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Plan of the Lecture

Focus on useful parallel and distributed algorithms applicable to
various �elds of study

Passing criteria, grade criteria

minimum 50% out of lab
minimum 50% out of written exam
the exam and the lab each contribute 50% to the �nal grade

outlinining algorithms covered in this part of the lecture

understand and design of parallel algorithms � abstract from
particular implementation technologies (MPI, CUDA, OpenCL
etc.)
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Algorithms covered in this part of the lecture

bubble/mergesort/quicksort

numerical algorithm(s)

minimax/alphabeta search

solving a system of linear equations using
1 Gaussian elimination
2 Jacobi (relation to di�erential equations)

genetic algorithms

interpolation algorithms � such as IDW (Inverse Distance
Weighted Interpolation)
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Fundamentals

Analysis of algorithms should consider:

complexity of fundamental blocks vs input data size
1 computational blocks
2 communication blocks (point-to-point, collective)
3 synchronization (usually global)

coe�cients which are very important in practice

for instance, GB Ethernet and In�niband o�er the same complexity
vs input data size O(d) but various coe�cients
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Exemplary blocks and complexities

computational ones (sequential):

sorting based on exchange � mergesort O(nlogn), quicksort
(average) O(nlogn), bubblesort O(n2)
simple image �lters O(n)

communication blocks:

point-to-point tstartup time +
d

bandwidth
collective e.g. scatter � assuming pairs of processes can
communicate at the same time O(dnlogn)
barrier � assuming pairs of processes can communicate at the same
time O(nlogn)
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Parallelization of algorithms

Parallelization of sequential algorithms involves identi�cation and
understanding of the following:

key blocks in the algorithm � computations

dependencies between the blocks

necessary synchronization

In case of parallelization � decide about the following � what
partitioning method is adopted � decide about the paradigm:

master-slave

SPMD (geometric)

pipeline

divide-and-conquer

Paweª Czarnul (KASK, ETI, PG) Parallel and Distributed Algorithms March 9, 2015 6 / 51



Amdahl's law

t(1) � the execution time of application A running on a parallel
machine with one processor

t(N) � the execution time of application A running on the same
parallel machine with N processors.

then Speed-up S can be de�ned as S=t(1)/t(N)

Let us assume that:

si denotes the i-th part of the program's instructions to be executed
sequentially
rj denotes the j-th part of the program's instructions to be executed
in parallel
Let us de�ne: s = s0 + s1 + . . . + sk and r = r0 + r1 + . . . + rl.

If s+r=1 then S=(s+r)/(s+r/N)=1/(s+(1-s)/N).

If N →∞ then S(N)→ 1/s which limits the speed-up.
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Speed-ups

Speed-ups for various values of s � see how it limits the speed-up

Figure: Speed-ups for various value of s
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Speed-ups

Speed-ups for various values of s � including ideal

Figure: Speed-ups for various value of s
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Other performance metrics

Parallel e�ciency (PE) can be de�ned as PE = S
N where N is the

number of CPUs.

Cost of computations can be de�ned as C = execution time×N
Scaled speed-up is used in the context of solving a larger problem
on a larger system i.e. instead of considering the problem of size d
on N CPUs it is considered that the parallel part r can be scaled
up and the scaled speed-up (SS) becomes: SS = s+rN

s+r
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Structure of a divide-and-conquer algorithm

Figure: A divide-and-conquer algorithm
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Typical algorithm analysis � based on divide-and-conquer

Costs that should be considered in the algorithm:

p(d) � the execution time of algorithm A applied to data of size d

c(d) � the memory read/write time of data of size d or
communication time of sending data of size d between processes in
a divide-and-conquer tree

s(k,d)- the time spent on activities by a non-leaf process
before/after it sends/receives data to/from its k child processes e.g.
partitioning/merging k parts of size d/k

overheads: process (thread) creation (if any), communication
startup times etc.
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Divide-and-conquer � complexity

Assume the following algorithm processing structure:

Figure: Algorithm's divide-and-conquer structure
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Divide-and-conquer � complexity

Let us assume a binary tree allowing pairs of processes to
communicate in parallel

a vector is distributed down the tree towards the leaves that
perform computations:

communication can be expressed as

2
∑log2(k)

i=1 (tstartup + C d
2i
) = 2(log2(k)tstartup + Cd(1− 1

k ))

processes merge data in pairs which gives
∑log2(k)

i=1 s(2, d
2i
)

�nally the total execution time of a parallel algorithm will be:

p( dk ) + 2(log2(k)tstartup + Cd(1− 1
k )) +

∑log2(k)
i=1 s(2, d

2i
)
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Problems and optimization

