Introduction to Laboratory 2

Laboratory 2 concerns the implementation of the Newton-Raphson method, which is an iterative method to find the root of a function (i.e. to find the $x_{\text {Root }}$ value for which $f\left(x_{\text {Root }}\right)=$ 0). In the Newton-Raphson method we start with an initial value x_{0} (this value should be sufficiently close to $x_{\text {Root }}$ in order for the method to converge properly, see examples in the exercise 2). By employing the values of the function f and of its derivative f^{\prime} at x_{0}, one can calculate the tangent line that crosses the x axis at the point x_{1} (see Figure 1). Then, the value x_{1} provides a new approximation to the root, which can be employed to calculate a new tangent line crossing the x axis at the point x_{2}. Next, the process should be iterated until convergence is obtained.

The tangent line is a linear function of general form $y(x)=A x+B$. The slope of the first tangent line (i.e. at x_{0}) is given by $A=f^{\prime}\left(x_{0}\right)$. Moreover, at the point x_{1} we have $y\left(x_{1}\right)=0=$ $A x_{1}+B=f^{\prime}\left(x_{0}\right) x_{1}+B$. This means that $B=-f^{\prime}\left(x_{0}\right) x_{1}$. Therefore, the equation for the first tangent line is given by

$$
y(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{1}\right)
$$

At the point x_{0} we have $y\left(x_{0}\right)=f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x_{0}-x_{1}\right)$.
This leads to $f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)=x_{0}-x_{1}$, and finally to an equation relating x_{0} to x_{1} :

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

The procedure can be iterated. Thus, a new approximation to the root x_{i+1} is calculated from the previous approximation x_{i} according to the equation:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

Figure 1: Example illustrating the Newton-Raphson method.

Solutions:

1) For the function $f(x)=\cos x-x$ and its derivative $f^{\prime}(x)=-\sin x-1$, starting with the initial value $x_{0}=0$ and Tolerance $=10^{-8}$, the program does 5 iterations. The root x_{0} is equal to 0.739085 13. In the previous laboratory we found that the Bisection method needs 28 iterations to converge. Therefore, we see that the Newton-Raphson method is faster than the Bisection method. However, the Newton-Raphson method requires additionally the derivative $f^{\prime}(x)$, which is not needed in the Bisection method.
2) The four roots of the polynomial $P(x)$ are $0.18343464 ; 0.52553241 ; 0.79666648 ; 0.960$ 28986.

A problem can happen with the Newton-Raphson method when we reach a point close to an extremum of $P(x)$, at which $f^{\prime}(x) \approx 0$. In this case, the division by $f^{\prime}\left(x_{i}\right)$ in the equation $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f r\left(x_{i}\right)}$ leads to a new approximation x_{i+1} much further to the root than the previous approximation x_{i+1}. At the limit when $f^{\prime}\left(x_{i}\right) \rightarrow 0$, the Newton-Raphson method totally fails because $x_{i+1} \rightarrow \pm \infty$.

An example of such a behavior is obtained for the initial value $x_{0}=0.4$. In this case, one would expect the method to converge to the nearest root at 0.525532 41, but instead it converges to the root at 0.96028986 .
3) The relation $x=13^{2 / 3}$ can be re-written as $x^{3}=13^{2}=169$, and finally as $x^{3}-169=0$. By defining $f(x)=x^{3}-169$, one can use the Newton-Raphson method to calculate $x_{\text {Root }}$ for which $f\left(x_{\text {Root }}\right)=0$. The results is 5.52877481 .

