cells 

impacted by the toxic releases.

The RSEI Geographic Microdata (RSEI-GM)
Because EPA developed the RSEI data for the purpose of prioritizing facilities (i.e., sources for enforcement and 

clean-up), the public-release data are not designed for examining differences among communities (i.e., receptors) 

in terms of their exposure to industrial toxic releases. The corporate EJ measure requires use of the disaggregated 

RSEI-GM data, which provide 1-km2 cell-by-cell estimates of exposure to airborne toxics identifi ed by source facility 

and chemical. The disaggregated data are not available to the public, owing to their daunting size and complexity. 

EPA has, however, made the geographic microdata available to the research community.

At an earlier stage, EPA provided partially disaggregated RSEI data on total estimated health hazards from air 

toxics for each of the roughly two million impacted 1-km2 grid cells. These data were not fully disaggregated; instead 

they were summed over all releases, i.e., aggregated on a cell-by-cell basis across facilities (sources) and chemicals. 

The aggregate RSEI score for cell g is

 RSEI Score RSEI Scoreg fcg

cf

= ∑∑  (3)

where f indexes facility and c indexes chemical. Although these earlier data provided no distinction among sources, 

the total human health risk was measured at fi ne geographic resolution. By merging this receptor-based measure 

of aggregate hazards with Census data, two published EJ studies (Bouwes et al., 2003; Ash and Fetter, 2004) have 

analyzed hazards in relation to race, ethnicity, and income using these data for the years 1997 and 1998, respec-

tively. Both studies found statistically signifi cant evidence of disproportionate impacts, by race and ethnicity (con-

trolling for income) and by income (controlling for race and ethnicity).

To develop corporation-specifi c measures of EJ performance, we use the fully disaggregated geographic micro-

data, which identify impacts by source facility and receptor cell (RSEI Scorefg). The RSEI-GM data provide this 

information. Unlike most other data used in the investigation of environmental inequalities, the RSEI-GM data 

offer:

1. National scope and coverage of a wide range of industries, chemicals, and facilities. The RSEI-GM data include 

almost all (99% by weight) of the air releases reported to the TRI. The TRI is the most comprehensive list of 

industrial toxic releases in the United States, in 2005 covering 494 chemicals and chemical groups released 

by 23,438 facilities in manufacturing, metal mining, electrical power generation, waste storage and processing, 

and chemical storage, as well as Federal facilities. The criteria for inclusion in TRI reporting include industrial 

sector and the quantity of toxic chemicals processed at the facility.

6 For details, see Offi ce of Pollution Prevention and Toxics (2004).
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2. Fate, transport, and exposure modeling at precise geographic resolution. The fate-and-transport model permits 

the unbiased measurement of exposure at receptor sites resulting from point-source air releases, with a high 

degree of geographic specifi city. The focus on exposure at the receptor site outfl anks the ‘How near is near?’ 

debate in the EJ literature as to what distance best fi ts the notion of ‘closeness’ to a point source (Boyce, 2007).

3. Identifi cation of the source facility for each pollutant release. The data on ambient concentrations of toxics at 

receptor sites are disaggregated by source facility and chemical. Unlike the EPA’s Ambient Air Monitoring 

Program (US EPA, 2009a) and other pollution-exposure data based on ambient measures of aggregate levels of 

pollutants at the receptor site, the RSEI-GM makes it possible to track exposure to its source. The simultaneous 

identifi cation of source and exposure is perhaps the most important and distinctive strength of the RSEI-GM.

4. Toxicity weighting, expressing the human health risk of emissions per quantity released. The EPA’s toxicity-

weighting system permits comparison of toxic releases from disparate industrial processes.

5. Construction by well-documented methods that have undergone extensive peer review. The EPA’s RSEI data 

are among the most rigorously reviewed environmental datasets in the nation, and they carry the imprimatur 

of the Federal regulatory authorities.

6. Almost 20 years of annual data. Longitudinal RSEI-GM data make it possible to advance debates over causality 

and policy in the EJ literature that revolve around matters of timing: which came fi rst, the people or the pollu-

tion? In this paper, we simply provide a cross-sectional analysis of corporate EJ performance to identify patterns 

for further exploration and explanation. In future analysis, however, longitudinal data provide an important tool 

for untangling the interplay of the three variables that decompose the corporate environmental impact on dif-

ferent communities: (1) siting, or the location of new polluting facilities in existing communities; (2) move-in, 

or the decision of households to locate in relation to polluting facilities; and (3) performance, or the ways that 

industrial processes, output, and pollution control are managed across facilities.

In summary, the RSEI-GM database offers a remarkable tool for the analysis of EJ issues in the United States. 

Its fi ne geographic resolution exceeds that of other national exposure databases, such as the National Air Toxics 

Assessment (NATA). By measuring exposure, it circumvents the how-near-is-near problem that has plagued EJ 

studies based simply on proximity to point sources. Disaggregation by source and chemical permits the identifi ca-

tion of problematic industrial sectors and processes. The linkage of release and exposure (i.e., source and receptor) 

provided by the RSEI-GM is unparalleled by any other national dataset. The longitudinal character of these data 

enables time-series and panel analyses that can shed light on trends as well as levels of exposure, and on the 

dynamic interplay between demographic and environmental change.

The RSEI-GM data thus extend the range and complexity of EJ research questions that can be feasibly addressed. 

In this paper, we show how the data can be used to measure corporate EJ performance.

Census of Population and Housing: The Spatial Join

The 2000 US Census of Population and Housing provides the social, economic, and demographic data for con-

struction of our measure. Census blocks, defi ned by roads and other geographic features, are the smallest geo-

graphic unit of data published by the Census. The data provided at this level include counts of the race, sex, and 

age of residents. With the help of local committees, the Census Bureau defi nes Census block groups, which typi-

cally contain roughly 30 blocks that correspond to neighborhoods, a method that ensures a degree of socioeconomic 

homogeneity. Block groups contain 600 to 3,000 people.7 The block group is the smallest geographic unit for 

which the Census Bureau publicly releases socioeconomic data, including counts of the number of people in 

poverty.