Notice the following:

increasing the number of processes/threads (k in the previous
slide) one can decrease the execution time but at the same time
communication costs are increased � in particular the startup time

the overall algorithm execution time ttotal(k) is a function that will
have a local minimum

it may not be bene�cial to engage too many CPUs/cores for
solving the problem

t'total(k) = 0 will allow to �nd the con�guration that minimizes the
overall execution time
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Sample embarrassingly parallel algorithms

1 image operations such as rotation, scaling, level adjustment

2 standard numerical integration in which the initial range is divided
into a large number of subranges for which area is computed as an
area of a rectangle � execution time is the same for every subrange

3 Monte Carlo methods

4 computing fractals such as the Mandelbrot set � each pixel can be
computed independently

Usually embarrassingly parallel algorithms are straightforward and can
be optimized or replaced by more re�ned algorithms. However, the
former can be parallelized very easily
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Sample embarrassingly parallel algorithm � image

processing

Figure: Parallel image processing
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Sample embarrassingly parallel algorithm � image

processing

There is a 2D d0.5 x d0.5 picture which needs to be adjusted using a
certain �lter so that each pixel requires data from neighboring ones.
Suppose there are k processes. Each needs to process d/k data and
requires d/k + 4(d/k)0.5 pixels (neighboring pixels, assuming k is a
power of 2) and will send d/k pixels back. The computational time is
equal to Pd/k.
The total execution time of a parallel version can be (assuming
communication is sent using point-to-point operations without
overlapping):
ttotal = (k − 1)(2tstartup + 2Cd/k + 4(d/k)0.5) + Pd/k
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Sample divide-and-conquer algorithms

1 sorting such as:

mergesort
quicksort

2 certain numerical algorithms such as adaptive quadrature
integration

3 search � such as minimax, αβsearch

These are much more di�cult to parallelize, especially if the problem is
irregular � which ones out of these are irregular?
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Parallelization of a divide-and-conquer algorithm �

adaptive numerical integration

1 what is wrong with the naive approach which is embarrassingly
parallel and is easy to parallelize?

subrange width the same in every part of the range � in some cases
it should be smaller, in the others it could be larger without a
sacri�ce in accuracy

2 how to design an algorithm that would adapt to the function
automatically?

3 how to parallelize it e�ciently?
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Parallelization of a divide-and-conquer algorithm �

adaptive numerical integration

A divide-and-conquer approach! Idea:

1 check if a subrange can be computed in a simple way with a
desired accuracy

2 if yes then do it

3 otherwise divide and apply the method recursively

An alternative but a similar approach:

1 compute the area using a simple method with a desired accuracy �
result A1

2 compute the area using a simple method with a greater accuracy �
result A2

3 if A1 −A2 ≥ threshold then use A2

4 otherwise divide and apply the method recursively
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Parallelization of a divide-and-conquer algorithm �

adaptive numerical integration

How to parallelize this application?

a divide-and-conquer tree is generated
it can be highly irregular
how many pivot points should be checked? Why?

Figure: Idea of the adaptive algorithm
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Parallelization of a divide-and-conquer algorithm �

adaptive numerical integration

Figure: Sample function
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Parallelization of a divide-and-conquer algorithm �

minimax

minimax is a search method that can be used in games such as
chess, checkers etc.

it unfolds a tree that represents successive moves taken by the
players

the tree is balanced

the tree is very large and results in very long computations
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Parallelization of a divide-and-conquer algorithm � αβ
search
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Parallelization of a divide-and-conquer algorithm � αβ
search

smarter than minimax � can cut o� subtrees

much more di�cult to parallelize

what parallelization strategy could be adopted?

what about the following:
1 how to rate moves?
2 is the order of analysis important?
3 what about transposition tables?
4 are sequential and parallel analyzed positions the same?
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Sorting � general notes

the sequential bubble sort is simple and ine�cient (complexity of
O(n2)). Can it be parallelized e�ciently?

note that partitioning of the initial vector and recursive application
of the bubble sort on subvectors + O(n) merging does work faster
than the initial bubble sort even in a sequential version � why?

partitioning of the initial vector recursively until single elements
are integrated leads to mergesort. What is the complexity of a
parallel implementation?

how parallelization of quick sort di�ers from parallelization of
mergesort?
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Sorting � parallelization of bubble sort

