Introduction to Laboratory 1

Laboratory 1 concerns the implementation of the Bisection method, which is an iterative method to find the root of a function (i.e. to find the x_{0} value for which $f\left(x_{0}\right)=0$). In the Bisection method we start with an initial interval $\left[x_{L}, x_{R}\right]$ comprising the root x_{0} (see the Figure 1 for an example). Then, we calculate the middle value of the interval $x_{M}=\left(x_{L}+x_{R}\right) / 2$ (see Figure 1). Next, the size of the interval $\left[x_{L}, x_{R}\right]$ is decreased by half. In the case of Figure 1 , we see that x_{0} is in the interval $\left[x_{M}, x_{R}\right]$. Therefore, in this case the new interval for the next iteration should be $\left[x_{M}, x_{R}\right]$ (i.e. we replace x_{L} by x_{M}). Starting with this new interval we iterate the process until convergence is obtained, i.e. until the interval or the relative error (see exercise 1) becomes smaller than a given tolerance.

To be able to decrease the interval size, we need to find at each iteration if x_{0} is comprised in [x_{L}, x_{M}] or in $\left[x_{M}, x_{R}\right]$. This can be easily found by checking if the function $f(x)$ has similar or different signs at the interval boundaries. The algorithm works as follows:

If $f\left(x_{L}\right) * f\left(x_{M}\right)>0$ then the function $f(x)$ does not change sign in the interval $\left[x_{L}, x_{M}\right]$ (i.e. $f(x)$ is positive like on Figure 1 or it is negative). That means that x_{0} is not in this interval but is in the other interval $\left[x_{M}, x_{R}\right]$. Else if $f\left(x_{L}\right) * f\left(x_{M}\right)<0$ then it means that x_{0} is in the interval [x_{L}, x_{M}] (i.e. the function $f(x)$ crosses the x axis somewhere between x_{L} and x_{M}).

If x_{0} is in the interval $\left[x_{L}, x_{M}\right]$ then this interval should be use as a initial interval for the next iteration, otherwise we should use $\left[x_{M}, x_{R}\right]$.

Figure 1: Example illustrating the first step of the Bisection method.

Solution:

1) For the function $f(x)=\cos x-x$, starting with $x_{L}=0, x_{R}=1$ and Tolerance $=10^{-8}$, the program does 28 iterations. The root x_{0} is equal to 0.73908513 .