The Census and RSEI-GM data are well-matched in terms of geographic precision, but they are not in the same 

geographic format. The RSEI-GM model divides the United States, including Puerto Rico, into 1-km2 cells, of 

which seven million are within the 101 km x 101 km catchment of at least one industrial facility and almost three 

million have positive toxics exposure. Census blocks and block groups have irregular boundaries, and they can be 

7 As blocks fully partition block groups, block groups fully partition Census tracts, the next level of aggregation, which on average contain 
4,000 residents.
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larger or smaller than 1 km2. Working with the EPA, its contractor, and a consortium of academic researchers, we 

constructed a crosswalk by which Census geography is spatially joined with the 1-km2 grid-cell data.8 The spatial 

join was effected by a complete intersection of Census blocks with 1-km2 cells. Each 1-km2 cell is associated with 

the share of each of the Census blocks that it intersects.9 The join of cells to blocks is extended to census block 

groups as well.

In this way we can count, by age category and sex, the number of poor people, blacks, Latinos, Asian-Americans, 

American Indians, and non-Hispanic whites in each of the 1-km2 cells:

 Population Populationrasg gb rasb

b

= ×∑α  (4)

where Populationrasg is the estimated population of race or ethnicity r, age a, and sex s in cell g; Populationrasb is 

the population of race r, age a, and sex s in Census block b, and αgb is the percentage of Census block b that lies 

in grid cell g. The year 2000 Populationrasb of Census block b is extracted from the Summary File 1 data from the 

Census. The crosswalk term, αgb, is used by the EPA to incorporate population densities in the RSEI project. (See 

Appendix 1: Diagram for Spatial Join for an illustration of the join.)

Using this method, we obtained age-sex-race/ethnicity population counts for each grid cell g. Our race/ethnicity 

population counts, segmented by age-group and sex, were derived at the 1-km2 grid-cell level from the block-grid 

spatial merge, using exactly the same method that the EPA’s RSEI model uses in its total population counts. We 

then compute:

 RSEI Score Population IEF Toxicity Concentratiorfcg rasg as c= × × × nn fcg

sa
∑∑  (5)

where RSEI Scorerfcg is the score from releases of chemical c by facility f for people of race or ethnicity r in cell g. 

Summing over the 10,201 cells around each facility, the score expresses the aggregate health risk to minority group 

r from exposure to a given release:

 RSEI Score RSEI Scorerfc rfcg

g

= ∑  (6)

For the impact from all of the releases from a single facility,

 RSEI Score RSEI Scorerf rfcg

gc

= ∑∑  (7)

The Census does not report income data at the block level, but only at the block-group level and higher aggrega-

tions (in Census Summary File 3). For this reason, the poverty specifi c population counts are derived from a spatial 

merge of block-group data with the grid cells.10 We tested whether applying this broader block-group aggregation 

to the racial/ethnic population data caused results to vary much from those obtained from the spatial merge at the 

fi ner block level, and found that there is little difference in the results.

Corporation-Facility Matching

To develop corporate performance measures, one more step is required: matching individual facilities to their 

corporate parents. The Corporate Toxics Information Project, which we direct, has developed a dataset for this 

8 In addition to the authors, other members of the RSEI-GM research consortium are based at the University of Michigan, the University of 
Southern California, the University of California, Berkeley, and Occidental College.
9 Each Census block is also associated with the share of each of the one or more 1-km2 cells that it intersects, but the 1-km2 cell is the funda-
mental unit of observation in this analysis.
10 The Census poverty data are reported by age-group but not by sex, and the age-groups are less disaggregated than those at the block level 
used by the RSEI model: where RSEI distinguishes 18 to 44 and 45 to 64, the Census block-group data on the poor report 18 to 64 as a single 
category. Hence we averaged the age-specifi c exposure factors for males and females; for example, (0.341 + 0.310) / 2 = 0.326 for persons 
aged 0 to 17. For the combined age group, we computed a span-weighted average: (27/47 x (0.209 + 0.186)/2 + 20/47 x (0.194 + 0.165))/
2) = 0.190 for persons aged 18 to 64.
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purpose. This parent-facility matching requires continuous updating to track mergers and acquisitions, transfers 

of facilities to new owners, and the entry of new facilities into the TRI and RSEI databases. Extracting information 

on company ownership of facilities from the TRI reports, Dun & Bradstreet’s Million Dollar Database, Mergent 

Online, http://www.hoovers.com, company websites, printed reports, and telephone calls, the Corporate Toxics 

Information Project matches facilities to their parent companies.

As with additivity across chemicals in the RSEI model, we assume additivity across facilities in generating cor-

porate scores as the sum of scores of the component facilities. By aggregating the RSEI scores of the facilities 

owned by individual parent companies, the Corporate Toxics Information Project produces The Toxic 100, a ranking 

of the largest corporations operating in the United States on the basis of the total human health risk from air toxics 

emissions from their facilities, as measured by the RSEI data. The most recent edition of the Toxic 100 (available 

at http://www.peri.umass.edu/toxic100/) identifi es the top polluters among the companies that appeared in the 

year 2007 on the Fortune 500, Fortune Global 500, and S&P 500 lists of the country’s largest corporations, and 

on the Forbes Global 2000 list of the largest 500 US-based and 500 foreign-based corporations, using RSEI data 

(version 2.1.5) that refer to the year 2005.11 The Toxic 100 therefore reports 2005 air pollution from industrial facili-

ties in the United States, based on the latest available (2007) data on ownership structure.

A Measure of Corporate EJ Performance

In this section we present our measure of corporate EJ performance for the 100 large fi rms that appear in the 

latest edition of the Toxic 100 Air Polluters. The measure indicates the extent to which the human health impacts 

from releases of toxic air pollutants at industrial facilities owned by the corporation are borne by specifi c subgroups 

of the US population. Two corporate EJ performance indicators are reported here: the fi rst measures impacts on 

racial and ethnic minorities, and the second measures impacts on people with incomes below the national poverty 

line.