How can the bubble sort be parallelized e�ciently?
Sequentual algorithm:

in the sequential version each phase starts after the previous phase
has completed

the complexity of each phase is O(n)

this results in complexity of the whole sequential algorithm of
O(n2)
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Sorting � parallelization of bubble sort
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Sorting � parallelization of bubble sort

How can the bubble sort be parallelized e�ciently?
Parallel algorithm:

the idea of this parallel algorithm is the practical application of
pipelining

comparison and substitution in the next phase at the beginning of
the vector takes place in parallel with comparision and substitution
of the further part of the vector from the previous phase

the complexity of each phase is O(n) but the phases are parallelized

consequently the start of each phase is delayed by 2 steps from the
start of the previous phase

additionally the last phase would need to execute some steps
sequentially

this results in complexity of the whole parallel algorithm of O(n)
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Sorting � parallelization of merge sort
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Sorting � parallelization of merge sort

How can the merge sort be parallelized e�ciently?
Parallel algorithm:

the idea of this parallel algorithm is that there are k processes each
of which can sort parts of the initial vector in parallel

the tree would have the height of log2(k)

in each phase i each processor would need to merge 2i elements
that takes O(2i) steps

consequently the merging phase would take
∑log2(k)

i=1 2 ∗ 2i steps
this results in complexity of the whole parallel algorithm for the
computing part of O(k) assuming there are as many processors as
the number of elements

communication � there will be O(k) steps involving startup times
as well as the total data size sent in all time steps would amount to
the size which is O(k)

�nally the total complexity of the algorithm is O(k)
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Sorting � parallelization of quick sort

What would be di�erent in case of quick sort compared to merge sort?

average case

worst case
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Sorting � parallelization of quick sort

How can the quick sort be parallelized e�ciently?
Parallel algorithm (average case):

the idea of this parallel algorithm is that there are k processes each
of which operates in parallel

at �rst one process operates on k elements

in the next phase two processes each operate on k
2 elements and so

on

this results in the total complexity of O(k) for the parallel version

communication � this is very much similar to merge sort i.e.:

startup times � the complexity here will be O(log k) because of the
height of the divide-and-conquer tree
total data transferred � similar to computing steps will amount to
O(k)
�nally the total complexity of the parallel version will be O(k)

How to handle irregular trees? How to balance load in this case?
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N-body problem � problem statement

Problem:

there are N bodies in a space (2D, 3D) that change speeds and
locations over time due to gravitational forces

the goal is to perform a simulation over time � in parallel

basic equations include:
1 F = G

mimj

R2
ij

where mi is the mass of body i and Rij is the distance

between body i and body j
2 F = ma
3 F = mdv

dt
4 v = dx

dt

It is an example of a problem in which there are multiple particles that
can be stored in an array/list. Consequently, locations can be stored at
the same time.
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N-body problem � problem statement

Problem:

after selection of a proper 4t proper equations that couple values
in successive time steps can be written

vt+1 = vt + F 4tm from F = ma and substitution for a

v = xt+1−xt
4t leading to xt+1 = xt + v4t

in real simulations new locations and velocities can be computed in
half iterations one after another

the resulting complexity of the solution for one iteration of the
simulation is O(N2) because each body in�uences each of the other
bodies in space
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N-body problem � solution

Solution:

one optimization can be to compute center masses for groups of
objects and then use such a center of mass when computing forces
against a body that is far away

the Barnes-Hut algorithm proposes to partition the domain in
order to allow this:

1 the initial space is divided into cubes (can be 4 or 8 depending on
whether we consider 2D or 3D)

2 each of the cubes will correspond to a node at a certain level of the
divide-and-conquer tree

3 such a node would hold a center mass for its own nodes (inside)
that can be used for computing with distant objects

4 if there are nodes inside then the cube is partitioned again,
otherwise terminated

5 the tree can be very imbalanced
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N-body problem � solution
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N-body problem � parallel solution

Solution requires parallelization of bodies among available CPUs/cores.
A reasonable approach is Recursive Coordinate Bisection � the
algorithm operates recursively:

cuts the space in successive dimensions (one by one)
cuts in such a way that the number of bodies in each dimension is
the same

Paweª Czarnul (KASK, ETI, PG) Parallel and Distributed Algorithms March 9, 2015 39 / 51



Computing prime numbers within a particular range

Solution:

naive:

check each number individually
high computational cost
time needed for numbers may be considerably di�erent especially if
there are large ranges

sieve based:

start with small numbers � compute multiples and reject
how to parallelize such a solution? One approach would be to
partition small numbers up to a certain threshold.
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Computing prime numbers in parallel � other

formulations

Other problems to consider:

What about the case in which there are multiple subranges?