Measuring Group Shares of Human Health Risk

To measure human health risk for a given corporation, we aggregate the race/ethnicity- specifi c and poverty-specifi c 

scores for the facilities it owns.

 RSEI Score RSEI ScorerF rf

f F

=
∈

∑  (8)

where r indexes racial/ethnic or poverty categories, and f indexes facilities owned by fi rm F.

Our corporate EJ measure is the percentage share of these groups in the total human health risks generated by 

air toxics releases from the fi rm’s facilities. To obtain this, we divide this score by the total RSEI score for the fi rm, 

as reported in the Toxic 100:

 CEJ RSEI Score RSEI ScorePrF rF F≡  (9)

Corporate EJ performance is a purely distributional measure, in that it does not distinguish between a dispro-

portionate share of a small total human health impact and a disproportionate share of a large total impact. Later 

we examine the relationship between the corporate EJ measure and total pollution impacts.

To assess whether the share of impacts accruing to specifi c population groups is ‘disproportionate’, we must 

choose an appropriate counterfactual to defi ne a ‘proportionate’ impact. The most straightforward benchmark for 

11 We have adjusted the RSEI data for 2005 for reporting changes to the Release Year 2005 TRI data that occurred after the TRI 2005 Public 
Data Release.
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this purpose is the share of the group in the national population. In the 2000 Census, racial and ethnic minori-

ties12 constituted 31.8% of the US population, and people living below the offi cial poverty line were 12.9%.

Alternative benchmarks for assessing disproportionality include the share of the group in the population of the 

specifi c regions (e.g., states or metropolitan areas) in which the fi rm’s facilities are located, or their share in the 

fi rm’s labor force. A region-specifi c benchmark would be consistent with the view that the facility siting decisions 

of fi rms are often ‘within-region’ choices, constrained by the desire to locate within a certain part of the country 

for ease of access to input or output markets (Pastor et al., 2001). An employment-based benchmark would provide 

a rough gauge of the balance between ‘costs’ and ‘benefi ts’ to specifi c groups, sometimes invoked in discussions 

of the supposed ‘jobs-versus-environment’ tradeoff. Both alternatives would apply different benchmarks to differ-

ent fi rms, complicating the task of inter-fi rm comparisons.

Our corporate EJ measure can be compared to these and other benchmarks. In the tables presented here, we 

report national population shares as the most straightforward standard for comparison.13 The basic comparison is 

between the share of the EJ group in the population and its share of the burden from toxic exposure.

It is also of interest to see how a specifi c fi rm compares with other fi rms. For this purpose, our tables also show 

group shares of human health hazards aggregated over all fi rms and facilities in the RSEI-GM database and aggre-

gated over the universe of the large fi rms represented in the Toxic 100. For all fi rms, the share of minorities and 

the poor in 2005 were 34.8% and 15.3%, respectively (above their respective national population shares of 31.8% 

and 12.9%). The shares for the Toxic 100 fi rms were slightly lower than for all fi rms, but still above the shares of 

these groups in the national population.

Inter-fi rm comparisons can also be made within specifi c industrial sectors. Aslaksen and Synnestvedt (2003), 

among others, identify the importance of ‘best-in-class’ approaches to relative and absolute investment screens. 

To illustrate the possibilities of the new corporate EJ performance measure, we report within-class corporate EJ 

measures for fi rms in the plastics and oil refi ning sectors below.

Results

Table 1 reports the corporate EJ performance minority measure for the top ten fi rms ranked on this basis from the 

fi rms in the Toxic 100. In all ten cases, more than half of the human health impacts resulting from the fi rm’s air 

toxics releases are borne by minority groups. Two of these fi rms – ExxonMobil and Arcelor Mittal – also rank in 

the top ten of The Toxic 100 itself; in other words, they rank very high in total pollution burden as well as the share 

of the burden borne by minorities. In both cases, the main subgroup contributing to the large impact on minori-

ties is blacks. In the case of ExxonMobil, the black share of total human health impacts is 55.5% –the highest share 

of any fi rm in the Toxic 100.

Looking at the bottom three lines in Table 1, we can compare group shares of health hazards for all fi rms in the 

Toxic 100 and the entire RSEI-GM database to their shares in the US population. Again, the disproportionate 

burden borne by blacks is evident: their share of the total pollution burden (18.1%) is more than 50% greater than 

their share of the national population (11.8%). Although the US EJ literature began with analysis of disproportion-

ate exposure of African Americans, or in some cases aggregated all nonwhites into a single category, recent entries 

including Ash and Fetter (2004), Anderton et al. (1994a, 1994b), Been (1994), and Pastor et al. (2001) have 

emphasized the importance of disaggregating minorities into more specifi c sub-categories. In the case of Hispan-

ics, Asian-Pacifi c Islanders, and American Indians, their shares of the total pollution burden are somewhat below 

their shares of the national population. This is consistent with the fi nding of Ash and Fetter (2004) that within 

metropolitan statistical areas (MSAs), Hispanics tend to live in signifi cantly more polluted neighborhoods than 

12 We classify as minority all persons reporting either Hispanic for ethnicity or a response other than white for race. The breakout columns for 
blacks, Asians and Pacifi c Islanders, American Indians refer to persons reporting exactly one race and non-Hispanic ethnicity. The breakout 
column for Hispanics may refer to people of any race. Because of the multiracial and other categories, the breakout columns do not sum to 
the total for minorities (US Bureau of the Census, 2001).
13 The use of population shares as a benchmark means, of course, that it is possible for facilities or fi rms to have disproportionately high 
impacts on whites and the non-poor, as well as on minorities and the poor. We focus on the latter because these groups bear the greatest 
overall impacts and are the subject of EJ concern.
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non-Hispanic whites, but that this effect is moderated in national-level data by the fact that Hispanics tend to live 

in MSAs that have less industrial toxic air pollution than the national average. By contrast, Ash and Fetter (2004) 

found that blacks not only live ‘on the wrong side of the environmental tracks’ at the MSA level, but also are con-

centrated in MSAs with above-average industrial air toxics pollution.

Table 2 reports the corporate EJ performance poverty measure, again for the top ten fi rms ranked on this basis 

from the Toxic 100. Not surprisingly, there is considerable overlap with Table 1: seven fi rms place in both lists. In 

the cases of the top two fi rms – National Oilwell Varco and Hess – the share of human health impacts borne by 

people living below the poverty line is more than double their share in the national population. Three fi rms that 

rank in the top ten by the corporate EJ poverty measure – ExxonMobil, Arcelor Mittal, and Archer Daniels Midland 

– also rank in the top ten of the Toxic 100 Air Polluters itself.

Appendix 1 presents these measures for all of the fi rms in the Toxic 100 universe, together with their Toxic 100 

rank, number of TRI-reporting facilities, number of releases (i.e., chemical-facility combinations), and total human 

health hazard (RSEI) score. The fi rms with the highest shares for Hispanics, Asian/Pacifi c Islanders, and American 

Minority
Share

Black
Share

Hispanic
Share

Asian/Pacifi c
Share

Am. Ind.
Share

National Oilwell Varco 78.0 22.3 53.0 2.0 0.7
ExxonMobil 69.1 55.5 10.4 2.2 0.3
General Dynamics 69.0 11.1 49.1 6.7 1.0
Hess 66.5 15.6 47.6 4.9 0.3
Freeport-McMoran Copper & Gold 62.1 2.9 57.1 0.5 1.6
Arcelor Mittal 61.6 46.6 12.5 1.3 0.3
Valero Energy 59.9 38.7 18.3 1.8 0.5
Akzo Nobel 58.6 44.4 10.4 2.4 0.3
Public Service Enterprise Group (PSEG) 57.0 18.2 26.8 10.1 0.4
Northrop Grumman 56.6 49.8 3.3 1.8 0.4

Toxic 100 Firms 34.2 19.8 10.5 2.1 0.5
All Firms 34.8 18.1 12.6 2.2 0.6
US Population 31.8 11.8 13.7 3.7 0.7

Table 1. Corporate Environmental Justice Performance: Minorities

Poor Share

National Oilwell Varco 26.5
Hess 26.4
ExxonMobil 25.4
Akzo Nobel 25.2
Arcelor Mittal 24.9
Northrop Grumman 22.6
Archer Daniels Midland (ADM) 22.5
Rowan Cos. 21.6
Nucor 21.2
General Dynamics 20.9

Toxic 100 Firms 15.2
All Firms 15.3
US Population 12.9

Table 2. Corporate Environmental Justice Performance: People in Poverty
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Indians are, respectively, Freeport-McMoran Copper & Gold, Avery Dennison, and Northeast Utilities; in each 

case, the share of these subgroups in the fi rm’s human health impacts is more than three times their share in the 

national population.

Environmental justice performance at the facility level

A fi rm’s corporate EJ performance score refl ects fi rmwide patterns of facility EJ performance, weighted by the 

extent to which its ‘dirtiest’ facilities (i.e., the facilities with the highest total RSEI scores) are located in places 

where the EJ shares are higher (or lower) than average.

To illustrate this point, we examine facility-level measures of EJ performance for ExxonMobil, the corporation 

with the highest share of total impacts borne by blacks. Table 3 presents data for the fi rm’s top fi ve facilities, ranked 

by RSEI scores, and for a composite of the fi fty other ExxonMobil facilities that contribute to the fi rm’s score. The 

top fi ve facilities account for more than 90% of the corporate score, and their EJ performance will effectively 

determine the EJ performance of the entire company. It is evident that the top two facilities, both of which are in 

Baton Rouge, Louisiana, drive the result for blacks. It is also noteworthy that the next two facilities, refi neries in 

Baytown, Texas, and Torrance, California, both have exceptionally large shares of Hispanics and, in the case of 

Torrance, Asian/Pacifi c-Islanders.

Within-class Rankings

This section investigates whether inter-fi rm differences in EJ performance persist within specifi c industrial sectors, 

taking as examples two particularly ‘dirty’ sectors, the manufacture of plastics (and other synthetic materials) and 

oil refi ning. Because fi rms often are diversifi ed – owning facilities in a number of different industrial sectors – we 

restrict the comparison to facilities in the sectors of interest. The TRI and RSEI data include SIC (Standard Indus-

trial Classifi cation) codes for each reporting facility; we use these to select the relevant set of facilities for each 

fi rm.14

Tables 4 and 5 report the corporate EJ scores for fi rms in the oil and plastics/synthetics sectors, respectively. To 

conserve space, we report scores only for fi rms whose total human health hazard from air emissions from facilities 

in the relevant sector surpass a threshold level.15

Score Minority
Share

Black
Share

Hispanic
Share

Asian/Pacifi c
Share

Am. Ind.
Share

Poor
Share

Baton Rouge Refi nery (LA) 62,269 78.0 75.3 1.1 1.0 0.1 31.1
Baton Rouge Chemical (LA) 24,748 73.1 70.0 1.2 1.1 0.1 29.1
Baytown Refi nery (TX) 18,405 54.6 15.0 35.8 2.6 0.5 15.3
Torrance Refi nery (CA) 6,710 69.9 10.8 40.9 15.5 0.7 15.1
Joliet Refi nery (IL) 6,277 33.7 16.5 13.0 2.9 0.2 7.8
50 Additional Facilities 10,347 50.8 23.2 23.4 2.6 0.8 17.3
55 Total Facilities 128,758 69.1 55.5 10.4 2.2 0.3 25.4

Table 3. Minority and Poverty Shares of Airborne Human Health Risk: Exxon-Mobil Facilities

14 Oil-refi ning facilities correspond to three-digit SIC code 291; plastics and synthetic materials manufacturing facilities correspond to four-digit 
SIC codes 2820-2824. Some facilities engage in production activities in multiple industrial sectors, for which they can report up to six SIC 
codes. We select all facilities that report production in the relevant codes. Starting with the TRI 2006 Public Data Release, SIC codes have 
been replaced by NAICS codes.
15 As a cut-off, we use a combined RSEI score of 5,000 for the relevant facilities.
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The fi rms are ranked within-class on the basis of the share of human health impacts borne by minority groups.16 

In the case of the oil industry, the greatest minority-share rankings go to Pasadena Refi ning, ExxonMobil, Chevron, 

and Hess: minorities account for more than 65% of the impacts from their oil-refi ning facilities. Tesoro, Marathon 

Oil, and Sunoco achieve least minority-share rankings, with minorities accounting for less than 35% of the impacts, 

although Tesoro is the only ranked fi rm whose minority share of health impacts is below the minority share in 

the US population at large (31.8%).