Computing twin prime numbers within a particular range � does it
change the problem?
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Solving a system of linear equations � problem

Problem:

The problem can be stated as solving Ax=b

expanding the problem is as follows:

a0,0x0 + a0,1x1 + ...+ a0,n−1xn−1 = b0

. . .

an−1,0x0 + an−1,1x1 + ...+ an−1,n−1xn−1 = bn−1

(1)

There are several solutions to the problem including:

1 elimination that converts the initial problem into a triangular form
that allows to �nd a solution

2 iterative
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Solving a system of linear equations � Gauss method

Solution:

in this solution in the sequential version in the n-1 iterations we
modify coe�cients in each row in order to eliminate one more row
from updates in successive iterations and �nally obtain the
trinagular form

in each iteration:
1 it is necessary to go through each row
2 update coe�cients in each element of this row

This solution has the complexity of O(n3). In a parallel version it is
possible to use n processors each of which can be responsible for
updates of each row in each iteration. Finally this gives the complexity
of O(n2). Note, though, that some of the processors will be idle for
some time because of the triangular form
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Solving a system of linear equations � Jacobi

Solution:

this is an iterative solution to the problem of Ax=b that can be
stated as follows:

for the k-th iteration each variable to be found xki can be updated
as follows:

xki =
1

ai,i
(bi −

∑
j 6=i

ai,jx
k−1
j )

This solution comes from rearranging of the equations. Depending on
the problem, accuracy and convergence might be an issue. The
algorithm may be solved in parallel since each processor may handle
updates of individual variables. This requires synchronization between
iterations.
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Solving a system of linear equations � real life problems

The Jacobi solution may correspond to solutions to various real life
problems [2] that are modeled by di�erential equations. For instance,

the Laplace equation δ2f
δx2

+ δ2f
δy2

= 0. Using a discrete formulation this
leads to
f(x, y) = 1

4(f(x−4, y) + f(x, y −4) + f(x+4, y) + f(x, y +4)).
Now if we arrange successive f(x+ α4, y + β) as xi then the last
equation can be rewritten as a linear equation. Finally, an equation for
each i can be written. This results in a sparse matrix that can be
solved using the Jacobi solution in parallel.
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FDTD, MRTD � dynamic parallel solutions

Problem:

Typical formulation of a problem such as a physical phenomenon �
as a (set of) di�erential equations

the formulation is then transformed into a solution in discrete time
steps

in each of the time step it is necessary to update values assigned to
cells

synchronization is necessary between time steps

in the parallel version the same applies forcing the following two
steps:

1 computations
2 communication � synchronization of so-called ghost cells

Notice that contrary to the N-body problem here we need to
update many cells aligned in 1, 2 or 3 dimensions
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FDTD, MRTD � dynamic parallel solutions

Certain formulations such as FDTD correspond to regular
computations (same across the domain) which results in partitioning
that can be done before the main time loop:

weights same

di�erent weights � how to partition then? how to �nd weights?
1 partition the domain into blocks � a certain number of cuts in X, Y,

Z planes � how to �nd this number? We need to consider not only
execution times but also communication

2 another reasonable solution can be Recursive Coordinate Bisection
(RCB) � but contrary to the N-body problem in this case we
consider many cells aligned in X, Y and Z dimensions with
potentially various weights � we use sums of weights for
partitioning, cuts in successive dimensions minimize communication

Note that some other formulations (such as MRTD) which are better in
a sequential version (because give up computations in some parts of the
domain) are much more di�cult to parallelize and require dynamic
repartitioning
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Genetic algorithms � parallelization

Possible approaches:

1 partition multiple chromosomes within a population

2 use multiple populations and synchronize computations from time
to time

What problems can be solved using this method? How to �nd e.g.:

zeros of a complex function

solution to a set of linear equations
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Parallel interpolation � IDW

Problem � the problem is to interpolate certain problem-dependent
values based on values available for certain known locations. The
typicall solution would work as follows:

for each point with an unknown value dx and another point di a
weight is computed wxi =

1
d(dx,di)

where d() denotes the distance

�nally the unknown value is computed as follows:
vx =

∑n
i=1 vi

wxi∑n
j=1 wxj

The standard problem could be parallelized just by assignment of
unknown points among available CPUs/cores. The following should be
noted:

1 if there are obstacles in the space then some points with known
data values then some points within the radius would not a�ect
the given point

2 there can be various numbers of points with known data values
within the radius � there is a need for e�cient load balancing

3 how does this problem compare to the N-body problem?
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Parallel interpolation � IDW
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