In the case of the plastics and synthetic materials sector, Neville Chemical Co., Eastman Chemical, and General 

Electric achieve least minority-share rankings, with minorities accounting for no more than 10% of the impacts. 

The worst-in-class rankings in this sector go to BP, ExxonMobil, and Resinall Corporation, with minorities account-

ing for more than 60% of the impacts.

Total Human Health Impact and Corporate EJ Performance

The relationship between corporate environmental performance, here measured in terms of total human health 

impact from air toxics emissions at facilities owned by the fi rm, and corporate EJ performance is of interest for 

three reasons.

First, if the correlation between these two dimensions of performance were extremely high – i.e., the biggest 

polluters also had the biggest shares of minorities and the poor in the resulting health impacts – then the calcula-

tion of a separate corporate EJ performance measure might not be worth the effort: overall corporate environmental 

performance would tell us all we need to know.

Facilities Releases Score Minority
Share

Black
Share

Hispanic
Share

Asian/Pacifi c
Share

Am. Ind.
Share

Poor
Share

Pasadena Refi ning 
System Inc.

1 36 25,291 73.6 12.6 57.7 2.4 0.6 25.1

Hess 2 110 12,564 67.4 14.6 49.8 4.9 0.3 26.9
Chevron 7 432 5,584 66.2 17.4 31.9 13.3 0.6 18.9
ExxonMobil 8 564 115,370 65.5 51.9 10.2 2.4 0.3 24.6
Valero Energy 17 1,031 83,416 59.8 38.6 18.3 1.8 0.5 19.7
BP 6 386 48,841 56.2 16.4 32.6 5.8 0.6 16.3
Citgo Petroleum Corp. 7 314 29,364 47.8 28.5 15.7 2.3 0.4 19.4
Suncor Energy 1 35 20,378 45.3 6.9 33.6 2.5 1.3 12.9
Royal Dutch Shell 6 291 11,430 43.5 8.8 25.5 6.0 1.0 12.2
Motiva Enterprises 

L.L.C.
5 173 14,707 42.2 35.6 4.1 1.4 0.3 16.8

Sinclair Oil Corp. 3 171 12,459 35.3 18.2 6.8 1.1 5.3 20.3
ConocoPhillips 17 790 90,478 34.8 19.6 10.6 2.3 0.9 15.4
Sunoco 5 176 24,896 34.0 22.9 5.8 3.8 0.3 16.3
Marathon Oil 7 364 11,277 33.8 16.3 13.6 1.9 0.6 14.3
Tesoro 6 315 24,640 24.5 2.6 11.6 5.9 1.8 10.0

All Oil Refi ning 163 6,836 555,298 51.3 27.9 18.8 2.9 0.7 19.0
All Firms 102,636 16,470 14,576,982 34.8 18.1 12.6 2.2 0.6 15.3
US Population – – – 31.8 11.8 13.7 3.7 0.7 12.9

Table 4. Minority and Poverty Shares of Airborne Human Health Risk: Oil Refi ning

16 Rankings based on the share borne by people with incomes below the poverty line (reported in the last column of the tables) yield similar 
results.
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Second, there are plausible a priori reasons to expect that the correlation between the two will be positive, albeit 

imperfect. The reason is that where inequalities of power and wealth between polluters and the ‘pollutees’ who 

bear environmental costs are larger, one outcome is likely to be a larger overall magnitude of pollution. Wealth 

inequalities can yield this result under the standard assumptions of benefi t-cost analysis, in which the value of an 

adverse health impact is measured in terms of a person’s willingness to pay to avoid it. To put matters bluntly, in 

this calculus the health and lives of the poor are worth less than those of the rich. Where the society’s decisions 

about environmental policies are shaped by political infl uence, in addition to benefi t-cost calculations, power 

inequalities can further contribute to this outcome. For example, Boyce (2002) has suggested that environmental 

policies are governed by a ‘power-weighted social decision rule’, in which what matters are not only the monetary 

Facilities Releases Score Minority
Share

Black
Share

Hispanic
Share

Asian/Pacifi c
Share

Am. Ind.
Share

Poor
Share

BP 2 203 14,864 77.0 15.0 44.3 15.4 0.8 20.6
ExxonMobil 9 289 26,770 71.7 66.3 3.4 1.2 0.2 28.3
Resinall Corp. 2 21 14,150 62.5 60.2 1.2 0.3 0.4 32.3
Goodyear 2 30 6,185 58.6 20.7 33.7 3.3 0.4 18.5
Royal Dutch Shell 1 63 8,824 48.2 10.3 34.2 2.7 0.5 13.0
Georgia Gulf Corp. 3 135 11,138 45.7 41.7 1.8 1.3 0.3 22.5
Dow Chemical 23 1,181 62,806 43.4 17.1 23.9 1.3 0.4 15.0
Apollo Mgt. (Hexion 

Specialty Chem.)
23 370 62,766 40.3 14.8 22.1 2.1 0.5 13.2

Hercules Inc. 5 32 7,366 40.2 21.5 15.3 1.7 0.5 20.8
Witco Corp. 2 62 6,553 38.8 34.5 2.3 1.1 0.2 16.9
Westlake Olefi ns 

Corp.
4 42 6,352 38.3 34.1 2.0 1.2 0.2 16.5

E.I. du Pont de 
Nemours

25 732 222,229 37.1 31.6 2.8 1.0 0.3 17.9

Michelin Group 1 17 5,436 35.5 31.5 1.5 0.7 0.2 17.0
Stepan Co. 1 25 12,345 35.1 18.2 12.8 2.8 0.2 8.2
BASF 13 140 22,579 31.3 22.8 4.7 1.4 0.4 13.0
Solutia Inc. 5 72 6,336 29.0 20.5 5.6 0.9 0.9 15.2
Invista S. A. R. L. 7 106 17,580 26.5 20.1 3.8 0.6 0.5 13.7
Rohm and Haas 14 323 7,955 25.1 17.1 2.7 3.6 0.3 21.3
U. S. Polymers 

Accurez LLC
1 10 8,397 24.8 17.6 3.0 1.6 0.4 18.3

Innovene USA LLC 3 69 5,404 24.1 19.1 1.9 0.6 0.2 16.7
Lubrizol Corp. 8 147 10,211 21.1 14.7 2.7 1.7 0.3 12.7
Mitsubishi Chemical 2 20 6,906 20.8 12.5 4.3 2.6 0.2 10.6
Lanxess 3 43 10,549 17.4 11.7 2.8 1.5 0.2 9.9
Zeon Chemicals LP 2 23 14,759 17.0 11.5 2.1 1.6 0.2 8.7
Cytec Industries Inc. 7 108 10,957 12.3 6.0 3.2 1.1 0.5 14.1
High Voltage 

Engineering Corp.
1 4 6,555 11.2 3.0 5.5 1.9 0.2 6.2

General Electric 8 225 12,541 10.0 5.6 2.0 1.0 0.2 11.5
Eastman Chemical 4 252 98,292 9.9 6.4 1.7 0.6 0.2 15.1
Neville Chemical 

Co.
1 22 28,498 7.6 4.9 0.6 1.2 0.1 6.6

All Plastics 543 8,898 847,404 34.1 22.6 8.3 1.6 0.3 16.0
All Firms 102,636 16,470 14,576,982 34.8 18.1 12.6 2.2 0.6 15.3
US Population – – – 31.8 11.8 13.7 3.7 0.7 12.9

Table 5. Minority and Poverty Shares of Airborne Human Health Risk: Plastics and Synthetic Materials
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values of costs and benefi ts but also the power of the parties to whom these accrue. The relationship between 

corporate environmental performance and corporate EJ performance can provide one test of this hypothesis.

A fi nal reason why this relationship is worth examining is that if, instead of a positive correlation, the two were 

inversely related – such that disproportionate impacts were concentrated among relatively minor polluters – then 

this might mitigate, to some degree, fi ndings of environmental injustice.

To examine this relationship, we plotted total RSEI scores against our corporate EJ measures for the fi rms 

appearing in the Toxic 100. The results are shown in Figures 1 and 2 for the corporate EJ minority and poverty 

measures, respectively.

In both cases, the plots show a weak positive relationship, consistent with the expectation that the overall mag-

nitude of pollution will be correlated with the distribution of the resulting burdens, but not so strongly correlated 

as to obviate the need for measures of the latter. The relationship between overall corporate environmental per-

formance and corporate EJ performance is an obvious direction for future research.

Conclusions

The measure of corporate EJ performance presented in this paper provides meaningful new information on an 

important dimension of corporate behavior. For ethical reasons, it is of interest to know not only how much pol-

lution is released by a fi rm’s industrial facilities, but also how the resulting human health impacts are distributed 

across racial, ethnic, and income groups. The corporate EJ performance measure provides this information.

Apart from ethical concerns, there may be good legal and fi nancial reasons for corporations and investors to 

pay attention to this dimension of fi rm performance. EJ, defi ned in terms of both race/ethnicity and income class, 

Figure 1. Total Human Health Impact and CEJP for Minorities: Toxic 100
Source: Toxic 100 Corporate RSEI Score and Appendix 1.
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became an explicit objective in federal government policy making in 1994, when President Clinton signed Execu-

tive Order 12898 directing each government agency to take steps to identify and rectify ‘disproportionately high 

and adverse human health or environmental effects of its programs, policies, and activities on minority populations 

and low-income populations’. In the case of minorities, moreover, systematically disproportionate burdens could 

prove to be grounds for legal challenges under the US Civil Rights Act.17 Public and private responses could trans-

late environmental injustice into legal or social liabilities that affect the fi rm’s bottom line. Aslaksen and Synnest-

vedt (2003) investigate the possibilities for this type of translation further.

Regular measurement of corporate EJ performance can provide stakeholders – investors, managers, regulators, 

consumers, and residents of affected communities – with a report card for assessing levels and changes in per-

formance. Furthermore, because the fate-and-dispersion model can be used to estimate concentrations from 

hypothetical releases, it can be used to predict the environmental and EJ impacts of planned expansions or 

decreases in air toxics emissions.

The method developed here meets the challenge posed by Sullivan and Gouldson (2007) to expand the infor-

mational breadth of pollutant release and transfer registers and to place emissions into the broader context of local 

conditions. This low-cost method uses existing, mandatory, and standardized data to improve the level of informa-

tion about CSR.

The corporate EJ performance measure is scalable, and as we have demonstrated, it can be used to compare 

both fi rms and facilities within fi rms. It can be readily extended to industrial sectors, specifi c chemicals, or other 

classifi cations of industrial point-source pollution.
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Figure 2. Total Human Health Impact and CEJP for Poverty: Toxic 100
Source: Toxic 100 Corporate RSEI score and Appendix 1.

17 For discussion of this and other bases of legal challenges to environmental disparities, see Yang (2002) and Rechtschaffen et al. (2009).
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We believe that the joint measurement of total impact and disparate impacts provides the most robust picture 

of corporate environmental performance. Although correlated, neither measure adequately conveys information 

about the other. Both dimensions are relevant, and both should – and can – be incorporated into the assessment 

of CSR.
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Appendix 1: Diagram for Spatial Join

The diagram illustrates how Census blocks are apportioned to RSEI grid cells in Equation (4). The Census blocks 

are represented by the irregular polygons A, B, and C. The grid cells are represented by the squares 1,2, . . . ,9.

a

A

Bb

C

c

1 2 3

4 5 6

97 8

We give as an example the apportioning Census block populations to grid cell 5. Let a ⊂ A, b ⊂ B, c ⊂ C be the 

area of Census blocks A, B, and C that intersects grid cell 5. Thus, α5A = a/A is the percentage of Census block A 

that lies in grid cell 5. (These α are available from US EPA.) We assume that population is evenly distributed within 

each block and, hence, that α5A = a/A of the population of Census block A lives in grid cell 5.

The population of grid cell 5 is constructed as

Population5 = α5A × PopulationA + α5B × PopulationB +  α5C × PopulationC

which is equivalent to Equation (4). We use an identical procedure for sub-populations by age, sex, and race.
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Toxic
100 Rank

Facilities Releases RSEI
Score

Minority
Share

Black
Share

Hispanic
Share

Asian/Pacifi c
Share

Am. Ind.
Share

Poor
Share

E.I. du Pont de Nemours 1 58 1,277 285,661 36.0 29.9 3.4 1.0 0.4 17.3
Archer Daniels Midland 

(ADM)
2 34 211 213,159 32.0 25.9 2.7 1.1 0.2 22.5

Dow Chemical 3 41 1,415 189,673 42.7 15.0 23.6 2.8 0.4 13.0
Bayer Group 4 16 289 172,773 24.3 3.2 18.5 1.4 0.4 6.8
Eastman Kodak 5 6 142 162,430 26.2 14.2 8.2 2.0 0.3 13.4
General Electric 6 130 828 149,061 32.4 11.7 16.1 2.7 0.5 13.4
Arcelor Mittal 7 24 304 134,573 61.6 46.6 12.5 1.3 0.3 24.9
US Steel 8 12 281 129,123 36.8 29.3 4.6 0.9 0.4 17.8
ExxonMobil 9 55 1,452 128,758 69.1 55.5 10.4 2.2 0.3 25.4
AK Steel Holding 10 9 124 101,428 7.9 5.0 0.9 0.7 0.2 16.9
Eastman Chemical 11 5 284 98,432 9.9 6.4 1.7 0.6 0.2 15.1
Duke Energy 12 22 410 93,174 20.3 14.7 2.9 1.5 0.3 9.8
ConocoPhillips 13 45 1,269 91,993 34.7 19.6 10.4 2.5 0.9 15.2
Precision Castparts 14 29 195 87,500 15.8 5.0 5.3 2.7 0.6 12.8
Alcoa 15 61 574 85,983 20.3 11.1 5.2 1.5 1.2 11.7
Valero Energy 16 36 1,442 83,993 59.9 38.7 18.3 1.8 0.5 19.8
Ford Motor 17 35 444 75,360 24.6 15.4 5.1 2.0 0.3 11.2
General Motors 18 45 662 73,248 29.5 17.9 7.3 1.7 0.4 15.6
Goodyear 19 27 211 67,632 27.3 19.1 4.3 1.6 0.4 15.7
E.ON 20 10 194 65,579 21.6 17.1 1.8 1.1 0.2 13.2
Matsushita Electric Indl 21 4 18 65,346 54.6 48.1 3.6 1.4 0.3 13.1
Freeport-McMoran 

Copper & Gold
22 18 168 63,911 62.1 2.9 57.1 0.5 1.6 14.8

Apollo Mgt. (Hexion 
Specialty Chemicals)

23 35 423 63,880 40.2 14.9 21.9 2.1 0.6 13.3

Avery Dennison 24 13 102 62,740 37.7 8.3 14.4 12.7 0.2 9.7
BASF 25 45 603 60,984 31.9 24.5 4.3 1.1 0.3 15.9
Owens Corning 26 37 143 59,609 42.6 14.2 22.0 4.4 0.5 14.2
Dominion Resources 27 19 196 58,642 29.3 21.4 3.5 2.2 0.3 11.3
Allegheny Technologies 28 29 168 58,375 8.3 5.2 1.2 0.6 0.2 13.1
BP 29 58 1,271 54,336 54.7 16.9 30.9 5.4 0.7 16.2
Honeywell International 30 57 411 50,417 42.1 30.3 8.8 1.9 0.3 15.8
International Paper 31 52 608 49,385 30.6 25.5 2.6 1.0 0.4 16.2
Ashland 32 67 646 43,492 30.7 20.6 5.9 1.6 0.3 18.9
Constellation Energy 33 14 108 42,972 35.5 21.5 10.2 2.1 0.3 11.2
Public Service Enterprise 

Group (PSEG)
34 9 97 41,773 57.0 18.2 26.8 10.1 0.4 16.5

AES 35 14 191 39,789 29.8 14.0 13.9 1.2 0.3 15.1
Progress Energy 36 14 234 38,027 24.0 12.3 7.7 2.1 0.6 11.2
Nucor 37 29 317 36,963 51.3 46.9 2.6 0.7 0.3 21.2
United Technologies 38 42 150 36,526 30.6 21.7 5.7 2.0 0.3 7.6
Timken 39 15 79 36,047 17.6 12.9 1.1 0.5 0.4 17.4
Berkshire Hathaway 40 62 419 35,285 37.8 24.3 10.1 1.5 0.7 13.2
SPX 41 12 49 34,559 39.8 19.6 14.6 3.2 0.5 11.2
Royal Dutch Shell 42 19 609 34,556 43.5 17.3 20.4 3.8 0.7 13.8
Southern Co 43 22 306 33,577 33.6 26.2 4.2 1.7 0.4 12.5
Allegheny Energy 44 9 159 31,539 10.2 7.1 0.8 1.0 0.2 14.1

American Electric 45 20 524 31,364 9.3 5.7 1.2 0.7 0.4 12.4
Reliant Energy 46 15 260 30,821 14.0 8.1 3.5 1.2 0.2 10.7
Boeing 47 12 113 30,453 33.7 12.3 11.1 6.1 1.3 13.6
General Dynamics 48 16 67 30,337 69.0 11.1 49.1 6.7 1.0 20.9
Occidental Petroleum 49 21 391 30,167 43.6 30.8 9.7 1.6 0.4 16.9
KeySpan 50 4 40 29,008 53.7 18.2 24.7 9.1 0.5 17.8
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Lyondell Chemical 51 25 501 28,591 33.6 11.8 18.5 1.9 0.3 14.9
Sunoco 52 40 774 27,851 33.5 22.2 6.1 3.6 0.3 16.6
Anheuser-Busch Cos 53 21 79 27,032 41.0 30.1 6.5 2.4 0.4 16.7
Ball 54 30 184 25,709 38.5 11.3 21.4 4.1 0.6 14.8
Deere & Co 55 10 67 25,346 19.9 6.8 10.2 1.1 0.4 15.6
Procter & Gamble 56 23 108 25,238 41.2 36.6 2.4 1.1 0.2 16.1
Tesoro 57 8 361 24,708 24.6 2.6 11.6 5.9 1.8 10.0
Temple-Inland 58 19 120 24,537 47.0 24.8 21.2 0.5 0.4 20.1
Pfi zer 59 17 231 24,508 38.3 19.5 13.9 2.5 0.5 19.8
Rowan Cos. 60 2 21 24,389 46.2 30.3 13.6 0.7 0.5 21.6
Leggett & Platt 61 36 69 23,870 28.2 5.5 18.6 1.8 1.0 12.6
Northrop Grumman 62 14 87 23,798 56.6 49.8 3.3 1.8 0.4 22.6
Weyerhaeuser 63 49 476 22,708 23.0 15.1 4.0 1.1 1.1 17.1
Rohm and Haas 64 37 584 22,489 40.9 15.1 21.4 3.1 0.4 16.5
Tyco International 65 29 215 22,115 32.7 16.6 10.6 3.0 0.7 9.3
Terex 66 11 31 21,730 17.3 4.9 4.6 4.4 0.6 9.4
Corning 67 6 26 20,942 17.6 12.6 2.4 1.2 0.3 12.6
Exelon 68 5 53 20,811 33.6 24.2 4.9 3.3 0.2 13.6
Fortune Brands 69 22 103 20,583 19.5 8.0 9.4 0.8 0.5 8.0
FirstEnergy 70 7 158 20,441 16.8 12.7 1.7 1.1 0.1 10.0
Suncor Energy 71 1 35 20,378 45.3 6.9 33.6 2.5 1.3 12.9
Crown Holdings 72 23 137 19,447 30.5 8.0 17.9 3.6 0.5 14.3
Masco 73 34 148 18,572 6.7 1.3 2.8 1.4 0.4 12.0
ThyssenKrupp Group 74 16 130 18,133 21.7 12.0 7.3 1.2 0.5 12.1
Textron 75 13 69 17,443 33.6 24.5 4.9 1.6 0.7 13.6
Sony 76 6 36 16,426 12.5 7.4 2.1 2.0 0.2 5.3
Mirant 77 9 138 16,337 42.4 24.9 10.6 4.6 0.4 9.2
RAG 78 31 252 16,080 52.9 45.6 4.2 1.5 0.5 18.4
Alcan 79 11 51 15,231 10.8 6.6 2.2 0.6 0.2 12.1
Huntsman 80 17 280 15,119 47.7 35.0 9.3 2.2 0.4 20.4
Bridgestone 81 30 155 14,952 15.9 8.7 4.0 1.5 0.4 10.1
Danaher 82 22 46 14,621 23.9 3.9 15.8 2.1 0.9 15.7
PPG Industries 83 30 496 14,300 23.2 16.7 3.9 1.1 0.3 13.0
Hess 84 24 457 13,687 66.5 15.6 47.6 4.9 0.3 26.4
Akzo Nobel 85 27 371 13,453 58.6 44.4 10.4 2.4 0.3 25.2
Dynegy Inc. 86 7 107 13,439 25.6 13.2 8.9 2.1 0.3 10.1
Federal-Mogul 87 25 118 13,435 28.0 21.5 3.5 1.3 0.3 13.6
Stanley Works 88 8 30 13,196 32.1 23.3 5.7 1.7 0.4 10.2
Komatsu 89 2 4 13,132 30.9 23.2 4.0 1.0 0.3 19.2
Saint-Gobain 90 55 159 13,012 38.6 23.5 10.2 3.0 0.6 16.7
PPL 91 4 83 12,972 11.6 4.3 4.6 1.6 0.2 8.0
Caterpillar 92 13 56 12,924 24.2 11.9 8.6 1.7 0.2 11.0
Smurfi t-Stone Container 93 30 244 12,868 29.9 23.1 3.1 1.6 0.7 12.0
Siemens 94 22 66 12,649 32.8 18.3 10.5 2.1 0.4 12.8
MeadWestvaco 95 10 214 12,465 40.9 34.0 4.0 1.4 0.4 18.3
Marathon Oil 96 37 705 12,454 33.0 16.3 12.9 1.9 0.5 14.3
Emerson Electric 97 39 110 12,258 13.1 7.2 3.7 0.9 0.3 15.1
Northeast Utilities 98 5 84 11,115 11.7 1.4 5.0 1.4 3.1 7.9
National Oilwell Varco 99 7 25 11,042 78.0 22.3 53.0 2.0 0.7 26.5
Dana 100 18 49 10,638 36.2 29.4 5.3 0.4 0.2 17.6

Toxic 100 Firms – 2,518 30,965    4,724,094 34.2 19.8 10.5 2.1 0.5 15.2
All Firms – 102,636 16,470 14,576,982 34.8 18.1 12.6 2.2 0.6 15.3

US Population – – – – 31.8 11.8 13.7 3.7 0.7 12.9

Appendix Table 1. Minority and Poverty Shares of Airborne Human Health Risk: Toxic 100 Corporations


